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Introduction to the HYDROTRONICS textbook1 
Our society would be unimaginable without the control of hydropower. The beginnings of 
human history date back to advanced civilizations that developed along rivers and estuaries. 
Since then, humans have controlled water flows to obtain drinking water, develop irrigation 
systems, and construct artificial waterways for the transport of people and goods. Early 
examples of sophisticated irrigation systems in Mesopotamia date back to the 6th millennium 
BC. Hydraulics, the study of the flow behaviour of water, is one of the oldest branches of 
science and technology. 

The theoretical foundation of hydrology and hydraulics is fluid mechanics. The first recorded 
treatise on fluid mechanics dates back to Archimedes of Syracuse, who studied buoyancy and 
formulated the law now known as Archimedes' principle around 250 BC. Centuries after 
Archimedes, the science flourished during the Renaissance in Europe. The invention of the 
mercury barometer by Torricelli in 1643 is an important milestone in our modern society. 
Modern barometers, used in medicine, meteorology, and aviation, continue to shape our lives 
today. 

 
1Based on extract translated from J. Schmalian, “Hydrodynamische Elektronik”, Yearbook of the 
Heidelberg Academy of Sciences (2021) [in German] 

Hydrodynamics is the oldest and most successful theoretical formalism describing the collective 
motion of strongly interacting particles. Hydrodynamics has been used to treat a wide range of 
physical systems, from water to interstellar matter. Advances in the nanostructuring of ultrapure 
materials over the past few years have given rise to the field of hydrodynamic electronics. 
Several creative experiments in nanoelectronics have demonstrated that electrons in solids can 
behave hydrodynamically. In particular, the observation of so-called "super-ballistic" transport 
demonstrated that the collective flow of charge carriers can be more effective than the usual 
diffuse, or ballistic, motion of individual particles. The HYDROTRONICS Consortium was 
founded to deepen our understanding of collective behavior of electrons in novel materials 
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Over approximately two hundred years after Torricelli, fluid mechanics was formulated by the 
most brilliant minds in the history of science, including Newton, Euler, Bernoulli, Poisson, 
Pascal, and Lagrange. This development reached a climax with the formulation of the Navier-
Stokes equations in the mid-19th century. These equations are still intensively studied. The 
analysis of the existence and regularity of solutions These equations are on the list of the seven 
most important open problems in mathematics formulated by the Clay Mathematics Institute in 
Cambridge, Massachusetts. The institute has offered a prize of one million US dollars for each 
solution. 

Beyond their original purpose of understanding water flow in rivers and canals, the Navier-
Stokes equations are currently used to describe blood flow in veins, understand ocean 
currents, describe airflow around cars and airplane wings, and quantitatively analyse the 
spread of environmental pollution. Even the simulation of air or fluid motion in video games is 
based on solving these equations. In combination with Maxwell's equations, they are used in 
the field of magnetohydrodynamics to understand plasmas, liquid metals, and electrolytes. 
There are applications in geophysics, astrophysics, engineering, and cancer research.                                 

Shaduf to raise the water above the Nile level for 
irrigation purposes in Egypt [Water 7 5031 (2015)] 

Jean-Pol Grandmont, Braine-le-Château, Belgium 
(12th century)               

                                     “Poiseuille River” – Svinafellsjokull gletcher, Iceland 
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Over the past decade, there have been a number of fantastic experimental investigations in 
which hydrodynamic electronics have been observed [1-7, 23, 24]. These involve ultrapure 
materials such as PdCoO2 or WP2, where the sample geometry can be tailored through elegant 
microstructuring, as well as particularly high-quality graphene on hexagonal boron nitride. 

In PdCoO2 [1] and WP2 [2], but especially in graphene [23,24], a flow behaviour of the electrons 
was observed that follows the Hagen-Poiseuille law of fluid mechanics. Let 𝑙!"# be the distance 
that an electron travels between collisions that violate the momentum conservation. For a 
sample geometry smaller than 𝑙!"#, the resistivity of a constriction decreases with its 
transverse dimension 𝑤as 𝜌 ∝ 𝑤$%. The proportionality factor depends on the viscosity 𝜂 of 
the electron fluid. Such behavior was first theoretically treated for hydrodynamic electron flow 
by Radii Gurzhi [8]. Ref. [9] is the first experiment in which hydrodynamic Effects have been 
observed in semiconductor systems. The extension of electronic hydrodynamics to the 
magnetic field has recently been discussed [10]. 

A clear manifestation of the hydrodynamic behaviour of charge carriers in graphene is the 
observation of viscous transport. In an elegant experiment, a negative resistance was 
determined using four-wire measurements in Ref. [5]. In particular, the authors observed a 
negative voltage drop near current injection contacts and in an intermediate temperature range 
(approximately between 100 and 200 K). This remarkable observation can be directly 
explained by swirl patterns in graphene, i.e., flow fields with vorticity [14].  

Closely related to this result is the observation of viscous electron flow in a geometry with 
constrictions [6]. In such experiments, the sample size is typically smaller than the mean free 
path of the material, so that charge carriers move ballistically. Accordingly, the system is 
particularly conductive. This results in an upper limit for the permissible value of conductivity 
[15]. Remarkably, the viscous flow shows super-ballistic conductivity. The ballistic limit was 
clearly exceeded. This result is attributed to the cooperative behaviour of the viscous electron 
fluid. The fluid organizes itself into streams of different velocities. Near edges and defects of 
the constriction, the flow slows down, whereas the majority of charge carriers flow much faster 
within the constriction.  

Another spectacular manifestation of the hydrodynamic behaviour in graphene is the increased 
thermal conductivity 𝜅, without a corresponding increase in electrical conductivity 𝜎[4]. In Fermi 
liquids, at low temperatures, the ratio known as the Lorenz number takes on 𝐿 = 𝜅/(𝜎𝑇)the 
universal value 𝐿& = (𝜋%/3)(𝑘'/𝑒)%. Besides a universal number, only the Boltzmann constant 
𝑘'and the electron charge are taken 𝑒into account. In undoped graphene, a strong increase in 
the Lorentz number up to 𝐿 ≈ 20𝐿&[4] was measured. 

Inspired by these results, since 2019, the HYDTROTRONICS consortium has undertaken a 
wide range of research activities to investigate the details of electronic hydrodynamics in 
various physical systems. The findings, ranging from the discovery of new solutions to the 
hydrodynamic equations to novel regimes of transport and nonlinearities, as well as the 
physics of twisted materials, are collected in this textbook. 
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1. Charge and heat transport in the hydrodynamic regime 
1.1 Non-local hydrodynamic transport phenomena  

We experience now a rare moment of intense interaction between the fields of solids and fluids. 
This is due to the appearance of new high-mobility materials where charge carriers exchange 
momentum among themselves faster than with the lattice. In this regime, their collective motion 
is a viscous fluid flow. Ideas from fluid mechanics can then be employed to solve problems of 
nanoscale electronics: in particular, decrease resistance below the ballistic limit and make the 
current flow against the electric field. 

1.1.1 Force-free dissipative flows 

As shown in Ref. [1], no less remarkable is what electronics can do for fluid mechanics. 150 
years after Stokes, it can reveal new fundamental phenomena in laminar flows never predicted 
or observed before. The reason is that electronics brings a new setting not regularly considered 
in low-Reynolds hydrodynamics: the presence of equipotential (metallic) electrodes serving as 
flow sources embedded inside the fluid. Ref. [1] has shown that the conditions on the electric 
potential (pressure) imposed by sources could be in conflict with those of a viscous flow, which 
leads to anomalies at the boundaries and novel flow properties. In particular, a nontrivial 
analysis of the current distribution and work done in different parts of the flow is needed to 
ensure the energy budget. 

In the simplest case, when one considers a viscous radial flow, they discover that the viscous 
force vanishes identically i.e., the Laplacian of velocity is zero. At the same time, the energy 
dissipation and heat release are everywhere nonzero, because the velocity gradients are 
nonzero. The electric field is thus expelled from the bulk and is concentrated in the boundary 
layer in a viscous flow. The potential jump is proportional to the viscosity, that is to the mean 
free path. That means that the electric field inside the ballistic layer is independent of the mean 
free path. When one goes deep into the hydrodynamic regime (say, by increasing the 
temperature in graphene), the mean free path shrinks but the electric field stays finite. Stokes 
encountered a similar phenomenon of bulk dissipation equal to the surface work in his analysis 
of the decay of water waves: The flow in the bulk is potential, while the viscous forces only 
perform work on the surface.  

How is the above picture of field expulsion modified for an electrode of an arbitrary shape? A 
purely Ohmic flow in 2d can be found via conformal mapping that deforms one electrode into 
another and also transforms streamlines and potential contours. The naive reasoning outlined 
above suggests that, when viscosity is present, the transformation of the potential might still 
be possible due to conformal invariance of the Laplacian. However, this conformal equivalence 
does not hold for viscous flows, since the field distribution depends nontrivially upon the shape 
of the electrode; in particular, for nonsymmetric electrodes the flow, in general, is not potential 
and the electric field partially penetrates the fluid.  

While both Ohmic and viscous flows are inherently dissipative, there is a dramatic difference 
in the spatial distribution of the work done to compensate this dissipation. In Ohmic flows, the 
momentum and the energy losses are locally compensated by an electric field proportional to 
the current at every point. On the contrary, momentum is diffusively conserved by viscous 
flows, while the energy is lost everywhere there is a velocity gradient. The electrical work 
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compensating the viscous energy loss can be partially or even fully done on the flow 
boundaries. 

To summarise, electronic fluids bring into hydrodynamics a new setting: equipotential flow 
sources embedded inside the fluid. The nonlocal relation between the current and electric field 
due to momentum-conserving interparticle collisions leads to a total or partial field expulsion 
from such flows. This results in freely flowing currents in the bulk and a boundary jump in the 
electric potential at current-injecting electrodes. Despite the fact that the spherical flow in the 
bulk is force, the velocity gradients are nonzero everywhere and so is the dissipation and heat 
release. One then needs to analyse carefully the energy budget, including the work done on 
the electrodes. A new type of boundary conditions was derived in Ref. [1] appropriate for this 
case. In the same reference, the current and work distribution was then analysed for free flows, 
and the dependence of the field expulsion on the geometry of the electrode was discussed.  
The phenomenon was linked to the breakdown of conformal invariance. 

1.1.2 Para-hydrodynamic transport and vortices 

An even less trivial distribution of current, momentum diffusion and work correspond to an 
ultimate fluid-mechanical phenomenon – vortices. In Ref. [2] the macroscopic classical vortices 
were for the first time directly observed experimentally in electronic flows and described 
theoretically. Vortices are the hallmarks of hydrodynamic flow. The visualization of whirlpools 
in an electron fluid was achieved by using a nanoscale scanning superconducting quantum 
interference device on a tip, which brought the image of the current distribution in a circular 
chamber connected through a small aperture to a current-carrying strip in the high-purity type 
II Weyl semimetal WTe2. In this geometry, the Gurzhi momentum diffusion length and the size 
of the aperture determine the vortex stability phase diagram. Vortices are present only for small 
apertures, whereas the flow is laminar (non-vortical) for larger apertures. Near the vortical-to-
laminar transition, the splitting of a single vortex into two vortices was observed. This behaviour 
is expected only in the hydrodynamic regime and is not anticipated for ballistic transport. 

Perhaps the most unexpected finding is the fluid-like momentum transport characterized by a 
Gurzhi length, which is much smaller than the one estimated from the bulk microscopic 
parameters. To gain insight into the origin of this surprising behaviour, it is pivotal to recall the 
general derivation of the Ohm–Stokes law. Kinetic theory links momentum relaxation to the 
decay rate γ1 of the first angular harmonic of the nonequilibrium electron momentum 
distribution, whereas the kinematic viscosity is expressed through the decay rate γ2 of the 
second harmonic of the momentum distribution. Importantly, this expression is valid for any 
microscopic momentum scattering mechanism; γ1, γ2 can originate from several sources, 
including impurity scattering, phonons and electron–electron collisions.  

However, spatial diffusion of momentum can originate from effects unrelated to electron–
electron scattering. One appealing alternative mechanism that could result in both diffusion 
and relaxation of electron momenta is related to the finite thickness d of the sample. The 
resistivity of WTe2 flakes is strongly dependent on thickness, a behaviour attributed to surface 
oxidation. Our transport measurements show that the conductivity of the flakes is one to two 
orders of magnitude lower than that of the bulk crystals, indicating a large enhancement of γ1 
induced by the momentum-relaxing scattering off the surfaces. However, enhancement of γ1 
alone, such that γ1 > γ2, would of course lead to ohmic transport with no vorticity, in contrast to 
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the observed hydrodynamic flow, which requires γ2 > γ1. Thus, an enhancement in γ1 implies 
an enhancement in γ2. Indeed, the theory developed in Ref. [2] shows that small-angle 
scattering results in γ2 ≌ 4γ1, giving rise to para-hydrodynamic transport.  

The emerging picture is therefore as follows. For fully specular surface scattering, the transport 
is ballistic. Small-angle scattering at the surfaces results in the enhancement of momentum 
relaxation and of lateral momentum diffusion. In this para-hydrodynamic regime, momentum 
diffusion occurs not through the usual momentum-conserving electron–electron scattering but 
rather through close-to-specular scattering of individual particles at the top and bottom 
surfaces. The surface-induced para-hydrodynamics presents a unique opportunity to explore 
hydrodynamic phenomena in a wide range of high-mobility materials without the hard-to-
achieve strong bulk electron–electron interactions.  

This surface-induced para-hydrodynamics, which mimics many aspects of conventional 
hydrodynamics including vortices, opens new possibilities for exploring and using electron 
fluidics in high-mobility electron systems. 

1.1.3 Hydrodynamic flows in ultrapure graphene at charge neutrality  

The diversity of quasiparticle spectra in solids allows for hydrodynamic flows in electronic 
systems that have not been previously encountered in conventional fluids. In particular, 
intrinsic graphene exhibits unconventional behaviour where the energy flow is hydrodynamic 
(and is described by a velocity field obeying the Navier-Stokes-like equation), while the charge 
flow is Ohmic [3]. The resulting flow profile depends on sample geometry.  

In the more conventional channel geometry (modelling a Hall bar) we find that the hallmark 
Poiseuille flow cannot be driven by the electric field irrespective of boundary conditions at the 
channel edges. The resulting electric current is independent of viscosity. Nevertheless, one 
can observe nonuniform current densities similarly to the case of the well-known ballistic-
diffusive crossover. The standard diffusive behaviour with a uniform current density across the 
channel is achieved under the assumption of specular scattering at the channel boundaries. It 
can be made inhomogeneous by applying an external magnetic field. In this case the current 
profile is anti-Poiseuille (with a minimum current density in the centre of the channel) [4]. See 
also 2.1.2 for a more detailed discussion. 

On the other hand, in the circular Corbino geometry the electric current is nonuniform even in 
the simplest Drude picture. At charge neutrality, the non-hydrodynamic electric current is 
accompanied by the hydrodynamic energy flow and hence by viscous dissipation and energy 
relaxation [5]. The two currents are induced by the same source providing the total dissipated 
energy and determining the voltage drop in the sample. Given that the voltage drop in the bulk 
is fixed by the electric current density, the additional voltage drop due to viscous dissipation 
must take form of a potential jump at the sample-lead interface (with an excess electric field 
induced in the thin Knudsen layer around the interface). This potential jump is distinct from the 
usual contact resistance and is a function of the system size. 

An external magnetic field couples the charge and energy currents forcing them to flow in 
orthogonal directions. In contrast to the Hall bar geometry, the lateral energy current flows 
freely around the Corbino disk without accumulating quasiparticles at any point. As a result, 
the device resistance as a function of magnetic field remains positive and parabolic. 
Furthermore, the magnetoresistance of the Corbino device exhibits a crossover from the 
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“hydrodynamic” (viscosity dominated) to the “bulk” (disorder-limited) behaviour with increasing 
system size (compared to the Gurzhi length). In the clean limit the magnetoresistance remains 
finite and is determined by viscosity, offering a way to measure the viscosity coefficient in 
neutral graphene. The “contact magnetoresistance” induced through the dissipation jump is 
present but is typically weaker than the bulk contribution [6]. 

The experimental imaging of magneto-hydrodynamic Corbino flows (including the potential and 
work distribution in ultrapure graphene samples) was reported in Ref. [7] (see also [11]).   

The decoupling of charge and energy currents in intrinsic graphene may be traced back to the 
specific feature of graphene band structure where two bands touch at the Dirac points. At finite 
temperatures, both bands contain mobile carriers leading to the two-component nature of the 
electronic system. Given the exact particle–hole symmetry at neutrality, this system is 
“compensated” and hence there is no classical Hall effect. The bulk Hall conductivity vanishes, 
while the longitudinal conductivity is unaffected by the magnetic field. The nonlocal response 
instead depends strongly on the applied field. This effect was studied in Ref. [8] capturing the 
main qualitative features of giant nonlocality observed experimentally in Ref. [9].  

1.1.4 Collective excitations in ultrapure graphene in the hydrodynamic regime 

One of the most intriguing aspects [3] of the hydrodynamic approach to electronic transport is 
collective behaviour. Viscous effects and weak disorder lead to damping of the hydrodynamic 
sound mode. The latter effect does not appear in traditional hydrodynamics since in electronic 
systems dissipation due to “external” scattering (e.g., disorder and electron–phonon scattering) 
appears already in the description of an “ideal” (i.e., inviscid) electronic fluid. The sound modes 
have to be distinguished from plasmonic excitations. Typically, the two types of collective 
modes are defined in different parameter regimes: hydrodynamics is applicable at small 
momenta, 𝒒𝓵𝒉𝒚𝒅𝒓𝒐 ≪ 𝟏, while plasmons are nonequilibrium excitations that belong to higher 
momenta. In graphene, the possibility of discussing momenta exceeding 𝟏/𝓵𝒉𝒚𝒅𝒓𝒐, is afforded 
by the collinear scattering singularity which leads to the existence of two parametrically 
different length scales and hence of an intermediate momentum range, 𝓵𝒉𝒚𝒅𝒓𝒐$𝟏 ≪ 𝒒 ≪ 𝓵𝒄𝒐𝒍𝒍$𝟏 . 
Here a linear response theory can be used to find the collective modes. Remarkably, the 
macroscopic equations of this theory coincide with the linearized hydrodynamic equations such 
that the resulting dispersions should be valid in the hydrodynamic regime as well. 

We find that the plasmon mode as established by the macroscopic theory should be contrasted 
with the diffusive charge mode and not the sound mode of electronic hydrodynamics. The 
plasmon and the sound belong largely to different frequency regimes, but most importantly, 
stem from the two different, decoupled sectors of the theory (the sound mode can also be 
obtained from the linear response theory hence one can extend its region of applicability 
beyond the hydrodynamic regime). The latter fact is the reason why the plasmon dispersion is 
independent of viscosity, while the sound mode is unaffected by screening effects (which are 
essentially responsible for plasmon excitations). Formally, the two modes coexist but are 
characterized by different frequencies that are much higher for the plasmon mode. 
Approximately at wavevectors of the order of ~𝓵𝒄𝒐𝒍𝒍$𝟏  , i.e., at the applicability limit of the linear 
response theory, the sound mode becomes overdamped, which does not happen to the 
plasmon [10].  
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1.2 The role of boundary conditions in heat transport  

The primary objective here was to investigate and elucidate the specific boundary conditions 
affecting the behaviour of the viscous electronic fluid in graphene and other Dirac materials. A 
significant challenge in non-Galilean-invariant systems is the lack of equivalence between 
macroscopic currents and the velocity field. In graphene, for example, the energy current 
corresponds to momentum, which, because of the linear spectrum, is not equivalent to velocity. 
Consequently, electron-electron interactions in graphene lead to the conservation of energy 
current, resulting in unique heat transport characteristics.  

1.2.1 Nonlocal hydrodynamic transport and collective excitations in Dirac fluids 

In Ref. [1], the response of a Dirac fluid to electric fields and thermal gradients at finite wave 
numbers and frequencies in the hydrodynamic regime was studied. It was found that nonlocal 
transport in the hydrodynamic regime is governed by an infinite set of kinetic modes that 
describe noncollinear scattering events in different angular harmonic channels. The scattering 
rates of these modes increase as |m|, where m labels the angular harmonics. In earlier works, 
it was pointed out that this dependence leads to anomalous, Lévy-flight-like phase-space 
diffusion [2]. In Ref. [1] it was shown how this surprisingly simple, nonanalytic dependence 
allows one to obtain exact expressions for the nonlocal charge and electronic thermal 
conductivities. The peculiar dependence of the scattering rates on m also leads to a nontrivial 
structure of collective excitations. Besides the known plasmon, second-sound, and diffusive 
modes, one finds nondegenerate damped modes corresponding to excitations of higher 
angular harmonics. These results were used to investigate the transport of a Dirac fluid through 
Poiseuille-type geometries under different boundary conditions of different widths and to study 
the response to surface acoustic waves in graphene-piezoelectric devices.  

1.2.2 Heating of inhomogeneous electron flow and the contribution of supercollisions 

In Ref. [3], the electron temperature profiles for an inhomogeneous electron flow in the 
hydrodynamic regime were studied. It was assumed that the inhomogeneity was due to a 
weakly nonuniform distribution of the momentum relaxation time within a spherically 
constricted area. The temperature profile was shown to dramatically depend on the drive 
strength and the viscosity of the electron liquid. In the absence of viscosity, a Landauer-dipole-
like temperature distribution, asymmetrically deformed along the current by the inelastic 
electron-phonon scattering, emerges around the inhomogeneity. Both the Landauer-dipole 
temperature profile and its asymmetry in the direction of the driving electric field exist in all 
dimensionalities and are, therefore, universal features of inhomogeneous hydrodynamic 
electron flow. It was further demonstrated that the electron viscosity suppresses the thermal 
Landauer dipole and leads to the appearance of a “hot spot” exactly at the centre of the 
constriction. The phonon temperature distribution was calculated: this can be directly 
measured in experiments on thermal nanoimaging.  

In nearly compensated graphene, disorder-assisted electron-phonon scattering or 
"supercollisions" are responsible for both quasiparticle recombination and energy relaxation. 
Within the hydrodynamic approach, these processes contribute weak decay terms to the 
continuity equations at local equilibrium, i.e., at the level of “ideal" hydrodynamics. In Ref. [1], 
the derivation of the decay term due to a weak violation of energy conservation was reported. 
Such terms have to be considered on equal footing with the well-known recombination terms 
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due to the non-conservation of the number of particles in each band. At high enough 
temperatures in the “hydrodynamic regime", supercollisions dominate both types of interaction. 
The contribution of supercollisions to the heat transfer equation was also discussed, 
generalizing the continuity equation for the energy density to viscous hydrodynamics. 

1.2.3 Boundary conditions in Corbino geometry 

The role of boundary conditions between the graphene sample and metallic leads in the 
Corbino geometry was also studied, see Refs. [4] and [5] In the circular geometry, the electric 
current displayed nonuniform behaviour. At charge neutrality, the non-hydrodynamic electric 
current was accompanied by a hydrodynamic energy flow, resulting in viscous dissipation and 
energy relaxation. Both currents stemmed from the same source, contributing to the total 
dissipated energy and determining the voltage drop in the sample. The introduction of an 
external magnetic field causes the charge and energy currents to flow in orthogonal directions. 
Unlike the Hall-bar geometry, the lateral energy current in the Corbino disk circulates freely 
without accumulating quasiparticles at any point. Consequently, the device resistance as a 
function of the magnetic field remains positive and parabolic. A crossover in the Corbino 
magnetoresistance from "hydrodynamic" (viscosity-dominated) to "bulk" (disorder-limited) 
behaviour was predicted with increasing system size compared to the Gurzhi length. In the 
clean limit, the magnetoresistance provides a means to measure the viscosity coefficient in 
neutral graphene. While the "contact magnetoresistance" resulting from the dissipation jump 
at the interfaces between the samples and leads was present, it typically exhibited weaker 
contributions than the bulk effect.  

1.2.4 Giant thermal diffusivity of Dirac fluids 

Conducting materials typically exhibit either diffusive or ballistic charge transport. However, 
when electron-electron interactions dominate, a hydrodynamic regime with viscous charge flow 
emerges. More stringent conditions eventually yield a quantum-critical Dirac-fluid regime, 
where electronic heat can flow more efficiently than charge. Heat transport in graphene in the 
diffusive and hydrodynamic regimes was studied experimentally in Ref. [6], reporting a 
controllable transition to the Dirac-fluid regime at room temperature, using carrier temperature 
and carrier density as control knobs. The technique of spatiotemporal thermoelectric 
microscopy with femtosecond temporal and nanometre spatial resolution, which allows for 
tracking electronic heat spreading, was introduced. In the diffusive regime, a thermal diffusivity 
of ∼2,000 cm2/s, consistent with charge transport, was found. Remarkably, during the 
hydrodynamic time window before momentum relaxation, an ultrafast heat spreading 
corresponding to a giant diffusivity up to 70,000 cm2/Vs was observed, indicative of a Dirac 
fluid. These results are promising for applications such as nanoscale thermal management. 

1.2.5 Thermal transport in compensated semimetals 

It is well known that the electronic thermal conductivity of clean compensated semimetals can 
be greatly enhanced over the electric conductivity by the availability of an ambipolar 
mechanism of conduction, whereby electrons and holes flow in the same direction 
experiencing negligible Coulomb scattering as well as negligible impurity scattering. This 
enhancement—resulting in a breakdown of the Wiedemann-Franz law with an anomalously 
large Lorenz ratio—has been recently observed in two-dimensional monolayer and bilayer 
graphene near the charge neutrality point. In contrast to this, three-dimensional compensated 
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semimetals such as WP2 and Sb are typically found to show a reduced Lorenz ratio. In Ref. 
[7], the reasons for this difference were investigated, focusing on the low-temperature regime 
where electron-electron scattering is expected to dominate over other scattering mechanisms. 
The different regimes of Fermi statistics (nondegenerate electron-hole liquid in graphene 
versus degenerate electron-hole liquid in compensated semimetals) are not sufficient to 
explain the reduction of the Lorenz ratio in the latter. The proposed solution to the puzzle lies 
in the large separation of electron and hole pockets in momentum space, which allows 
compensated semimetals to sustain sizable regions of electron-hole accumulation near the 
contacts. These accumulations suppress the ambipolar conduction mechanism and effectively 
split the system into two independent electron and hole conductors. A quantitative theory of 
the crossover from ambipolar to unipolar conduction as a function of the size of the electron-
hole accumulation regions was presented and shown to naturally lead to a sample-size-
dependent thermal conductivity. 

1.2.6 Interplay between two mechanisms of resistivity 

In Ref. [8] the interplay between two mechanisms of resistivity was studied. Mechanisms of 
resistivity can be divided into two basic classes: one is dissipative (like scattering on phonons) 
and another is quasi-elastic (like scattering on static impurities). They are often treated by the 
empirical Matthiessen rule, which says that total resistivity is just the sum of these two 
contributions, which are computed separately. This is quite misleading for two reasons. First, 
the two mechanisms are generally correlated. Second, computing the elastic resistivity alone 
masks the fundamental fact that the linear-response approximation has a vanishing validity 
interval at vanishing dissipation. Limits of zero electric field and zero dissipation do not 
commute for the simple reason that one needs to absorb the Joule heat quadratic in the applied 
field. A simple model that illustrates these two points was presented in Ref. [9]. The model also 
illuminates the role of variational principles for non-equilibrium steady states. 

1.2.7 References 

1. Egor I. Kiselev and Jörg Schmalian, Nonlocal hydrodynamic transport and collective 
excitations in Dirac fluids, Phys. Rev. B 102, 245434 (2020); 
https://doi.org/10.1103/PhysRevB.102.245434  

2. Egor I. Kiselev and Jörg Schmalian, Lévy Flights and Hydrodynamic Superdiffusion on the 
Dirac Cone of Graphene, Phys. Rev. Lett. 123, 195302 (2019); 
https://doi.org/10.1103/PhysRevLett.123.195302 

3. Gu Zhang, Valentin Kachorovskii, Konstantin Tikhonov, and Igor Gornyi, Heating of 
inhomogeneous electron flow in the hydrodynamic regime, Phys. Rev. B 104, 075417 
(2021); https://doi.org/10.1103/PhysRevB.104.075417  

4. B. N. Narozhny, I. V. Gornyi, Hydrodynamic Approach to Electronic Transport in Graphene: 
Energy Relaxation, Front. Phys. 9, 1 (2021); https://doi.org/10.3389/fphy.2021.640649 

5. Vanessa Gall, Boris N. Narozhny, and Igor V. Gornyi, Electronic viscosity and energy 
relaxation in neutral graphene, Phys. Rev. B 107, 045413 (2023); 
https://doi.org/10.1103/PhysRevB.107.045413 

https://doi.org/10.1103/PhysRevB.102.245434
https://doi.org/10.1103/PhysRevLett.123.195302
https://doi.org/10.1103/PhysRevB.104.075417
https://doi.org/10.3389/fphy.2021.640649
https://doi.org/10.1103/PhysRevB.107.045413


17 
 

6. Vanessa Gall, Boris N. Narozhny, and Igor V. Gornyi, Corbino magnetoresistance in 
neutral graphene, Phys. Rev. B 107, 235401 (2023); 
https://doi.org/10.1103/PhysRevB.107.235401 

7. Alexander Block, Alessandro Principi, Niels C. H. Hesp, Aron W. Cummings, Matz Liebel, 
Kenji Watanabe, Takashi Taniguchi, Stephan Roche, Frank H. L. Koppens, Niek F. van 
Hulst, and Klaas-Jan Tielrooij, Observation of giant and tunable thermal diffusivity of a 
Dirac fluid at room temperature, Nature Nanotechnology volume 16, 1195 (2021); 
https://doi.org/10.1038/s41565-021-00957-6 

8. Mohammad Zarenia, Alessandro Principi, and Giovanni Vignale, Thermal transport in 
compensated semimetals: Effect of electron-electron scattering on Lorenz ratio, Phys. Rev. 
B 102, 214304 (2020); https://doi.org/10.1103/PhysRevB.102.214304  

9. A Kapustin and G Falkovich. Interplay between two mechanisms of resistivity 
arXiv:2407.16284; https://doi.org/10.48550/arXiv.2407.16284 

 

  

https://doi.org/10.1103/PhysRevB.107.235401
https://doi.org/10.1038/s41565-021-00957-6
https://doi.org/10.1103/PhysRevB.102.214304
https://doi.org/10.48550/arXiv.2407.16284


18 
 

2. Non-locality, non-linearity, and light matter interaction 
2.1 Theory of non-local hydrodynamic transport phenomena 

The goal of the research presented here is to numerically integrate the hydrodynamic 
equations and evaluate the non-local conductivity for arbitrary momenta. Additionally, this 
research aims to study the spatial distribution of the charge flow in various sample geometries, 
and investigate transport phenomena in quantum critical systems, such as graphene at the 
charge neutrality point. While local transport coefficients of this system have been thoroughly 
studied, the non-local conductance properties are much less explored.  

2.1.1 Giant nonlocality in graphene-like semimetals 

In compensated two-component systems in confined, two-dimensional geometries, nonlocal 
response may appear due to external magnetic field. In Ref. [1] the evolution of charge flow 
profiles and the emergence of a giant nonlocal pattern dominating charge transport in magnetic 
field was demonstrated. Applying our approach to the specific case of intrinsic graphene, a 
simple physical explanation for the experimental observation of giant nonlocality was 
suggested. These results provide an intuitive way to predict the outcome of future experiments 
exploring the rich physics of many-body electron systems in confined geometries as well as to 
design possible applications. 

In particular it was shown that the observed giant nonlocality in neutral graphene at high 
temperatures in non-quantizing magnetic fields, as reported in Ref. [21], can be attributed to 
the two-band nature of the quasiparticle spectrum in graphene. This effect is not specific to 
graphene, and it was anticipated that it should be observable in any compensated two-
component system.  

 
Figure 1: Giant nonlocality in a compensated semimetal in magnetic field. The arrows indicate the current flow and 
the color map shows the electrochemical potential (see the main text and Figs. 2 and 3 for specific parameters).  

The theory, with material-specific parameters, provides a quantitative description of the effect 
observed in experiment. However, for graphene, a more precise calculation involving the 
solution of the full system of hydrodynamic equations near charge neutrality would be 
necessary to achieve perfect agreement with data. Nonetheless, this approach demonstrates 
that the effect is general and does not require additional assumptions of electronic 
hydrodynamics. The nonlocal flow pattern that emerges in a magnetic field, as shown in Figs. 
1, 2, and 3, is distinct from the vortices that arise in viscous hydrodynamic flow, as seen in 
doped graphene in prior studies. In the latter case, vorticity results from the geometry of the 
flow and specific boundary conditions, and the solution of the hydrodynamic equations can be 
obtained by introducing the stream function. This stream function satisfies a biharmonic 
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equation independent of viscosity, which affects the distribution of the electrochemical 
potential. In contrast, within the present model, the "Ohmic" scattering is the only source of 
dissipation and cannot be omitted. While one can still introduce a stream function, it is 
determined not only by the sample geometry but also by the Ohmic scattering and magnetic 
field. As a result, the flow pattern does not exhibit vortices, unlike those that have been 
suggested for hydrodynamic flow in intrinsic graphene in the absence of magnetic field in other 
studies. 

 
Figure 2: Classical Hall effect in a one-component electronic system. The current density (shown by the arrows) 
and the electrochemical potential (shown by the color map) were ob- tained from Eqs. (1) for a sample of the width 
W = 1 μm and length L = 4 μm with t 

 
Figure 3: Charge flow in compensated semimetals. Top: Ohmic flow in the absence of magnetic field. Bottom: 
emergent non- locality in weak magnetic field B = 0.2T. The associated potential on the sample boundaries grows 
with the increasing field, see Fig. 1 for the pattern at B = 2T. Stronger fields expel the current from the bulk such 
that it flows along the boundary. 

2.1.2 Anti-Poiseuille flow in neutral graphene 

In a second publication [2] the hydrodynamic flow of charge carriers in graphene was 
demonstrated to be distinct from the mass flow observed in conventional fluids [1]. In neutral 
graphene, the energy flow is decoupled from the electric current, making it challenging to 
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observe hydrodynamic effects and measure the viscosity of the electronic fluid via electric 
current measurements. The hallmark Poiseuille flow in a narrow channel cannot be driven by 
the electric field, regardless of the boundary conditions at the channel edges. Nevertheless, 
nonuniform current densities can be observed similarly to the well-known ballistic-diffusive 
crossover. The standard diffusive behaviour with uniform current density across the channel is 
achieved under the assumption of specular scattering on the channel boundaries. This flow 
can also be made nonuniform by applying weak magnetic fields. In this case, the curvature of 
the current density profile is determined by the quasiparticle recombination processes 
dominated by disorder-assisted electron-phonon scattering, known as supercollisions. 

Despite the challenges in measuring hydrodynamic effects in neutral graphene, this work 
demonstrates that the Poiseuille flow can be used as a hallmark of viscosity [3]. The Poiseuille 
flow is a particular solution to the Navier-Stokes equation in the case where a viscous, 
incompressible fluid is constrained by stationary boundaries. The problem is usually solved 
under the assumption of the no-slip boundary conditions, meaning that the flow velocity at the 
boundaries is zero. Then, the Navier-Stokes equation becomes an ordinary second-order 
differential equation yielding the standard parabolic velocity profile. The solution can be 
extended to the case of more general Maxwell's boundary conditions with a finite slip length. 
However, the limit of infinite slip length, i.e., with no-stress boundary conditions, does not admit 
any solutions for the Poiseuille problem. In other words, a pressure-induced viscous flow in a 
pipe cannot be homogeneous. On the contrary, an inviscid fluid is described by the Euler 
equation, which is a nonlinear, first-order differential equation that does not require boundary 
conditions on the longitudinal component of the velocity and allows for homogeneous 
solutions. Hence, the Poiseuille flow can be used as a hallmark of viscosity. 

 
Figure 4: Catenary curves of the current density in the narrow channel normalized by the averaged current density. 
The numerical results were obtained for typical parameter values for graphene (τdis ≈ 0.8 THz, αg ≈ 0.2, ν ≈ 0.4m2/s, 
B = 0.1T, T = 250K) and corre 
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Figure 5: Magnetoresistance in the narrow graphene channel normalized by the zero-field resistance R0. The 
numerical results were obtained for typical parameter values (as in Fig 4) and corresponds to three values of the 
channel width, W = 0.1, 1, 5 μm (blue, gr 

In this study, the behaviour of electronic transport in graphene at charge neutrality is shown to 
differ significantly from that of any single-component fluid, including strongly doped graphene. 
When the doping level is weak (μ ≪ T), the contribution of hydrodynamics to the electric current 
is small and only yields a slight correction to our previously presented results. However, for μ 
∼ T, both the hydrodynamic and dissipative (“kinetic”) contributions become equally significant. 
In this case, there is no small parameter in the theory, and we can represent the full system of 
linearized hydrodynamic equations by a 6 × 6 matrix. On the other hand, when the doping level 
is high (μ ≫ T), the hydrodynamic contribution dominates, and the boundary scattering 
becomes diffusive. This dominance results in the Poiseuille profile being observed in the 
electronic flow in a channel, which is in agreement with the experimental observations in Ref. 
[4] Based on these findings, the crossover from anti-Poiseuille to Poiseuille flow is anticipated 
to occur at μ ∼ T. 
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2.2 Non-linear phenomena in electron hydrodynamics 

Inspired by the success of electronic hydrodynamics in the linear regime (in particular in 
graphene), the research presented here encapsulates the work undertaken on non-linear 
hydrodynamic phenomena by various research groups. The investigations span diverse non-
linear phenomena, experimentally relevant geometries, and the exploration of hydrodynamic 
effects in the presence of weak magnetic fields. The ultimate goal remains to determine if 
conditions akin to turbulence in real fluids can be achieved in electronic systems. While work 
in this direction is not yet complete, the path ahead holds exciting potential, not only for 
fundamental physics but also for practical applications in nanoelectronics and related areas. 

2.2.1 Transport properties of strongly coupled electron-phonon liquids 

The study [1] focused on the hydrodynamic behaviour of a coupled electron-phonon fluid, 
specifically under the conditions of strong phonon drag. This regime occurs when the rate of 
phonon equilibration due to, e.g., Umklapp scattering is much slower than the rate of normal 
electron-phonon collisions. Then phonons and electrons form a coupled out-of-equilibrium 
state where the total quasi-momentum of the electron-phonon fluid is conserved. A joint flow 
velocity emerges as a collective hydrodynamic variable. The study utilized a rigorous approach 
by deriving the equation of motion for this coupled electron-phonon fluid from the underlying 
microscopic kinetic theory. This equation elucidated essential parameters such as effective 
viscosity and thermal conductivity, which are crucial for understanding and characterizing the 
behaviour of the system. Key findings include: 

1. Decay Times and Super-Diffusive Relaxation: The study was particularly notable for its 
derivation of decay times for arbitrary harmonics of the distribution function. It revealed 
that these harmonics exhibit super-diffusive relaxation on the Fermi surface. This 
behaviour provides insights into the dynamics of electron-phonon coupling and non-
equilibrium states. 

2. Applications to Magneto-Transport Properties: The analysis was extended to various 
experimental geometries, including Hall-bar and Corbino-disk setups. These geometries 
are relevant to magnetotransport experiments. By examining electron-phonon interactions 
under different conditions, the study contributed to the understanding of magnetotransport 
properties in these systems. 

3. Consideration of General Boundary Conditions: A broad spectrum of boundary 
conditions was considered, ranging from no-slip to no-stress flows. This comprehensive 
approach allowed them to study the system's behaviour across different regimes, 
providing valuable insights into the crossover from the Stokes to the Ohmic regime, 
especially under the conditions of the Gurzhi effect. 

4. Frequency Dependence of Surface Impedance and Non-Equilibrium Noise: The 
investigation also encompassed the frequency dependence of the surface impedance and 
non-equilibrium noise. Of particular interest was the observation that in the diffusive 
regime, the electron-phonon collision integral exhibited a Burgers-type nonlinearity. This 
led to the formation of a shock-wave structure in the energy domain of the non-equilibrium 
distribution function, with implications for the Fano factor of the noise. 
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In summary, the study made significant contributions to the understanding of non-linear 
phenomena in electron hydrodynamics, especially in the context of electron-phonon coupling. 
Their rigorous approach, spanning both theoretical and experimental aspects, provided 
valuable insights into the behaviour of electron-phonon fluids and their applications in 
magnetotransport. The findings offer a foundation for future research in this area and have the 
potential to impact various fields, including materials science and electronics. In particular, the 
work discussed the connections and limitations of the results in the context of recent electron-
phonon drag measurements in Dirac and Weyl semimetals, and layout directions for further 
extensions and developments. 

2.2.2 Corbino field-effect transistors in a magnetic field 

Ref. [2] focused on gated field-effect transistors (FETs) with an eccentric Corbino-disk 
geometry. Their investigation aimed to uncover non-linear electronic phenomena in these 
systems, particularly concerning their response to external stimuli, such as an AC THz 
(terahertz) potential difference applied between the source and gate, and a static source-drain 
voltage rectified by the nonlinearities of the FET. These unique experimental conditions 
allowed the group to explore and understand the non-linear behaviours exhibited by these 
electronic devices. When a magnetic field was applied perpendicular to the device, a strong 
resonance appeared at the cyclotron frequency. The strength of the resonance can be tuned 
by changing the eccentricity of the disk.  

Key findings include: 

1. Resonance at Cyclotron Frequency: When a magnetic field was applied 
perpendicular to the Corbino-disk FETs, a strong resonance at the cyclotron frequency 
was observed. This finding is significant because it reveals that the non-linear response 
of the system is strongly influenced by the magnetic field's orientation. Moreover, the 
strength of this resonance could be adjusted by changing the eccentricity of the 
Corbino-disk, underscoring the importance of geometric parameters in shaping non-
linear electronic behaviour. 

2. Optimization of Responsivity: The study showed that there exists an optimum value 
of eccentricity for the Corbino-disk that maximizes the responsivity of the FET. This 
optimization is an exciting discovery, as it suggests that fine-tuning geometric 
parameters can significantly enhance the device's performance. The ability to control 
and maximize responsivity holds potential for applications in nanoelectronics, where 
the efficient detection and manipulation of electronic signals are crucial. 

3. Application of Non-Linearities: The study illuminated how non-linearities, induced by 
both the AC THz potential difference and static source-drain voltage, play a pivotal role 
in shaping the behaviour of the Corbino-disk FETs. This insight offers a more profound 
understanding of how non-linearities can be harnessed to create functional electronic 
devices with tailored characteristics. 

In summary, the study made substantial contributions to the exploration of non-linear electronic 
phenomena in the context of Corbino-disk FETs. The work showcased the importance of 
magnetic fields and geometric parameters in shaping non-linear behaviour. Furthermore, the 
ability to optimize the responsivity of these devices opens up exciting possibilities for 
applications in nanoelectronics and related fields, where precise control of electronic 
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responses is of paramount importance. This study bridges the gap between theory and 
practical applications, shedding light on the potential of non-linear electronic systems in 
emerging technologies. 

2.2.3  Information-based approach to turbulence 

A series of studies explored non-linear phenomena in hydrodynamics, aiming to unravel the 
complex behaviors and interactions that occur in systems with resonantly interacting modes, 
with a particular focus on noise-driven systems. 

When two resonantly interacting modes are in contact with a thermostat, their statistics is 
exactly Gaussian and the modes are statistically independent despite the strong interaction. 
Considering noise-driven system, in Ref. [3] it was shown that when one mode is pumped and 
another dissipates, the statistics of such cascades is never close to Gaussian, no matter the 
interaction/noise relation.  Substantial phase correlation was found in the limit of strong 
interaction (weak noise). Surprisingly, for both cascades, the mutual information between 
modes (see also Ref. [4]) increases and entropy further decreases when interaction strength 
decreases. The model was developed to elucidate the fundamental problems of far-from-
equilibrium physics: where the information (entropy deficit) is encoded and how singular 
measures form. For an instability-driven system (a laser), even a small added noise leads to 
large fluctuations of the relative phase near the stability threshold, while far from it we show 
that the conversion into the second harmonic is weakly affected by noise. 

Never is the difference between thermal equilibrium and turbulence so dramatic, as when a 
quadratic invariant makes the equilibrium statistics exactly Gaussian with independently 
fluctuating modes. That happens in two very different yet deeply connected classes of 
systems: incompressible hydrodynamics and resonantly interacting waves. In Ref. [5] the first 
case of a detailed information-theoretic analysis of turbulence in such strongly interacting 
systems was presented. The analysis elucidated the fundamental roles of space and time in 
setting the cascade direction and the changes in the statistics along it. A simple yet rich family 
of discrete models with neighbouring triplet interactions was introduced. It was shown that it 
had families of quadratic conservation laws defined by the Fibonacci numbers. Depending on 
the single model parameter, three types of turbulence were found: single direct cascade, 
double cascade, and the first-ever case of a single inverse cascade. The way deviation from 
thermal equilibrium all the way to turbulent cascades rendered statistics increasingly non-
Gaussian was described quantitatively and it was found the self-similar form of the one-mode 
probability distribution. In particular, it was revealed where the information (entropy deficit) is 
encoded and disentangled in the communication channels between modes, as quantified by 
the mutual information in pairs and the interaction information inside triplets. 

Key findings include: 

1. Resonantly Interacting Modes: The team investigated systems where modes resonantly 
interact with each other. In such systems, it was found that their statistics were exactly 
Gaussian, despite the strong interactions between the modes. This result challenges 
conventional expectations regarding statistical behaviours in interacting systems and 
highlights the complexity of noise-driven phenomena. 

2. Phase Correlation and Mutual Information: The studies revealed substantial phase 
correlation in the limit of strong interaction, even in the presence of weak noise. This 
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discovery underscores the intricate relationship between mode interactions and their 
statistical properties. Moreover, the mutual information between modes was observed to 
increase as the strength of interaction decreased, providing insights into how information 
is encoded and distributed in these systems. 

3. Insights into Far-From-Equilibrium Physics: The work addressed the fundamental 
problem of far-from-equilibrium physics, and investigated how information (entropy deficit) 
is encoded and how singular measures form in noise-driven systems. This knowledge has 
broad implications, particularly in understanding the behaviour of systems under various 
conditions, including instability-driven systems like lasers. 

4. Analysis of Turbulence: In one of the studies, an information-theoretic analysis of 
turbulence in strongly interacting systems, such as incompressible hydrodynamics and 
resonantly interacting waves, was performed. The roles of space and time in setting the 
cascade direction and the changes in statistical properties along it was explored. This 
analysis led to the discovery of different types of turbulence, including single direct 
cascades, double cascades, and a unique single inverse cascade. The research also 
provided insights into the information encoding and distribution within these turbulent 
systems. 

In summary, the studies have made significant contributions to the understanding of non-linear 
phenomena in hydrodynamics. The work offers insights into the intricate interplay of modes in 
noise-driven systems and the statistical behaviours that arise from resonantly interacting 
modes. These findings have broad implications for understanding far-from-equilibrium physics 
and the behaviour of various systems, including turbulent flows. The complexity of the 
behaviours observed underscores the richness of non-linear phenomena in electron 
hydrodynamics, paving the way for further exploration in this exciting field. 
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2.3 Light-matter interaction 

Advances harnessing light-matter interaction are expanding the frontiers of the materials 
research landscape. Over the last years, a steady series of studies has been changing our 
understanding of light-matter interaction and its possible reach in the world of materials. 
Besides serving as a prime characterization tool (with ARPES as a flagship example key in the 
discovery of topological materials), laser illumination can now be used to transform an 
otherwise metallic sample onto one endowed with a gap and even topological states (for a 
recent review see [1]).  

Floquet-engineering, the use of light-matter interaction (or more generally, a time-dependent 
driving) to tailor the properties of materials or systems, has gained maturity over the last 
decade. The name Floquet is ubiquitous in these systems and signals that we are in the realm 
of the so-called Floquet theory, the prevalent non-adiabatic and non-perturbative [2] used for 
this type of driven systems, a temporal analogue of Bloch's theory.  

A milestone has been the prediction of laser-induced bandgaps in graphene [3], which was 
shown to have a favourable spot for experimental observation for laser frequencies in the mid-
infrared spectrum [4]. Since 2013, time-resolved ARPES experiments [5, 6] have validated two 
essential findings: the formation of Floquet-Bloch states, which are hybrid electron-photon 
states, and the emergence of polarization-dependent bandgaps. The mentioned time-resolved 
ARPES experiments were carried out at the surface of a three-dimensional topological 
insulator, in monolayer WS2 and also more recently, in graphene [7].  Other theoretical studies 
have also suggested Floquet topological states which have been demonstrated experimentally 
in laser-illuminated graphene [8]. 

2.3.1 2D materials under periodic driving 

In Ref. [9], the impact of circularly polarized laser illumination on AB-stacked graphite samples' 
electronic structure was studied. The results suggest potential for implementing a three-
dimensional quantum Hall effect in Floquet systems.  

Strong light-matter interaction effects on topological phases were also studied. This included 
graphene in the quantum Hall regime and a two-dimensional material in the quantum-spin-Hall 
phase. 

The first study investigated intense laser illumination's effect on graphene's quantum Hall effect 
[10]. Using Floquet theory with low energy description and full tight-binding models, selection 
rules, quasienergy band structure, and their connection to the conductance in experimental 
device setups, were derived. The findings show that dynamical gaps in the Floquet spectrum 
switch off quantum Hall edge transport for various edge terminations, except for armchair. Near 
the Dirac point, laser polarization controls Hall conductance, allowing it to be switched on/off 
or have its sign flipped. These results provide a new way to manipulate the quantum Hall effect. 

In the second study, Floquet scattering theory was combined with atomistic models to examine 
laser illumination, spin, and topology interplay in a two-dimensional material with spin-orbit 
coupling [11]. Starting from a topological phase, laser illumination can selectively disrupt 
topological edge states based on their spin. The study observed pure spin photocurrents and 
spin-polarized charge photocurrents under linear and circular polarized laser illumination. 
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These findings offer a method to generate and control spin-polarized photocurrents, with 
implications for future topological devices.  

In all theese studies a key part is the calculation of the Floquet spectrum in such systems. This 
can be accessed experimentally with time-resolved ARPES techniques and has been the focus 
of great interest in the last years. Furthermore, this is the basis for the analysis of many 
transport experiments, which could be simulated with similar techniques. A Python code was 
made available on Zenodo. The code enables the calculation of the Floquet spectrum for laser 
irradiated graphene and is crucial for the research mentioned before. The code can be found 
at https://zenodo.org/records/12809644.  
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3. Emergent phenomena in van der Waals heterostructures 
3.1 From hydrodynamics to spin-charge coupling 

Van der Waals heterostructures enable precise tuning of electronic properties through 
modifications of the local environment. In graphene, electron interactions depend strongly on 
dielectric screening from encapsulants, nearby gates, or adjacent graphene layers. By 
controlling the twist angle, the system can be tuned between Fermi and Dirac liquid regimes. 
The hydrodynamic transport regime, arising from electron-electron collisions, is thus highly 
sensitive to the local environment. For instance, gates placed within ~1 nm of graphene 
drastically alter viscosity’s dependence on carrier density due to screened electron 
interactions. Furthermore, in two-dimensional conductors, proximity between electron- and 
hole-doped regions induces Coulomb-mediated electron-hole drag, studied extensively in 
GaAs and graphene. At reduced interlayer distances, these interactions strengthen, reaching 
their ultimate regime when electrons and holes coexist in a single layer. Graphene at the 
charge neutrality point is ideal for such studies, as thermally excited electron-hole pairs can be 
precisely tuned via gating. 

Recent research has also focused on hybrid charge-spin dynamics in van der Waals materials 
with strong spin-orbit coupling and magnetic order, aiming to replace conventional electronics 
with low-heat alternatives. While metallic thin films exhibit diffusive transport due to 
impurity/phonon scattering, van der Waals heterostructures allow exploration of a regime 
dominated by electron-electron collisions. For example, graphene encapsulated in transition-
metal dichalcogenides or magnetic halides combines strong spin-orbit coupling with 
magnetization coupling, enabling rich phenomena like anomalous and spin-Hall effects. Here, 
itinerant and localized electrons interact as coupled fluids, generating transverse charge/spin 
currents while exerting spin torques on the magnetization. The role of electron-electron 
interactions in these processes remains unexplored. 

3.1.1 Electron hydrodynamics in the presence of nearby gates 

The interaction amongst electrons plays a fundamental role in defining several important 
phenomena in solid-state systems, such as magnetism, superconductivity, hydrodynamic 
transport, etc. By finding ways to control its strength, one can in turn affect the properties of 
the condensed-matter system under study. One way to do this is to screen the electron-
electron interaction by placing a given system in proximity to a metal. In this way, interactions 
are screened and hence suppressed compared to a system in dielectric matrix.  

In Ref. [1], the electron-electron scattering length in graphene in the presence of nearby 
atomically-thin dielectrics and atomically-flat metallic gates was extracted from measurements 
of the electron viscosity. Qualitative deviations from the conventional behaviour were 
observed. Screening effects became important only when the thicknesses of the dielectric 
separating the graphene sheet from the metal was reduced to a few nm. The condition for the 
metal screening to dominate is for this distance to become much smaller than the typical 
separation between electrons, i.e. the intrinsic Thomas-Fermi screening wavelength. The 
scattering rates extracted from measurements of electron viscosity agreed well with the 
theoretical predictions. 
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The devices studied in Ref. [1] were graphene monolayers encapsulated between hexagonal 
boron nitride (hBN) crystals. Graphite monocrystals served as bottom (screening) gates, 
separated from the graphene layer by ultra-thin hexagonal boron nitride (hBN) dielectrics. The 
minimum thickness used for the dielectric was ∼1.3nm. Thinner crystals exhibited notable 
electron tunnelling. An extra metal gate was deposited on top of the heterostructures to tune 
the carrier density in the graphene sheet. The low-temperature mobility of the devices was 
generally very high, and the resistivity was found to be independent of dielectric thickness. 
This ensured that the reported behaviour of screening of electron-electron interactions, 
measured from the electron viscosity, was due to changes of distance rather than of the 
transport properties of the system. 

For known resistivity and momentum-non-conserving scattering times, it is possible to convert 
the measured resistances (vicinity, point-contact and in particular viscous-Hall) into the 
electron-electron scattering length. For all temperatures, screened devices displayed 
scattering lengths approximately twice longer than those of standard devices with further 
gates. This agreed well with theory. Furthermore, the screening due to metallic gate in 
proximity to the graphene sheet qualitatively changed the dependence of the scattering length 
of density. While in conventional devices the scattering length increases weakly with density 
away from the neutrality point, a totally opposite behaviour was found. Because of the extra 
screening, the scattering length becomes a decreasing function of carrier density. 

To explain the observed dependences of the scattering length of carrier density and distance 
from the gate, numerical calculations of the electron self-energy due to dynamically screened 
electron-electron interactions were carried out. The self-energy can be easily converted into a 
scattering time, and thus in a length via the Fermi velocity. In these calculations, the gate was 
modelled as a perfect conductor, thus nearby charges were screened by the presence of image 
charges. Accounting for the finite density of carriers in the metal only provided small departures 
from this model. The results were found to be in good agreement with experimental data. No 
fitting parameters were used. 

3.1.2 Electron-hole hydrodynamics 

The electron-hole plasma existing in graphene at the neutrality point, commonly referred to as 
a Dirac fluid, is a quantum-critical system characterized by strong inter-carrier scattering 
dominated by Planckian dissipation. This makes graphene’s Dirac plasma not only a tuneable 
and conceptually simple system for investigating electron transport but also an analogue for 
understanding more complex quantum-critical phenomena, such as the transport properties of 
“strange metals” and high-temperature superconductors in their normal state. The Dirac 
plasma also provides conceptual parallels to relativistic electron-positron plasmas found in 
astrophysical contexts, which are otherwise challenging to replicate in laboratory conditions. 

Previous experimental studies of the Dirac plasma revealed hallmarks of quantum-critical 
transport, such as hydrodynamic flow, violations of the Wiedemann-Franz law, and anomalous 
magnetoresistance. However, until recently, the mutual drag between electron and hole 
subsystems within the Dirac plasma remained largely unexplored. 

In Ref. [2], the first experimental measurements of electron-hole drag within the Planckian 
plasma formed in monolayer graphene near its Dirac point at temperatures above the liquid-
nitrogen range were reported. Frequent electron-hole scattering leads minority carriers to drift 
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against the applied electric field, driven by drag from majority carriers. This phenomenon 
results in an effective negative mobility for minority carriers. Notably, the strength of the 
electron-hole drag peaked near room temperature, despite significant contributions from 
phonon scattering.  

The transport properties of graphene near the NP cannot be fully understood without 
accounting for the strong interactions between electron and hole subsystems within the Dirac 
plasma. Thorough analysis revealed that minority carriers are dragged along by majority 
carriers, a behaviour accurately captured by our Boltzmann framework, which enabled 
quantitative determination of scattering rates. Phonon and impurity scattering play a critical 
role in limiting the hydrodynamic behaviour of graphene, reducing the ratio of momentum-
conserving to momentum-relaxing collision times. Consequently, minority carriers consistently 
lag behind majority carriers in the Dirac plasma. 

For encapsulated high-quality graphene, mutual drag is most pronounced at room 
temperature, where minority carriers drift at approximately half the velocity of majority carriers. 
These findings emphasize the influence of impurity and phonon scattering on the transport 
properties of graphene’s Dirac plasma, demonstrating their suppressive effect on its viscous 
behaviour. These results not only advance the understanding of graphene’s transport 
phenomena but also provide a framework for exploring similar effects in other quantum-critical 
systems.  

3.1.3 Gilbert damping in two-dimensional metallic anti-ferromagnets 

The dynamics of magnetization in anti-ferromagnets remain a focal point of interest for the 
various potential applications. Numerous ideas explore the potential for THz frequency 
manipulation of anti-ferromagnetic domains to enable ultrafast information storage and 
beyond-CMOS computation. The emergence of van der Waals magnets has further impacted 
this field, introducing the prospect of developing adjustable heterostructures involving anti-
ferromagnetic and semiconducting layers. 

The understanding of relaxation processes of both the Neel vector and non-equilibrium 
magnetization within anti-ferromagnets is widely acknowledged as pivotal for the optimal 
functioning of spintronic devices. On one hand, a low level of Gilbert damping is generally 
expected to enhance the electrical control of magnetic order through mechanisms like domain 
wall motion or ultrafast domain switching. On the other hand, the effective manipulation of 
magnetic domains typically necessitates a robust coupling between charge and spin degrees 
of freedom, attributed to a pronounced spin-orbit interaction, which is commonly regarded as 
analogous to large Gilbert damping. 

The focus has been directed towards a microscopic analysis of Gilbert damping, emphasizing 
the Dyakonov-Perel and Elliot-Yafet mechanisms. This theoretical framework has been applied 
to a model representing a two-dimensional Neel anti-ferromagnet characterized by a 
honeycomb magnetic lattice. In recent investigations, density-functional-theory calculations 
have been employed to explore single-layer transition metal trichalcogenides. These analyses 
have foreseen the emergence of numerous metallic anti-ferromagnetic materials featuring a 
honeycomb lattice and diverse magnetic orderings. Furthermore, predictions indicate the 
potential induction of anti-ferromagnetism in graphene through its proximity to two-dimensional 
magnets. This evolving understanding of magnetization dynamics in anti-ferromagnetic 
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systems, combined with advancements in theoretical models and material predictions, propels 
ongoing explorations for applications in ultrafast information storage and spintronic devices. 

Motivated in part by these forecasts and recent strides in producing single-layer anti-
ferromagnet crystals, In Ref. [3] an effective model was proposed to examine spin relaxation 
in a 2D honeycomb anti-ferromagnet with Neel magnetic order. Within this framework, three 
regimes are predicted, each exhibiting a qualitatively distinct dependence of Gilbert damping 
on spin-orbit interaction and conduction electron transport time. 

In the regime characterized by weak spin-orbit interaction, the dominant factor is the exchange 
field relaxation of electron spin. The regime featuring moderate spin-orbit strength is governed 
by Elliot-Yafet spin relaxation. Transitioning into the realm of strong spin-orbit strength, where 
significant splitting of electron Fermi surfaces occurs, Dyakonov-Perel relaxation of the in-
plane spin component takes precedence, coupled with Elliot-Yafet relaxation of the 
perpendicular-to-the-plane Gilbert damping, resulting in a pronounced damping anisotropy. 
Isotropic Gilbert damping is reinstated only for finite magnon wave vectors, where the magnon 
wavelength is smaller than the spin-orbit length. This model contributes to the ongoing 
exploration of spin dynamics in 2D anti-ferromagnetic systems, adding valuable insights into 
potential applications in spintronic technologies.   

3.1.4 Interactions and topology: the case of massive Dirac fermions 

The anomalous Hall effect is a phenomenon observed in condensed matter physics, 
manifesting as a transverse voltage that arises perpendicular to the applied electric current. 
Unlike the ordinary Hall effect, which can be explained by the Lorentz force acting on charge 
carriers due to an applied magnetic field, the anomalous Hall effect is an intriguing quantum 
mechanical phenomenon that is a result of the combined effects of the intrinsic spin-orbit 
interaction of the material and its magnetisation. The phenomenon is therefore commonly 
found in ferromagnetic and strongly correlated electron systems. The presence of a net 
magnetization in these systems is crucial for the emergence of the anomalous Hall effect. 
Understanding the anomalous Hall effect is of great importance in both fundamental physics 
and practical applications. It provides valuable insights into the electronic and magnetic 
properties of materials, offering a window into the intricate interplay between spin, charge, and 
orbital degrees of freedom. So far, however, studies have focused on the non-interacting 
regime. We have been the first to address the role of interactions, to first order in the coupling 
constant, in Ref. [4].  

In a seminal work, Coleman and Hill demonstrated that the anomalous Hall conductivity 
remains unaltered by two-particle interactions at zero temperature when the Fermi energy is 
situated within the bulk band gap. This prompted our inquiry into the resilience of the Hall 
conductivity to interaction effects in systems characterized by finite temperature or chemical 
potential. To address this question, an examination was conducted on the influence of 
electron-electron interactions in the prototypical model of the anomalous Hall effect, 
specifically, a two-dimensional assembly of massive Dirac fermions. 

Beyond its foundational implications, this matter also carries practical relevance as real-world 
materials typically exist at non-zero temperatures and seldom lack doping entirely. It has been 
established that specific many-body interactions, such as those involving electrons and 
quenched disorder, can significantly impact Hall responses. In scenarios like the anomalous 
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and spin-Hall effects, the introduction of quenched disorder can yield results notably divergent 
from non-interacting outcomes. These variations encompass an accelerated decay of Hall 
responses with increasing chemical potential, alterations in sign, and, in certain instances, the 
outright elimination of these effects. Although refining the growth process may help mitigate 
disorder in a material, the omnipresent e-e interactions are challenging to eliminate. 
Consequently, comprehending their impact on the Hall response becomes crucial for 
predicting and elucidating experimental findings. 

The correction to the anomalous Hall effect of massive Dirac fermions was investigated to first 
order in the strength of electron-electron interactions. It was observed that the initial response 
diverged, necessitating the removal of divergences through the renormalization of the bare 
parameters within the model. Consequently, a finite expression for the first-order correction to 
the anomalous Hall conductivity was derived. The dependence of the first-order correction on 
the form of the e-e interaction was explored, addressing both the case of a contact potential 
and an unscreened Coulomb potential. Despite their distinct characteristics, both cases 
exhibited similar behaviour, suggesting the robustness and generality of the results to 
interacting systems. 

It was demonstrated that interaction corrections could be substantial enough to counterbalance 
the non-interacting contribution to the Hall conductivity. Specifically, it was shown that the 
anomalous Hall conductivity could exhibit a faster decay with chemical potential than predicted 
in the non-interacting scenario. Moreover, the potential for a change in sign at certain chemical 
potential values was identified. To exercise caution, this latter outcome was attributed to a 
potential breakdown in the perturbative result. Subsequent investigations are underway to 
explore additional corrections and ascertain whether the observed effect dissipates. 

3.1.5 Non-conserved density accumulations and generalised Hall effects 

Refs. [5,6] explored density accumulations in anomalous transport phenomena, specifically, 
the valley Hall effect (VHE) and the orbital Hall effect (OHE), focusing on how nonconserved 
densities (valley, orbital magnetization, etc.) accumulate at the edges of materials under an 
applied electric field. Ref. [1] examines the VHE in multivalley insulators (both trivial and 
topological) as well as metals, while Ref. [2] generalizes these findings to a broader class of 
anomalous effects. 

Ref. [5] solved the "valley Hall effect puzzle". the VHE arises in systems with multiple valleys 
(e.g., graphene/hBN heterostructures), where electrons from different valleys experience 
opposite Berry curvatures, leading to a transverse valley current but no net charge current. 
Conventional wisdom suggested that this bulk valley current should produce valley density 
accumulation at the edges, yet experiments and theory disagreed on whether such 
accumulations occur in fully gapped insulators. This puzzle was resolved by showing that 
valley density is not conserved in the presence of an electric field. While the electric field drives 
a bulk valley Hall current, it also causes an intrinsic decay of valley-density, effectively "short-
circuiting" the valley current before it reaches the edges. Consequently, in fully gapped, time-
reversal (TR) invariant insulators, no valley accumulation appears at the edges, making the 
VHE unobservable in such systems. However, in metallic or partially gapped systems, where 
states at the Fermi level allow dissipation, valley accumulation can occur. A Fermi-surface 
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formula for this accumulation is derived and used to show that in a graphene nanoribbon 
certain edge terminations can produce a net valley polarization. 

Ref. [6] derived a unified theory for anomalous transport, extending these insights to general 
nonconserved densities (e.g., orbital magnetization, spin, valley) in both insulators and metals. 
The key distinction lies in whether the system is TR-invariant or not: 

• TR-Invariant systems: there are no undergap contributions to the density 
accumulation. In insulators, bulk currents from filled bands (undergap currents) do not 
lead to edge accumulations unless there are dissipative processes (i.e., states at the 
Fermi level). Therefore, dissipation is necessary: accumulations arise only in metals or 
edge-metallic systems where dissipation occurs. A "no-dissipation no-accumulation 
theorem" is proven in Ref. [6]. 

• TR-Broken systems: nondissipative accumulations becomes possible. Even in 
insulators, bulk effects like magnetoelectric polarization can induce edge 
accumulations without requiring dissipation.  

Ref. [6] also introduces the concept of net torque, a global nonconservation effect where the 
integrated density accumulation does not vanish, implying a net imbalance in the system. This 
contrasts with the distributed torque, which averages to zero and can be absorbed into a 
redefined current. 

These results clarified longstanding controversies in experiments on graphene/hBN and 
transition metal dichalcogenides, where valley or orbital accumulations were debated. The 
theory also provided a framework for designing devices that exploit these effects, e.g., by 
breaking valley degeneracy or using metallic systems where dissipative accumulations are 
possible. 
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3.2 Electronic phenomena in twisted bilayer graphene and other 2D materials  

Twisted bilayer graphene (TBG) offers a versatile platform for exploring diverse electronic 
phenomena due to its unique moiré superlattice. Twist-angle fluctuations, particularly near the 
magic angle, introduce a soft degree of freedom that strongly couples to electronic states, 
influencing orbital ferromagnetism. The study presented below reveals that these fluctuations 
induce damped phasons, enhancing ferromagnetic order at zero temperature while 
suppressing it at finite temperatures due to interactions with soft phonons. 

Plasmonic properties in TBG exhibit a transition from strong coupling at small twist angles to 
weak coupling at larger angles, where an acoustic plasmon mode emerges. This tuneability 
suggests applications in mid-infrared nanophotonics and cavity QED, with potential 
implications for superconductivity and polariton physics. Electronic correlations in magic-angle 
TBG reveal that Hartree interactions critically influence band structure, compressibility, and 
paramagnetic state stability near charge neutrality. Beyond the magic angle, TBG can be tuned 
across distinct regimes—from Fermi liquid to Dirac liquid to compensated semimetal—
demonstrating the system’s hydrodynamic versatility. Measurements of hydrodynamic 
transport in these regimes align closely with microscopic models, offering insights into 
phenomena like the violation of the Wiedemann-Franz law. 

Chirality-induced spin selectivity has also been investigated in atomically thin chiral crystals 
formed via van der Waals assembly. Structural chirality combined with spin-orbit coupling 
generates significant spin polarization, highlighting the twisted materials' potential as a 
tuneable platform for spin-related phenomena relevant to condensed matter physics and chiral 
chemistry.  

3.2.1 Fracton-elasticity duality in twisted moiré superlattices 

The dynamic coupling of magnetic collective modes and damped phasons in incommensurate 
twisted bilayer graphene was studied in Ref. [1]. Twist-angle fluctuations are a natural soft 
degree of freedom in addition to those found in commensurate crystals, that affect the elasticity 
of moiré structures, such as twisted bilayer graphene.  Fluctuations and inhomogeneities in 
the twist angle dramatically alter the electronic properties of moiré systems, including the focus 
of this paper, orbital ferromagnetism. Therefore, for systems near the magic angle, a strong 
coupling of twist fluctuations to electronic degrees of freedom is expected. The collective 
modes which are a consequence of twist-fluctuations are not associated with any conservation 
law due to the adhesion potential between layers and are therefore damped phasons rather 
than phonons. Such fluctuations induce quantum fluctuations of the Ising orbital 
ferromagnetism observed in twisted bilayer graphene. In particular, a coupling between the 
twist angle and orbital magnetic moment reinforces ferromagnetic order at zero temperature, 
however soft phonons suppress order at finite temperatures, such that coupling decreases the 
temperature necessary to transition between the ordered and disordered states. The strength 
of damping of twist modes suppresses order in both regimes. Finally, the connection between 
such incommensurate fluctuations and low hydrodynamic response of defects of the 
incommensurate crystal was established.  

3.2.2 Weak-coupling theory and plasmons in magic-angle twisted bilayer graphene 

Employing a time-dependent Hartree (or GW) approximation Ref. [2] explored strong electronic 
correlations in magic-angle twisted bilayer graphene. They focused on the situation in which 
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the octet of flat moiré minibands near charge neutrality are partially occupied. The study is 
motivated by the observation of the fundamental role played by Hartree electrostatic 
interactions in determining the band structure's filling-factor dependence. It was found that the 
electronic compressibility is primarily influenced by Hartree interactions, paramagnetic states 
are stable near charge neutrality, and the energy dependence on flavour polarization is 
overestimated by mean-field theory. 

In Ref. [3] a theoretical study of intrinsic plasmonic properties of twisted bilayer graphene 
(TBG) as a function of the twist angle θ and other microscopic parameters such as temperature 
and filling factor. The calculations, based on the random phase approximation, incorporate four 
critical effects: the layer-pseudospin degree of freedom, spatial non-locality of the density-
density response function, crystalline local field effects, and Hartree self-consistency. The 
findings reveal that the plasmonic spectrum of TBG transitions smoothly from a strongly-
coupled regime at small twist angles (θ ≲ 2°), where the low-energy spectrum is dominated by 
a weakly dispersive intra-band plasmon, to a weakly-coupled regime at larger twist angles (θ 
≳ 2°), where an acoustic plasmon mode clearly emerges. This crossover enables the 
realization of tuneable mid-infrared sub-wavelength cavities, potentially useful for manipulating 
the ground state of strongly correlated electron systems. 

Parallel two-dimensional electron systems (P2DESs), including those based on GaAs/AlGaAs 
heterostructures and atomically thin 2D materials like graphene, have been explored for 
phenomena such as Coulomb drag, exciton superfluidity, and broken-symmetry states driven 
by strong electron-electron interactions. The discovery of correlated insulators and 
superconductors in TBG has further enriched the many-body physics of P2DESs. TBG, 
comprising two graphene sheets separated by a vertical distance of approximately 0.3 nm and 
rotated by a twist angle θ, exhibits significant spectral changes at a small, magic angle (~1.1°). 
At this angle, the Brillouin zone is characterized by weakly dispersing flat bands, enhancing 
electron-electron interactions and leading to intriguing many-body phenomena. 

The study addressed the placement of TBG within the broader context of P2DESs. Unlike 
GaAs double quantum wells with a constant tunneling parameter ΔSAS, TBG features spatially 
modulated inter-layer tunnelling on the moiré superlattice scale. Despite TBG's two-layer 
structure, theoretical calculations at small twist angles typically reveal only one low-energy 
plasmon mode, raising questions about the acoustic plasmon mode's presence. To find an 
intrinsic acoustic plasmon in TBG, it is essential to account for the layer-pseudospin degree of 
freedom, spatial non-locality, Hartree self-consistency, and crystalline local field effects. The 
theoretical treatment shows that at small twist angles, TBG behaves as a single entity with a 
centre-of-mass mode. As the twist angle increases, the layer-pseudospin becomes a quasi-
good quantum number, and the plasmonic spectrum exhibits a weakly-damped acoustic 
plasmon mode, similar to those in other P2DESs. 

These results have significant implications for both fundamental and applied research. 
Plasmons in TBG are potential candidates for explaining superconductivity and enriching the 
polariton landscape with ultra-slow acoustic plasmons. These plasmons, confined between the 
two graphene layers, could have important applications in quantum nanophotonics and cavity 
QED of strongly correlated electron systems. Future research would involve integrating these 
findings into Eliashberg theory for plasmon-mediated superconductivity in TBG and 
investigating the spatial distribution of chirality associated with this mode. 
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3.2.3 Twisted bilayer graphene in the hydrodynamic regime 

The ambipolar hydrodynamics in the degenerate regime had long remained inaccessible, due 
to the fact that an electron-hole system in mono- and bilayer graphene can only be realized 
through the smearing of the charge neutrality point. In Ref. [4], biased small-angle twisted 
bilayer graphene (SA-TBG) was shown to be a system in which it is possible to explore the 
crossover between the Dirac fluid, Fermi liquid and compensated semimetal regimes. In the 
latter, the system is a degenerate two-component Fermi liquid. I.e. electrons and holes form 
degenerate Fermi liquids while the system keeps an overall charge neutrality. In this case, 
frequent momentum-conserving (yet velocity-relaxing) electron-hole collisions become the 
limiting factor for the SA-TBG conductivity. 

The single-particle band structure of SA-TBG, folded within a reduced Brillouin zone because 
of superlattice periodicity, resembles that of monolayer graphene. The band structure exhibits 
two valleys located at the corners of the hexagonal mini-Brillouin zone, which coincide with the 
K-points of the two decoupled graphene sheets. However, the Fermi velocity is decreased 
compared to monolayer graphene. A feature of SA-TBG fundamental for this study is the 
capability of selectively populate its valleys with charge carriers of opposite types using a 
perpendicular displacement field. At relatively large, but still experimentally attainable fields, 
each valley can exhibit an electron or hole Fermi surface, the Fermi temperature of which 
exceeds the room temperature. At zero displacement field, instead, SA-TBG exhibits a high-
temperature Dirac fluid with point-like Fermi surfaces, as in conventional monolayer graphene. 
This tuneability enables the exploration of various different phases, and the mapping of the 
entire phase diagram of this system. 

To probe the phase diagram, dual-gated multi-terminal Hall bar devices were fabricated, made 
out of bilayer graphene twisted at about 1.65 degrees. The twisted graphene was produced 
with tear-and stack techniques and encapsulated between two relatively thin slabs of 
hexagonal boron nitride. The longitudinal resistance was measured as a function of top and 
bottom gates. At zero displacement field the longitudinal resistivity exhibited a peak at charge 
neutrality. Its behaviour changed dramatically at finite displacement field. The longitudinal 
resistivity at the neutrality point dropped by more than an order of magnitude and became 
comparable to that of doped SA-TBG. Furthermore, the longitudinal resistivity became a 
growing, approximately quadratic function of the temperature. 

The quadratic growth of the resistivity in compensated SA-TBG at finite displacement was not 
observed previously. This effect is shown to be due to the friction between electron and hole 
fluids by solving the steady-state Boltzmann equation for the electron-hole mixture. Comparing 
theoretical predictions with the experimental results a very good agreement was found. 

3.2.4 Chirality-induced spin polarization in twisted transition metal dichalcogenides 

In Ref. [5], electron transport through atomically-thin chiral crystals formed via van der Waals 
assembly was studied. This study is relevant to the chirality-induced spin selectivity effect, 
where electrons acquire significant spin polarization. Although this effect is of interest in chiral 
chemistry, its mechanisms remain elusive. This effect can be remarkably large in systems with 
just two monolayers, provided they have spin-orbit coupling. The large polarization arises from 
structural chirality combined with spin-flipping spin-orbit coupling. Detailed calculations for 
twisted homobilayer transition metal dichalcogenides show significant polarization, exceeding 
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50% for MoTe2. These findings suggest that twisted quantum materials offer a tuneable 
platform for studying and controlling chirality-induced spin effects in both condensed matter 
physics and chiral chemistry. 
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4. Conclusion 
The quest to understand and control the motion of electrons in solid-state materials is a 
cornerstone of condensed matter physics and a driving force behind technological advances 
in electronics. Traditionally, the behavior of electrons in conductors has often been described 
through the lens of single-particle theory, where interactions between electrons are either 
neglected or treated perturbatively. This framework has been remarkably successful in 
explaining a wide range of electronic phenomena. In recent years, however, a paradigm shift 
has emerged, bringing to the fore the collective behavior of strongly interacting electrons, 
particularly in ultrapure materials. This has led to the burgeoning field of hydrodynamic 
electronics, where the flow of electrons is not simply a drift of independent particles but rather 
resembles the viscous flow of a fluid. 

Hydrodynamics, as the “oldest and most successful theoretical formalism”2 has long been the 
framework of choice for describing the collective motion of strongly interacting particles in 
diverse physical systems, from the macroscopic scale of water flow to the vastness of 
interstellar matter. The fundamental foundation of hydrodynamics lies in the conservation laws. 
Now, driven by significant advances in the nanostructuring of ultrapure materials in recent 
years, this powerful theoretical tool is finding new applications in the field of nanoelectronics. 
The observation of the hydrodynamic behavior of electrons in solids has opened up an exciting 
avenue for both fundamental research and potential technological breakthroughs. This 
emerging field, as highlighted in this textbook, focuses on the motion of electrons in high-purity 
materials. The core idea is that in such materials, electron-electron scattering can become the 
dominant interaction mechanism, leading to a state where momentum is conserved on longer 
time scales than momentum-relaxing scattering events (such as electron-impurity or electron-
phonon scattering). In this regime, the electron system can be effectively described as an 
electronic fluid with properties analogous to classical fluids, such as viscosity and the ability to 
flow. This represents a profound intellectual challenge and is of great importance for the future 
of nanoelectronics. 

The study of hydrodynamic electronics is not limited to fundamental physics; it also promises 
significant technological impact, particularly in nanoelectronics. Understanding and harnessing 
the viscous flow of electrons could lead to novel electronic devices with enhanced functionality 
and potentially lower energy dissipation. This introduction sets the stage for a deeper 
exploration of the fascinating world of hydrodynamic electronics. Drawing on the fundamental 
principles of fluid dynamics and the unique properties of advanced materials such as 
graphene, this field is pushing the boundaries of our understanding of electron transport and 
paving the way for future innovations in electronics technology. The interplay between 
theoretical predictions and experimental observations continues to drive this exciting area of 
research, revealing new and unexpected behaviors of electrons in the hydrodynamic regime. 

  

 
2  See a recent textbook authored by the HYDROTRONICS consortium member (WEIZMANN team) 
Gregory Falkovich, Fluid mechanics, Cambridge University Press (2018). 

https://www.cambridge.org/il/universitypress/subjects/physics/nonlinear-science-and-fluid-dynamics/fluid-mechanics-2nd-edition
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While the experimental and theoretical results presented in this textbook are very 
encouraging, we are only at the beginning of the development of understanding and 
controlling the fluid mechanics of electrons. Further improvements in sample quality and 
structuring are key aspects to expand the parameter regime to include hydrodynamic 
behaviour. From a theoretical perspective, there are fundamental challenges in the 
description of quantum kinetic processes in strongly interacting systems. Examples include 
the microscopic determination of transport coefficients, the solution of nonlinear kinetic 
theories, or the general problem of the timescales of local thermalization in closed quantum 
systems. The phenomena discussed here are only the first examples that make novel 
applications of hydrodynamic, viscous electronics seem possible. 
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Vortices are the hallmarks of hydrodynamic flow. Strongly interacting electrons in ultrapure 
conductors can display signatures of hydrodynamic behaviour, including negative non-local 
resistance, higher-than-ballistic conduction, Poiseuille flow in narrow channels and violation of 
the Wiedemann–Franz law. Here we provide a visualization of whirlpools in an electron fluid. 
By using a nanoscale scanning superconducting quantum interference device on a tip, we 
image the current distribution in a circular chamber connected through a small aperture to a 
current-carrying strip in the high-purity type II Weyl semimetal WTe2. In this geometry, the 
Gurzhi momentum diffusion length and the size of the aperture determine the vortex stability 
phase diagram. We find that vortices are present for only small apertures, whereas the flow is 
laminar (non-vortical) for larger apertures. Near the vortical-to-laminar transition, we observe 
the single vortex in the chamber splitting into two vortices; this behaviour is expected only in 
the hydrodynamic regime and is not anticipated for ballistic transport. These findings suggest a 
new mechanism of hydrodynamic flow in thin pure crystals such that the spatial diffusion of 
electron momenta is enabled by small-angle scattering at the surfaces instead of the routinely 
invoked electron–electron scattering, which becomes extremely weak at low temperatures. This 
surface-induced para-hydrodynamics, which mimics many aspects of conventional 
hydrodynamics including vortices, opens new possibilities for exploring and using electron 
fluidics in high-mobility electron systems. 
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The last few years have seen an explosion of interest in hydrodynamic effects in interacting 
electron systems in ultra-pure materials. One such material, graphene, is not only an excellent 
platform for the experimental realization of the hydrodynamic flow of electrons, but also allows 
for a controlled derivation of the hydrodynamic equations on the basis of kinetic theory. The 
resulting hydrodynamic theory of electronic transport in graphene yields quantitative predictions 
for experimentally relevant quantities, e.g., viscosity, electrical conductivity, etc. Here I review 
recent theoretical advances in the field, compare the hydrodynamic theory of charge carriers in 
graphene with relativistic hydrodynamics and recent experiments, and discuss applications of 
hydrodynamic approach to novel materials beyond graphene. 
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Rev. B 104, 075443 (2021); https://doi.org/10.1103/PhysRevB.104.075443 

Hydrodynamic flow of charge carriers in graphene is an energy flow unlike the usual mass flow 
in conventional fluids. In neutral graphene, the energy flow is decoupled from the electric 
current, making it difficult to observe the hydrodynamic effects and measure the viscosity of the 
electronic fluid by means of electric current measurements. In particular, we show that the 
hallmark Poiseuille flow in a narrow channel cannot be driven by the electric field irrespective 
of boundary conditions at the channel edges. Nevertheless, one can observe nonuniform 
current densities similarly to the case of the well-known ballistic-diffusive crossover. The 
standard diffusive behavior with the uniform current density across the channel is achieved 
under the assumptions of specular scattering on the channel boundaries. This flow can also be 
made nonuniform by applying weak magnetic fields. In this case, the curvature of the current 
density profile is determined by the quasiparticle recombination processes dominated by the 
disorder-assisted electron-phonon scattering—the so-called supercollisions. 
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We explore hydrodynamics of Dirac fermions in neutral graphene in the Corbino geometry. In 
the absence of a magnetic field, the bulk Ohmic charge flow and the hydrodynamic energy flow 
are decoupled. However, the energy flow does affect the overall resistance of the system 
through viscous dissipation and energy relaxation that has to be compensated by the work done 
by the current source. Solving the hydrodynamic equations, we find that local temperature and 
electric potential are discontinuous at the interfaces with the leads as well as the device 
resistance and argue that this makes Corbino geometry a feasible choice for an experimental 
observation of the Dirac fluid. 
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Phys. Rev. B 107, 235401 (2023); https://doi.org/10.1103/PhysRevB.107.235401  

We explore the magnetohydrodynamics of Dirac fermions in neutral graphene in the Corbino 
geometry. Based on the fully consistent hydrodynamic description derived from a microscopic 
framework and taking into account all peculiarities of graphene-specific hydrodynamics, we 
report the results of a comprehensive study of the interplay of viscosity, disorder-induced 
scattering, recombination, energy relaxation, and interface-induced dissipation. In the clean 
limit, magnetoresistance of a Corbino sample is determined by viscosity. Hence the Corbino 
geometry could be used to measure the viscosity coefficient in neutral graphene. 
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flowing without Landauer–Sharvin resistance. Nature 609, 276 (2022); 
https://doi.org/10.1038/s41586-022-05002-7 

Electrical resistance usually originates from lattice imperfections. However, even a perfect 
lattice has a fundamental resistance limit, given by the Landauer conductance caused by a 
finite number of propagating electron modes. This resistance, shown by Sharvin to appear at 
the contacts of electronic devices, sets the ultimate conduction limit of non-interacting electrons. 
Recent years have seen growing evidence of hydrodynamic electronic phenomena prompting 
recent theories to ask whether an electronic fluid can radically break the fundamental 
Landauer–Sharvin limit. Here, we use single-electron-transistor imaging of electronic flow in 
high-mobility graphene Corbino disk devices to answer this question. First, by imaging ballistic 
flows at liquid-helium temperatures, we observe a Landauer–Sharvin resistance that does not 
appear at the contacts but is instead distributed throughout the bulk. This underpins the phase-
space origin of this resistance—as emerging from spatial gradients in the number of conduction 
modes. At elevated temperatures, by identifying and accounting for electron–phonon scattering, 
we show the details of the purely hydrodynamic flow. Strikingly, we find that electron 
hydrodynamics eliminates the bulk Landauer–Sharvin resistance. Finally, by imaging spiralling 
magneto-hydrodynamic Corbino flows, we show the key emergent length scale predicted by 
hydrodynamic theories—the Gurzhi length. These observations demonstrate that electronic 
fluids can dramatically transcend the fundamental limitations of ballistic electrons, with 
important implications for fundamental science and future technologies. 
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In compensated two-component systems in confined, two-dimensional geometries, nonlocal 
response may appear due to an external magnetic field. Within a phenomenological two-fluid 
framework, we demonstrate the evolution of charge flow profiles and the emergence of a giant 
nonlocal pattern dominating charge transport in a magnetic field. Applying our approach to the 
specific case of intrinsic graphene, we suggest a simple physical explanation for the 
experimental observation of giant nonlocality. Our results provide an intuitive way to predict the 
outcome of future experiments exploring the rich physics of many-body electron systems in 
confined geometries as well as to design possible applications. 
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Phys. Rev. B 103, 115402 (2021); https://doi.org/10.1103/PhysRevB.103.115402 

Collective behavior is one of the most intriguing aspects of the hydrodynamic approach to 
electronic transport. Here we provide a consistent, unified calculation of the dispersion relations 
of the hydrodynamic collective modes in graphene. Taking into account viscous effects, we 
show that the hydrodynamic sound mode in graphene becomes overdamped at sufficiently 
large momentum scales. Extending the linearized theory beyond the hydrodynamic regime, we 
connect the diffusive hydrodynamic charge density fluctuations with plasmons. 
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It has long been realized that even a perfectly clean electronic system harbors a Landauer-
Sharvin resistance, inversely proportional to the number of its conduction channels. This 
resistance is usually associated with voltage drops on the system’s contacts to an external 
circuit. Recent theories have shown that hydrodynamic effects can reduce this resistance, 
raising the question of the lower bound of resistance of hydrodynamic electrons. Here, we show 
that by a proper choice of device geometry, it is possible to spread the Landauer-Sharvin 
resistance throughout the bulk of the system, allowing its complete elimination by electron 
hydrodynamics. We trace the effect to the dynamics of electrons flowing in channels that 
terminate within the sample. For ballistic systems this termination leads to back-reflection of the 
electrons and creates resistance. Hydrodynamically, the scattering of these electrons off other 
electrons allows them to transfer to transmitted channels and avoid the resistance. 
Counterintuitively, we find that in contrast to the ohmic regime, for hydrodynamic electrons the 
resistance of a device with a given width can decrease with its length, suggesting that a long 
enough device may have an arbitrarily small total resistance. 
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excitations in Dirac fluids, Phys. Rev. B 102, 245434 (2020); 
https://doi.org/10.1103/PhysRevB.102.245434  

We study the response of a Dirac fluid to electric fields and thermal gradients at finite wave 
numbers and frequencies in the hydrodynamic regime. We find that nonlocal transport in the 
hydrodynamic regime is governed by an infinite set of kinetic modes that describe noncollinear 
scattering events in different angular harmonic channels. The scattering rates of these modes 
𝜏−1𝑚 increase as |𝑚|, where 𝑚 labels the angular harmonics. In an earlier publication, we 
pointed out that this dependence leads to anomalous, Lévy-flight-like phase space diffusion 
[Kiselev and Schmalian, Phys. Rev. Lett. 123, 195302 (2019)]. Here, we show how this 
surprisingly simple, nonanalytic dependence allows us to obtain exact expressions for the 
nonlocal charge and electronic thermal conductivities. The peculiar dependence of the 
scattering rates on 𝑚 also leads to a nontrivial structure of collective excitations: Besides the 
well-known plasmon, second-sound, and diffusive modes, we find nondegenerate damped 
modes corresponding to excitations of higher angular harmonics. We use these results to 
investigate the transport of a Dirac fluid through Poiseuille-type geometries of different widths 
and to study the response to surface acoustic waves in graphene-piezoelectric devices. 
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We show that the hydrodynamic collision processes of graphene electrons at the neutrality 
point can be described in terms of a Fokker-Planck equation with a fractional derivative, 
corresponding to a Lévy flight in momentum space. Thus, electron-electron collisions give rise 
to frequent small-angle scattering processes that are interrupted by rare large-angle events. 
The latter give rise to superdiffusive dynamics of collective excitations. We argue that such 
superdiffusive dynamics is of more general importance to the out-of-equilibrium dynamics of 
quantum-critical systems. 
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We study the electron temperature profiles for an inhomogeneous electron flow in the 
hydrodynamic regime. We assume that the inhomogeneity is due to a weakly nonuniform 
distribution of the momentum relaxation time within a spherically constricted area. We show 
that the temperature profile dramatically depends on the drive strength and the viscosity of the 
electron liquid. In the absence of viscosity, a Landauer-dipole-like temperature distribution, 
asymmetrically deformed along the current by the inelastic electron-phonon scattering, 
emerges around the inhomogeneity. We find that both the Landauer-dipole temperature profile 
and its asymmetry in the direction of the driving electric field exist in all dimensionalities and 
are, therefore, universal features of inhomogeneous hydrodynamic electron flow. We further 
demonstrate that the electron viscosity suppresses the thermal Landauer dipole and leads to 
the appearance of a “hot spot” exactly at the center of the constriction. We also calculate the 
phonon temperature distribution, which can be directly measured in experiments on thermal 
nanoimaging. 
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Conducting materials typically exhibit either diffusive or ballistic charge transport. When 
electron–electron interactions dominate, a hydrodynamic regime with viscous charge flow 
emerges. More stringent conditions eventually yield a quantum-critical Dirac-fluid regime, 
where electronic heat can flow more efficiently than charge. However, observing and 
controlling the flow of electronic heat in the hydrodynamic regime at room temperature has so 
far remained elusive. Here we observe heat transport in graphene in the diffusive and 
hydrodynamic regimes, and report a controllable transition to the Dirac-fluid regime at room 
temperature, using carrier temperature and carrier density as control knobs. We introduce the 
technique of spatiotemporal thermoelectric microscopy with femtosecond temporal and 
nanometre spatial resolution, which allows for tracking electronic heat spreading. In the 
diffusive regime, we find a thermal diffusivity of roughly 2,000 cm2 s−1, consistent with charge 
transport. Moreover, within the hydrodynamic time window before momentum relaxation, we 
observe heat spreading corresponding to a giant diffusivity up to 70,000 cm2 s−1, indicative of 
a Dirac fluid. Our results offer the possibility of further exploration of these interesting physical 
phenomena and their potential applications in nanoscale thermal management. 
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Mohammad Zarenia, Alessandro Principi, and Giovanni Vignale, Thermal transport in 
compensated semimetals: Effect of electron-electron scattering on Lorenz ratio, Phys. 
Rev. B 102, 214304 (2020); https://doi.org/10.1103/PhysRevB.102.214304  

It is well known that the electronic thermal conductivity of clean compensated semimetals can 
be greatly enhanced over the electric conductivity by the availability of an ambipolar 
mechanism of conduction, whereby electrons and holes flow in the same direction 
experiencing negligible Coulomb scattering as well as negligible impurity scattering. This 
enhancement—resulting in a breakdown of the Wiedemann-Franz law with an anomalously 
large Lorenz ratio—has been recently observed in two-dimensional monolayer and bilayer 
graphene near the charge neutrality point. In contrast to this, three-dimensional compensated 
semimetals such as WP2 and Sb are typically found to show a reduced Lorenz ratio. We 
investigate the reasons for this difference, focusing on the low-temperature regime where the 
electron-electron scattering is expected to dominate over other scattering mechanisms. We 
show that the different regimes of Fermi statistics (nondegenerate electron-hole liquid in 
graphene versus degenerate electron-hole liquid in compensated semimetals) are not 
sufficient to explain the reduction of the Lorenz ratio in the latter. We propose that the solution 
of the puzzle lies in the large separation of electron and hole pockets in momentum space, 
which allows compensated semimetals to sustain sizable regions of electron-hole 
accumulation near the contacts. These accumulations suppress the ambipolar conduction 
mechanism and effectively split the system into two independent electron and hole conductors. 
We present a quantitative theory of the crossover from ambipolar to unipolar conduction as a 
function of the size of the electron-hole accumulation regions, and show that it naturally leads 
to a sample-size-dependent thermal conductivity. 
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A Kapustin and G Falkovich. Interplay between two mechanisms of resistivity 
arXiv:2407.16284; https://doi.org/10.48550/arXiv.2407.16284 

Mechanisms of resistivity can be divided into two basic classes: one is dissipative (like 
scattering on phonons) and another is quasi-elastic (like scattering on static impurities). They 
are often treated by the empirical Matthiessen rule, which says that total resistivity is just the 
sum of these two contributions, which are computed separately. This is quite misleading for 
two reasons. First, the two mechanisms are generally correlated. Second, computing the 
elastic resistivity alone masks the fundamental fact that the linear-response approximation has 
a vanishing validity interval at vanishing dissipation. Limits of zero electric field and zero 
dissipation do not commute for the simple reason that one needs to absorb the Joule heat 
quadratic in the applied field. Here, we present a simple model that illustrates these two points. 
The model also illuminates the role of variational principles for non-equilibrium steady states. 
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Alex Levchenko, Jörg Schmalian, Transport properties of strongly coupled electron–
phonon liquids, Annals of Physics 419, 168218 (2020); 
https://doi.org/10.1016/j.aop.2020.168218 

In this work we consider the hydrodynamic behavior of a coupled electron–phonon fluid, 
focusing on electronic transport under the conditions of strong phonon drag. This regime 
occurs when the rate of phonon equilibration due to e.g. umklapp scattering is much slower 
than the rate of normal electron–phonon collisions. Then phonons and electrons form a 
coupled out-of-equilibrium state where the total quasi-momentum of the electron–phonon fluid 
is conserved. A joint flow-velocity emerges as a collective hydrodynamic variable. We derive 
the equation of motion for this fluid from the underlying microscopic kinetic theory and elucidate 
its effective viscosity and thermal conductivity. In particular, we derive decay times of arbitrary 
harmonics of the distribution function and reveal its corresponding super-diffusive relaxation 
on the Fermi surface. We further consider several applications of this theory to magneto-
transport properties in the Hall-bar and Corbino-disk geometries, relevant to experiments. In 
our analysis we allow for general boundary conditions that cover the crossover from no-slip to 
no-stress flows. Our approach also covers a crossover from the Stokes to the Ohmic regime 
under the conditions of the Gurzhi effect. In addition, we consider the frequency dependence 
of the surface impedance and non-equilibrium noise. For the latter, we notice that in the 
diffusive regime, a Fokker–Planck approximation, applied to the electron–phonon collision 
integral in the Eliashberg form, reduces it to a differential operator with Burgers type 
nonlinearity. As a result, the non-equilibrium distribution function has a shock-wave structure 
in the energy domain. The consequence of this behavior for the Fano factor of the noise is 
investigated. In conclusion we discuss connections and limitations of our results in the context 
of recent electron–phonon drag measurements in Dirac and Weyl semimetals, and layout 
directions for further extensions and developments. 
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Bailey Winstanley, Henning Schomerus, and Alessandro Principi, Corbino field-effect 
transistors in a magnetic field: Highly tunable photodetectors, Phys. Rev. B 104, 165406 
(2021); https://doi.org/10.1103/PhysRevB.104.165406 

We study gated field-effect transistors (FETs) with an eccentric Corbino-disk geometry, such 
that the drain spans its circumference while the off-center inner ring acts as a source. An 
alternating current terahertz potential difference is applied between source and gate while a 
static source-drain voltage, rectified by the nonlinearities of FET electrons, is measured. When 
a magnetic field is applied perpendicular to the device, a strong resonance appears at the 
cyclotron frequency. The strength of the resonance can be tuned by changing the eccentricity 
of the disk. We show that there is an optimum value of the eccentricity that maximizes the 
responsivity of the FET. 
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N. Vladimirova, M. Shavit, S. Belan, and G. Falkovich, Second-harmonic generation as 
a minimal model of turbulence, Phys. Rev. E 104, 014129 (2021); 
https://doi.org/10.1103/PhysRevE.104.014129 

When two resonantly interacting modes are in contact with a thermostat, their statistics is 
exactly Gaussian and the modes are statistically independent despite strong interaction. 
Considering a noise-driven system, we show that when one mode is pumped and another 
dissipates, the statistics of such cascades is never close to Gaussian, no matter what is the 
relation between interaction and noise. One finds substantial phase correlation in the limit of 
strong interaction or weak noise. Surprisingly, the mutual information between modes 
increases and entropy decreases when interaction strength decreases. We use the model to 
elucidate the fundamental problem of far-from equilibrium physics: where the information, or 
entropy deficit, is encoded, and how singular measures form. For an instability-driven system, 
such as laser, even a small added noise leads to large fluctuations of the relative phase near 
the stability threshold, while far from the equilibrium the conversion into the second harmonic 
is weakly affected by noise. 
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Michal Shavit and Gregory Falkovich, Singular Measures and Information Capacity of 
Turbulent Cascades, Phys. Rev. Lett. 125, 104501 (2020);  
https://doi.org/10.1103/PhysRevLett.125.104501 

How weak is the weak turbulence? Here, we analyze turbulence of weakly interacting waves 
using the tools of information theory. It offers a unique perspective for comparing thermal 
equilibrium and turbulence. The mutual information between modes is stationary and small in 
thermal equilibrium, yet it is shown here to grow with time for weak turbulence in a finite box. 
We trace this growth to the concentration of probability on the resonance surfaces, which can 
go all the way to a singular measure. The surprising conclusion is that no matter how small is 
the nonlinearity and how close to Gaussian is the statistics of any single amplitude, a stationary 
phase-space measure is far from Gaussian, as manifested by a large relative entropy. This is 
a rare piece of good news for turbulence modeling: the resolved scales carry significant 
information about the unresolved scales. The mutual information between large and small 
scales is the information capacity of turbulent cascade, setting the limit on the representation 
of subgrid scales in turbulence modeling. 
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Natalia Vladimirova, Michal Shavit, and Gregory Falkovich, Fibonacci Turbulence, Phys. 
Rev. X 11, 021063 (2021); https://doi.org/10.1103/PhysRevX.11.021063 

Never is the difference between thermal equilibrium and turbulence so dramatic, as when a 
quadratic invariant makes the equilibrium statistics exactly Gaussian with independently 
fluctuating modes. That happens in two very different yet deeply connected classes of 
systems: incompressible hydrodynamics and resonantly interacting waves. This work presents 
the first detailed information-theoretic analysis of turbulence in such strongly interacting 
systems. The analysis involves both energy and entropy and elucidates the fundamental roles 
of space and time in setting the cascade direction and the changes of the statistics along it. 
We introduce a beautifully simple yet rich family of discrete models with triplet interactions of 
neighboring modes and show that it has quadratic conservation laws defined by the Fibonacci 
numbers. Depending on how the interaction time changes with the mode number, three types 
of turbulence were found: single direct cascade, double cascade, and the first-ever case of a 
single inverse cascade. We describe quantitatively how deviation from thermal equilibrium all 
the way to turbulent cascades makes statistics increasingly non-Gaussian and find the self-
similar form of the one-mode probability distribution. We reveal where the information (entropy 
deficit) is encoded and disentangle the communication channels between modes, as quantified 
by the mutual information in pairs and the interaction information inside triplets. 
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Hernán L. Calvo, Jose E. Barrios Vargas, and Luis E. F. Foa Torres, Floquet boundary 
states in AB-stacked graphite, Phys. Rev. B 101, 075424 (2020); 
https://doi.org/10.1103/PhysRevB.101.075424 

We report on the effect of laser illumination with circularly polarized light on the electronic 
structure of 𝐴𝐵-stacked graphite samples. By using Floquet theory in combination with Green's 
function techniques, we find that the polarized light induces band-gap openings at the Floquet 
zone edge ℏΩ/2, bridged by chiral boundary states. These states propagate mainly along the 
borders of the constituting layers as evidenced by the time-averaged local density of states 
and the probability current density in several geometries. Semianalytic calculations of the 
Chern number suggest that these states are of topological nature, similar to those found in 
illuminated 2D samples like monolayer and bilayer graphene. These states are promising 
candidates for the realization of a three-dimensional version of the quantum Hall effect for 
Floquet systems. 
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A. Huamán, L. E. F. Foa Torres, C. A. Balseiro, and Gonzalo Usaj, Quantum Hall edge 
states under periodic driving: A Floquet induced chirality switch, Phys. Rev. Research 
3, 013201 (2021); https://doi.org/10.1103/PhysRevResearch.3.013201  

We report on the fate of the quantum Hall effect in graphene under intense laser illumination. 
By using Floquet theory combined with both a low energy description and full tight-binding 
models, we clarify the selection rules, the quasienergy band structure, as well as their 
connection with the two-terminal and multiterminal conductance in a device setup as relevant 
for experiments. We show that the well-known dynamical gaps that appear in the Floquet 
spectrum at ±ℏΩ/2 lead to a switch-off of the quantum Hall edge transport for different edge 
terminations except for the armchair one, where two terms cancel out exactly. More 
interestingly, we show that near the Dirac point changing the laser polarization (circular right 
or circular left) controls the Hall conductance, by allowing to switch it on or off, or even by 
flipping its sign, thereby reversing the chirality of the edge states. This might lead to new 
avenues to fully control topologically protected transport. 
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Matías Berdakin*, Esteban A. Rodríguez-Mena, Luis E. F. Foa Torres, Spin-Polarized 
Tunable Photocurrents, Nano Lett., 21, 3177 (2021); 
https://doi.org/10.1021/acs.nanolett.1c00420  

Harnessing the unique features of topological materials for the development of a new 
generation of topological based devices is a challenge of paramount importance. Using 
Floquet scattering theory combined with atomistic models we study the interplay among laser 
illumination, spin, and topology in a two-dimensional material with spin–orbit coupling. Starting 
from a topological phase, we show how laser illumination can selectively disrupt the topological 
edge states depending on their spin. This is manifested by the generation of pure spin 
photocurrents and spin-polarized charge photocurrents under linearly and circularly polarized 
laser illumination, respectively. Our results open a path for the generation and control of spin-
polarized photocurrents. 
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M. Kim, M., S.G. Xu, A.I. Berdyugin, A. Principi, S. Slizovskiy, N. Xin, P. Kumaravadivel, 
W. Kuang, M. Hamer, R. Krishna Kumar, R. V. Gorbachev, K. Watanabe, T. Taniguchi, I. 
V. Grigorieva, V. I. Fal’ko, M. Polini, and A. K. Geim, Control of electron-electron 
interaction in graphene by proximity screening, Nature Communications 11, 2339 
(2020); https://doi.org/10.1038/s41467-020-15829-1 

Electron-electron interactions play a critical role in many condensed matter phenomena, and 
it is tempting to find a way to control them by changing the interactions’ strength. One possible 
approach is to place a studied system in proximity of a metal, which induces additional 
screening and hence suppresses electron interactions. Here, using devices with atomically-
thin gate dielectrics and atomically-flat metallic gates, we measure the electron-electron 
scattering length in graphene and report qualitative deviations from the standard behavior. The 
changes induced by screening become important only at gate dielectric thicknesses of a few 
nm, much smaller than a typical separation between electrons. Our theoretical analysis agrees 
well with the scattering rates extracted from measurements of electron viscosity in monolayer 
graphene and of umklapp electron-electron scattering in graphene superlattices. The results 
provide a guidance for future attempts to achieve proximity screening of many-body 
phenomena in two-dimensional systems. 
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Leonid A. Ponomarenko, Alessandro Principi, Andy D. Niblett, Wendong Wang, Roman 
V. Gorbachev, Piranavan Kumaravadivel, Alexey I. Berdyugin, Alexey V. Ermakov, 
Sergey Slizovskiy, Kenji Watanabe, Takashi Taniguchi, Qi Ge, Vladimir I. Fal’ko, 
Laurence Eaves, Mark T. Greenaway and Andre K. Geim. Extreme electron–hole drag 
and negative mobility in the Dirac plasma of graphene, Nature Communications 15, 9869 
(2024); https://doi.org/10.1038/s41467-024-54198-x  

Coulomb drag between adjacent electron and hole gases has attracted considerable attention, 
being studied in various two-dimensional systems, including semiconductor and graphene 
heterostructures. Here we report measurements of electron–hole drag in the Planckian plasma 
that develops in monolayer graphene in the vicinity of its Dirac point above liquid-nitrogen 
temperatures. The frequent electron–hole scattering forces minority carriers to move against 
the applied electric field due to the drag induced by majority carriers. This unidirectional 
transport of electrons and holes results in nominally negative mobility for the minority carriers. 
The electron–hole drag is found to be strongest near room temperature, despite being notably 
affected by phonon scattering. Our findings provide better understanding of the transport 
properties of charge-neutral graphene, reveal limits on its hydrodynamic description, and also 
offer insight into quantum-critical systems in general. 
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Robert Sokolewicz, Mikhail Baglai, Ivan Ado, Mikhail Katsnelson, Mikhail Titov, Gilbert 
damping in two-dimensional metallic anti-ferromagnets, Phys. Rev. B 109, 134427 
(2024); https://doi.org/10.1103/PhysRevB.109.134427 

A finite spin life-time of conduction electrons may dominate Gilbert damping of two-dimensional 
metallic antiferromagnets or antiferromagnet/metal heterostructures. We investigate the 
Gilbert damping tensor for a typical low-energy model of a metallic antiferromagnet system 
with honeycomb magnetic lattice and Rashba spin-orbit coupling for conduction electrons. We 
distinguish three regimes of spin relaxation: exchange-dominated relaxation for weak spin-
orbit coupling strength, Elliot-Yafet relaxation for moderate spin-orbit coupling, and Dyakonov-
Perel relaxation for strong spin-orbit coupling. We show, however, that the latter regime takes 
place only for the in-plane Gilbert damping component. We also show that anisotropy of Gilbert 
damping persists for any finite spin-orbit interaction strength provided we consider no spatial 
variation of the Néel vector. Isotropic Gilbert damping is restored only if the electron spin-orbit 
length is larger than the magnon wavelength. Our theory applies to MnPS3 monolayer on Pt or 
to similar systems. 
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Daria A. Dumitriu-I., Darius A. Deaconu, Alexander E. Kazantsev, Alessandro Principi, 
First-order effect of electron-electron interactions on the anomalous Hall conductivity 
of massive Dirac fermions, Phys. Rev. B 109, 165429 (2024); 
https://doi.org/10.1103/PhysRevB.109.165429  

We investigate the first-order correction to the anomalous Hall conductivity of 2D massive Dirac 
fermions arising from electron-electron interactions. In a fully gapped system in the limit of zero 
temperature, we find that this correction vanishes, confirming the absence of perturbative 
corrections to the topological Hall conductivity. At finite temperature or chemical potential, we 
find that the total Hall response decays faster than in the noninteracting case, depending on 
the strength of electron-electron interactions. These features, which could potentially be 
observed experimentally, show the importance of two-body interactions for anomalous Hall 
transport. 
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Alexander Kazantsev, Amelia Mills, Eoin O’Neill, Hao Sun, Giovanni Vignale, and 
Alessandro Principi, Nonconservation of the Valley Density and Its Implications for the 
Observation of the Valley Hall Effect, Phys. Rev. Lett. 132, 106301 (2024); 
https://doi.org/10.1103/PhysRevLett.132.106301  

We show that the conservation of the valley density in multivalley insulators is broken in an 
unexpected way by the electric field that drives the valley Hall effect. This implies that time-
reversal-invariant fully gapped insulators, in which no bulk or edge state crosses the Fermi 
level, can support a valley Hall current in the bulk and yet show no valley density accumulation 
at the edges. Thus, the valley Hall effect cannot be observed in such systems. If the system is 
not fully gapped then valley density accumulation at the edges is possible. The accumulation 
has no contribution from undergap states and can be expressed as a Fermi surface average, 
for which we derive an explicit formula. We demonstrate the theory by calculating the valley 
density accumulations in an archetypical valley-Hall insulator: a gapped graphene nanoribbon. 
Surprisingly, we discover that a net valley density polarization is dynamically generated for 
certain edge terminations. 
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Jihang Zhu, Iacopo Torre, Marco Polini, and Allan H. MacDonald, Weak-Coupling Theory 
of Magic-Angle Twisted Bilayer Graphene, Phys. Rev. B 110, L121117 (2024); 
https://doi.org/10.1103/PhysRevB.110.L121117  

Strong correlations occur in magic-angle twisted bilayer graphene (MATBG) when the octet of 
flat moiré minibands centered on charge neutrality (CN) is partially occupied. The octet 
consists of a single valence band and a single conduction band for each of four degenerate 
spin-valley flavors. Motivated by the importance of Hartree electrostatic interactions in 
determining the filling-factor-dependent band structure, we use a time-dependent Hartree 
approximation to gain insight into electronic correlations. We find that the electronic 
compressibility is dominated by Hartree interactions, that paramagnetic states are stable over 
a range of density near CN, and that the dependence of energy on flavor polarization is strongly 
overestimated by mean-field theory. 

 

 

  

https://doi.org/10.1103/PhysRevB.110.L121117


71 
 

Lorenzo Cavicchi, Iacopo Torre, Pablo Jarillo-Herrero, Frank H. L. Koppens, and Marco 
Polini, Theory of intrinsic acoustic plasmons in twisted bilayer graphene, Phys. Rev. B 
110, 045431 (2024); https://doi.org/10.1103/PhysRevB.110.045431  

We present a theoretical study of the intrinsic plasmonic properties of twisted bilayer graphene 
(TBG) as a function of the twist angle 𝜃 (and other microscopic parameters such as 
temperature and filling factor). Our calculations, which rely on the random phase 
approximation, take into account four crucially important effects, which are treated on equal 
footing: (i) the layer-pseudospin degree of freedom, (ii) spatial nonlocality of the density-density 
response function, (iii) crystalline local field effects, and (iv) Hartree self-consistency. We show 
that the plasmonic spectrum of TBG displays a smooth transition from a strongly coupled 
regime (at twist angles 𝜃≲2∘), where the low-energy spectrum is dominated by a weakly 
dispersive intraband plasmon, to a weakly coupled regime (for twist angles 𝜃≳2∘) where an 
acoustic plasmon clearly emerges. This crossover offers the possibility of realizing tunable 
mid-infrared subwavelength cavities, whose vacuum fluctuations may be used to manipulate 
the ground state of strongly correlated electron systems. 
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D. A. Bandurin, A. Principi, I. Y. Phinney, T. Taniguchi, K. Watanabe, and P. Jarillo-
Herrero, Interlayer electron-hole friction in tunable twisted bilayer graphene semimetal, 
Phys. Rev. Lett. 129, 206802 (2022); https://doi.org/10.1103/PhysRevLett.129.206802  

Charge-neutral conducting systems represent a class of materials with unusual properties 
governed by electron-hole (𝑒−ℎ) interactions. Depending on the quasiparticle statistics, band 
structure, and device geometry these semimetallic phases of matter can feature 
unconventional responses to external fields that often defy simple interpretations in terms of 
single-particle physics. Here we show that small-angle twisted bilayer graphene (SA TBG) 
offers a highly tunable system in which to explore interactions-limited electron conduction. By 
employing a dual-gated device architecture we tune our devices from a nondegenerate charge-
neutral Dirac fluid to a compensated two-component 𝑒−ℎ Fermi liquid where spatially 
separated electrons and holes experience strong mutual friction. This friction is revealed 
through the 𝑇2 resistivity that accurately follows the 𝑒−ℎ drag theory we develop. Our results 
provide a textbook illustration of a smooth transition between different interaction-limited 
transport regimes and clarify the conduction mechanisms in charge-neutral SA TBG. 
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Guido Menichetti, Lorenzo Cavicchi, Leonardo Lucchesi, Fabio Taddei, Giuseppe 
Iannaccone, Pablo Jarillo-Herrero, Claudia Felser, Frank H. L. Koppens, and Marco 
Polini, Giant chirality-induced spin polarization in twisted transition metal 
dichalcogenides, Newton 1, 100013, (2025);  
https://doi.org/10.1016/j.newton.2025.100013 

Electrons traveling through chiral materials—that is, materials with structures that differ from 
their mirror image—can acquire spin polarization through an effect called chirality-induced spin 
selectivity (CISS). This effect was first observed in chiral organic molecules, and while it can 
be used to engineer spin polarizers, it remains poorly understood. This study explores CISS in 
atomically thin layers of transition metal dichalcogenides (TMDs), showing that it is significantly 
amplified due to the interplay of structural chirality and strong spin-orbit coupling in these 
materials. Numerical simulations show that in the case of twisted bilayers, TMDs can achieve 
substantial spin polarization, making them tunable platforms for studying and manipulating spin 
polarization via the twist angle. These findings highlight the potential of twisted TMDs for 
spintronic devices. 
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Direct observation of vortices in an electron fluid 

 

A. Aharon-Steinberg1,†, T. Völkl1,†, A. Kaplan1,†, A. K. Pariari1, I. Roy1, T. Holder1, Y. Wolf1, A. Y. Meltzer1, 
Y. Myasoedov1, M. E. Huber2, B. Yan1, G. Falkovich3, L. S. Levitov4, M. Hücker1, and E. Zeldov1,* 

 

 

Vortices are the hallmarks of hydrodynamic flow. Recent studies indicate that strongly-interacting 
electrons in ultrapure conductors can display signatures of hydrodynamic behavior including negative 
nonlocal resistance [1–6], Poiseuille flow in narrow channels [7–10], and a violation of the Wiedemann-
Franz law [11,12]. Here we provide the first visualization of whirlpools in an electron fluid. By utilizing a 
nanoscale scanning superconducting quantum interference device on a tip (SQUID-on-tip) [13] we image 
the current distribution in a circular chamber connected through a small aperture to an adjacent narrow 
current-carrying strip in high-purity type-II Weyl semimetal WTe2. In this geometry, the Gurzhi momentum 
diffusion length and the size of the aperture determine the vortex stability phase diagram. We find that 
the vortices are present only for small apertures, whereas the flow is laminar (non-vortical) for larger 
apertures, consistent with the theoretical analysis of the hydrodynamic regime and in contrast to the 
expectations of ballistic transport in WTe2 at low temperatures [10]. Moreover, near the vortical-to-
laminar transition, we observe a single vortex in the chamber splitting into two vortices, a behavior that 
can occur only in the hydrodynamic regime and cannot be sustained by ballistic transport. These findings 
suggest a novel mechanism of hydrodynamic flow: instead of the commonly considered electron-electron 
scattering in the bulk, which becomes extremely weak at low temperatures, the spatial diffusion of the 
charge carriers’ momenta is enabled by small-angle scattering at the planar surfaces of thin pure crystals. 
This surface-induced para-hydrodynamics opens new avenues for exploring and utilizing electron fluidics 
in high-mobility electron systems.   
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Recent years have seen a quest for systems and regimes in which strong electron-electron interactions 
may lead to electron flows governed by hydrodynamics [14], as in viscous fluids, rather than by Ohmic 
transport. Fluids display two distinct hydrodynamic regimes [15]: laminar flows in which neighboring 
sheets move at gradually varying velocities, and turbulent flows characterized by eddies and vortices with 
counterflow that develop into strongly fluctuating and chaotic behavior at large scales. The transition from 
laminar to turbulent flow is usually associated with nonlinear fluid dynamics, described by the Navier–
Stokes equations. Yet, already in linear Stokes flow, hydrodynamic vortices in Newtonian fluids readily 
occur [16].  

In contrast to common fluids, which display hydrodynamic phenomena abundantly, evidence for 
hydrodynamics in electron fluids has remained scarce [17,18] until recently. The advent of high purity 
single crystals, clean van der Waals heterostructures, and high mobility 2D systems has accelerated the 
observation of fluid-like behavior in semiconductors and semimetals [1–12,19–29] and triggered a flurry 
of theoretical works [19,30–61]. Recently, the laminar Poiseuille flow in narrow strips has been 
demonstrated in graphene [7–9] and in WTe2 [10] with the help of Hall potential imaging and diamond 
nitrogen-vacancy magnetometry, lending support to the hydrodynamic nature of electron fluids in these 
systems. Yet, the most striking and ubiquitous feature in the flow of regular fluids, the formation of vortices 
and turbulence, has not yet been observed in electron fluids despite numerous theoretical predictions 
based on linear [62–64] and nonlinear [33,39,65] hydrodynamics. Transport measurements showing 
negative nonlocal resistance in the vicinity of the current injection point are suggestive of electron 
backflow in graphene and GaAs heterostructures [1–6]. Recent studies, however, propose that the 
observed negative potentials may arise in ballistic and hydrodynamic regimes even without an actual 
electron backflow [3,36,40]. Hence, direct observation of vortices and the study of their properties remains 
an outstanding challenge in electron fluids. 

The conventional picture of electron transport [14] involves two distinct length scales -- the momentum-
relaxation length 𝑙𝑙𝑚𝑚𝑚𝑚 describing momentum transfer from electrons to the lattice and the length 𝑙𝑙𝑒𝑒𝑒𝑒 
describing momentum transfer between the carriers due to electron-electron collisions. Hydrodynamic 
behavior can harbor vortices and other unique effects associated with electron fluidity when 𝑙𝑙𝑒𝑒𝑒𝑒 ≪ 𝑙𝑙𝑚𝑚𝑚𝑚, 
at the length scales 𝑙𝑙𝑒𝑒𝑒𝑒 < 𝑊𝑊 < 𝑙𝑙𝑚𝑚𝑚𝑚, where 𝑊𝑊 is the characteristic size of the system. In common metals, 
to the contrary, the shortest length scale is 𝑙𝑙𝑚𝑚𝑚𝑚. In this case, the electron transport is described by Ohm’s 
law 𝑱𝑱 = −𝜎𝜎∇𝜙𝜙 = 𝜎𝜎𝑬𝑬  and the continuity equation ∇ ⋅ 𝑱𝑱 = 0, where 𝜙𝜙 is the electrostatic potential and 𝑬𝑬 
is the electric field. In this regime, therefore, no vortices can exist since ∇ × 𝑱𝑱 = 𝜎𝜎∇× 𝑬𝑬 = 0 in the steady 
state. Note that since we discuss quasi-2D geometry, 𝑱𝑱 and 𝜎𝜎 denote here the 2D current density and 
conductivity, respectively. In ultraclean systems at low temperatures, however, very large values of 𝑙𝑙𝑚𝑚𝑚𝑚, 
exceeding 𝑊𝑊, can be achieved. If both 𝑙𝑙𝑒𝑒𝑒𝑒 and 𝑙𝑙𝑚𝑚𝑚𝑚 exceed 𝑊𝑊, the transport is ballistic, in which case 
electrons propagate essentially unimpeded, with scattering occurring mainly at the device edges. Ballistic 
transport, unlike the ohmic transport, can also lead to vortices with interesting properties.  

In this work, we provide a direct visualization of vortices in an electron fluid. By utilizing magnetic imaging 
with a scanning superconducting quantum interference device fabricated on the apex of a sharp pipette 
(SQUID-on-tip, SOT) [13], we observe the current flow patterns in the Weyl semimetal WTe2 as shown 
schematically in Figs. 1a,b. Ultraclean single crystals with residual resistance ratio (𝑅𝑅𝑅𝑅𝑅𝑅) of over 3,000 
were grown as described in Methods (Extended Data Fig. 1) and exfoliated into thin flakes of thickness 𝑑𝑑 
of 23 to 48 nm. Various sample geometries were patterned using e-beam lithography and plasma etching 
(Methods). The primary geometry consists of a central strip of width 𝑊𝑊 = 550 nm with two truncated 
circular chambers of radius 𝑅𝑅 = 900 nm connected to its sides through apertures defined by the opening 
angle 𝜃𝜃 ≤ 180∘(see AFM images in Fig. 1c and Extended Data Fig. 6). Analogous geometries were 
patterned in Au films of similar thicknesses for comparison. An ac current with rms amplitude 𝐼𝐼0 of 1 to 
400 µA was applied to the samples at 𝑇𝑇 = 4.5 K. The corresponding out-of-plane component of the Oersted 
field 𝐵𝐵𝑧𝑧(𝑥𝑥,𝑦𝑦) was measured by the SOT, scanning at a height ℎ = 50 nm above the sample surface (see 
Figs. 1a,b, Methods, and Extended Data Fig. 2), where the 𝑥𝑥 and 𝑦𝑦 directions are defined in Fig. 1e. 
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Fig. 1. Ohmic electron flow in Au film. a-b, Schematic experimental layout showing the scanning SOT and 
the Au (a) and WTe2 (b) samples with double-chamber geometry. The red curves indicate laminar (open-
loop) current streamlines while the blue curves represent closed-loop vortex streamlines. c, Atomic force 
microscope (AFM) topography image of WTe2 sample with 𝜃𝜃 = 45°. 𝑊𝑊, 𝑅𝑅, 𝜃𝜃, and ∆ are the width of the 
central strip, radius of the circular chambers, aperture angle, and size of the aperture ∆= 2𝑅𝑅 sin(𝜃𝜃/2), 
respectively. d-i, Measurements and simulations of Au sample with 𝜃𝜃 = 180°. d, Current density 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) 
normalized by 𝐼𝐼0/𝑊𝑊 reconstructed from 𝐵𝐵𝑧𝑧(𝑥𝑥,𝑦𝑦) in (f). The black contours mark the sample edges. e, 
Simulated 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) in the ohmic regime. f, 𝐵𝐵𝑧𝑧(𝑥𝑥,𝑦𝑦) measured by the SOT above the Au sample under 
current 𝐼𝐼0 = 50 µA at 4.5 K. g, 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) reconstructed from (f). The light blue texture outside the sample is 
an artifact of current reconstruction (Methods). h, Simulated 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦). i, Simulated current streamlines. j-
o, Measurements and simulations of Au sample with 𝜃𝜃 = 45°. j, Current density 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) reconstructed 
from (l). k, Simulated 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) in the ohmic regime. l, 𝐵𝐵𝑧𝑧(𝑥𝑥,𝑦𝑦) profiles in the Au sample carrying 𝐼𝐼0 = 50 
µA. m, 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) reconstructed from (l). n, Simulated 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦). o, Simulated current streamlines. 
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Ohmic flow 

We start by examining the current flow in the Au films. Figure 1f shows 𝐵𝐵𝑧𝑧(𝑥𝑥,𝑦𝑦) measured above the Au 
sample with 𝜃𝜃 = 180°, corresponding to a strip with two half-disc chambers. By inversion of the magnetic 
field 𝐵𝐵𝑧𝑧(𝑥𝑥,𝑦𝑦) [66], we reconstruct the 2D current density 𝑱𝑱(𝑥𝑥,𝑦𝑦) (Methods), with 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) and 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) 
components presented in Figs. 1d,g. The longitudinal 𝐽𝐽𝑦𝑦 component demonstrates that the current flowing 
upwards in the central strip spreads out into the two chambers. The current flows into the right chamber 
through its lower half (red 𝐽𝐽𝑥𝑥 in Fig. 1g), circulates counterclockwise, and exits through the upper half (blue 
𝐽𝐽𝑥𝑥 in Fig. 1g). The left chamber shows a mirrored flow pattern, as expected. The COMSOL numerical 
simulations in the ohmic regime in Figs. 1e,h show good agreement with the experimental data, describing 
a laminar (non-vortical) current flow as illustrated by the calculated streamlines in Fig. 1i. Upon decreasing 
the aperture size, less current enters the chambers as seen by 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) in Fig. 1j for the case of 𝜃𝜃 = 45°. 
The 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) in Fig. 1m shows qualitatively similar behavior, with current flowing counterclockwise in the 
right chamber. Numerical simulations of 𝐽𝐽𝑦𝑦 and 𝐽𝐽𝑥𝑥 in Figs. 1k,n agree with the experimental data; the 
streamlines in Figs. 1o show laminar flow, as expected. 

As a quick note on terminology – usually ‘laminar’ means no turbulence. Here, in a linear response regime, 
turbulence is not encountered. And yet, vortices may or may not appear depending on the dynamical 
phase of the electron fluid. Indeed, vortex is a flow in which the streamlines form closed loops. In contrast, 
streamlines that go from source to drain without forming closed loops will be referred to hereafter as 
laminar.  

Vortex flow 

For large opening angle, 𝜃𝜃 = 120°, the current flow pattern in a WTe2 sample (Fig. 2a) looks similar to that 
of Au with the 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) component spreading substantially into the chambers. The corresponding 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) 
in Fig. 2d shows counter-clockwise flow in the right chamber and clockwise flow in the left chamber, similar 
to the laminar flow in Au in Figs. 1g,m. To quantify the expected behavior in the hydrodynamic regime, 
𝑙𝑙𝑒𝑒𝑒𝑒 < 𝑊𝑊 < 𝑙𝑙𝑚𝑚𝑚𝑚, we numerically solve the linearized Navier-Stokes equation for a 2D electron fluid 
[1,34,62], 

 −𝐷𝐷2∇2𝑱𝑱+ 𝑱𝑱 = −𝜎𝜎∇𝜙𝜙, (1) 

where 𝐷𝐷 is the Gurzhi length, usually defined as 𝐷𝐷 = �𝑙𝑙𝑒𝑒𝑒𝑒𝑙𝑙𝑚𝑚𝑚𝑚/2. The resulting 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) and 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) in Figs. 
2b,e show good agreement with the experimental data. The corresponding calculated current streamlines 
in Fig. 2f show a laminar flow resembling the ohmic regime in Figs. 1i,o.  

The flow pattern changes drastically as the aperture size becomes smaller, as illustrated in Figs. 2g,j for 
the case of 𝜃𝜃 = 20°. The 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) remains focused in the central strip, while 𝐽𝐽𝑦𝑦 in the chambers is relatively 
small (Fig. 2g). An essential difference between the flow in WTe2 and the ohmic flow in Au is revealed, 
however, upon inspecting the transversal component 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦). On approaching the aperture from below, 
𝐽𝐽𝑥𝑥 is initially directed to the right (red) towards the right chamber. Rather than maintaining its flow into 
the chamber as in Fig. 2d, 𝐽𝐽𝑥𝑥 switches its direction and flows to the left (blue). Similarly, in the top half of 
the chamber, 𝐽𝐽𝑥𝑥 flows out of the chamber near the aperture (blue), but into the chamber further away 
from the aperture (red). In other words, near the aperture the current flows counterclockwise while in the 
interior of the chamber, the current circulates clockwise. Therefore, a clockwise current vortex is formed 
in the right chamber. Simultaneously, a mirror-symmetric counterclockwise vortex appears in the left 
chamber. The hydrodynamic simulations of 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) and 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) in Figs. 2h,k confirm this picture, with the 
vortices in the two chambers represented by closed-loop streamlines (blue) in Fig. 2l (see also Extended 
Data Fig. 4). To the best of our knowledge, this constitutes the first direct observation of current vortices 
in an electron fluid. 
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Fig. 2. Laminar and vortex flow in WTe2. a-f, Measurements of WTe2 sample with 𝜃𝜃 = 120° and 
corresponding simulations in the hydrodynamic regime (Eq. 1) with 𝐷𝐷/𝑊𝑊 = 0.28 and 𝜉𝜉 = 200 nm. a, 
Current density 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) normalized by 𝐼𝐼0/𝑊𝑊 reconstructed from (c). b, Simulated 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦). c, 𝐵𝐵𝑧𝑧(𝑥𝑥,𝑦𝑦) 
measured by the SOT above the WTe2 sample under current 𝐼𝐼0 = 50 µA at 4.5 K. d, 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) reconstructed 
from (c). e, Simulated 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦). f, Simulated current streamlines showing laminar flow. g-l, Measurements 
of WTe2 sample with 𝜃𝜃 = 20° and corresponding simulations in the hydrodynamic regime. g, Current 
density 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) reconstructed from (i). See Extended Data Figs. 2k-o in which the color scale is expanded 
so that the counterflow vortex current 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) is resolved. h, Simulated 𝐽𝐽𝑦𝑦(𝑥𝑥, 𝑦𝑦). i, 𝐵𝐵𝑧𝑧(𝑥𝑥,𝑦𝑦) measured in 
the WTe2 sample carrying 𝐼𝐼0 = 50 µA. j, 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) reconstructed from (l). k, Simulated 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦). l, Simulated 
current flow showing laminar (open-loop, red) and vortex (closed-loop, blue) streamlines. 

Hydrodynamic and ballistic vortex stability phase diagram 

Though the above hydrodynamic simulations show a good agreement with the experimental data, a 
question arises whether ballistic trajectories may create similar vortex patterns. Indeed, several studies 
have pointed out the difficulty in distinguishing the hydrodynamic and ballistic regimes using transport 
data [3,23,40,46,59]. Moreover, recent studies of current profiles in a WTe2 whisker suggest the transport 
should be ballistic at low temperatures [10]. A key aspect that enables formation of vortices in both the 
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hydrodynamic and ballistic regimes is system geometry [36]. Another key aspect is the boundary 
conditions, which has been an outstanding question in electron hydrodynamics from its early days [1,7–
10,14,17,18,34,36,45,63,64,67]. The boundary conditions can be parametrized by the slip length, 𝜉𝜉, which 
can vary from 𝜉𝜉 = 0 for no-slip (𝑱𝑱|boundary = 0) to 𝜉𝜉 = ∞ for no-stress boundaries (free-surface, 𝑛𝑛� ⋅
∇𝑱𝑱|boundary = 0). A full treatment of the electron transport requires the use of the Boltzmann kinetic 
equation, solution of which in an arbitrary 2D geometry is quite challenging [6,58]. We note, however, that 
for realistic parameters, Eq. 1 provides a good approximation in the regime of interest, 𝐷𝐷/𝑊𝑊 ≲ 1, as well 
as in the quasi-ballistic regime, 𝐷𝐷/𝑊𝑊 ≳ 1, provided the no-stress boundary conditions are used [46] (see 
Methods).  

To model vortex formation, we solve Eq. 1 in the two-chamber geometry and compute the total 

counterflow current 𝐼𝐼𝑣𝑣 carried by the vortex, 𝐼𝐼𝑣𝑣 = ∫ ��𝐽𝐽𝑦𝑦(𝑥𝑥, 0)� − 𝐽𝐽𝑦𝑦(𝑥𝑥, 0)�𝑤𝑤/2
−𝑤𝑤/2 d𝑥𝑥/4, where 𝑤𝑤 = 𝑊𝑊 +

2𝑅𝑅[1 + cos (𝜃𝜃 2)⁄ ] is the width of the structure in its widest section. Figures 3a,b show the resulting vortex 
stability phase diagram as a function of the aperture angle 𝜃𝜃 and the ratio of the Gurzhi length to the strip 
width, 𝐷𝐷/𝑊𝑊, for no-stress and no-slip boundary conditions (see Methods). The resulting phase diagrams 
are quite similar, predicting that in the quasi-ballistic regime 𝐷𝐷/𝑊𝑊 ≳ 1 the vortices feature large 
counterflow 𝐼𝐼𝑣𝑣, are stable up to large angles 𝜃𝜃, and show weak dependence on 𝐷𝐷/𝑊𝑊. In the hydrodynamic 
regime, to the contrary, the counterflow 𝐼𝐼𝑣𝑣 is lower, the presence of vortices is limited to smaller 𝜃𝜃, and 
the vortex stability is strongly dependent on 𝐷𝐷/𝑊𝑊. At low 𝐷𝐷/𝑊𝑊, the vortex-to-laminar (no-vortex) phase 
transition line 𝜃𝜃𝑡𝑡(𝐷𝐷/𝑊𝑊) is linear (dashed green line) and is essentially independent of the boundary 
conditions. Yet, the total circulating current 𝐼𝐼𝑣𝑣 carried by the vortex is strongly dependent on the boundary 
conditions, showing about four-fold suppression of the maximum 𝐼𝐼𝑣𝑣 for no-slip boundaries due to 
enhanced momentum relaxation at the edges.  

These insights imply that by fabricating a series of samples with varying 𝜃𝜃, one can pinpoint the transition 
angle 𝜃𝜃𝑡𝑡. This would allow one to i) determine whether the flow is ballistic (large 𝜃𝜃𝑡𝑡) or hydrodynamic 
(small 𝜃𝜃𝑡𝑡), ii) evaluate the maximum 𝐼𝐼𝑣𝑣, and iii) extract the value of 𝐷𝐷 in the hydrodynamic case. Moreover, 
the derived 𝐼𝐼𝑣𝑣 can provide an estimate of the electron slip length 𝜉𝜉. Accordingly, we have fabricated six 
samples from a single WTe2 flake with a sequence of aperture angles 𝜃𝜃 = 20°, 35°, 54°, 72°, 90°, and 120° 
(Extended Data Fig. 6a). The observed current flow patterns are presented in Figs. 2, 3, and 4 (see Methods 
and Extended Data Figs. 7, 8, and 9 for additional samples and geometries). The six data points are overlaid 
on the two phase diagrams in Figs. 3a,b. A single vortex in each chamber is observed in two samples with 
the smallest 𝜃𝜃 (marked by ⊙), a double-vortex is found in the 𝜃𝜃 = 54° sample (marked by ⊖), while 
laminar (no-vortex) flow is found for the three largest 𝜃𝜃 (marked by ×). As described below, the 𝜃𝜃 = 54° 
sample resides very close to the phase transition line, which allows us to identify the transition angle 𝜃𝜃𝑡𝑡 ≅ 
54°. The small value of 𝜃𝜃𝑡𝑡 clearly establishes the hydrodynamic nature of the observed current vortices.  

Gurzhi length and boundary conditions 

The obtained 𝜃𝜃𝑡𝑡 value translates into 𝐷𝐷/𝑊𝑊 ≅ 0.28, which for 𝑊𝑊 = 550 nm in our devices results in the 
Gurzhi length 𝐷𝐷 ≅ 155 nm, a value nearly independent of the boundary conditions type in this range of 
parameters. The boundary conditions, however, strongly impact the vortex current 𝐼𝐼𝑣𝑣 as seen in Figs. 3a,b 
and demonstrated in Figs. 3c-j. The experimentally derived 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) in 𝜃𝜃 = 20° and 35° samples are shown 
in Figs. 3c,g alongside simulated 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) for three values of the slip length, 𝜉𝜉 = 0, 200 nm, and ∞. Figures 
3f,j demonstrate that for no-slip boundary conditions, the intensity of the circulating current in the vortex 
is much weaker than the one measured experimentally. Circulating currents comparable to the 
experimental values in Figs. 3c,g can be achieved only for large 𝜉𝜉 ≳ 200 nm, as shown in Figs. 3e,i. In this 
limit, the resulting current distribution is nearly identical to the one found for the no-stress boundary 
conditions, 𝜉𝜉 = ∞, in Figs. 3d,h. The relatively low values of the measured 𝐽𝐽𝑥𝑥/(𝐼𝐼0/𝑊𝑊) ≅ 0.02, as compared 
to the significantly higher maximum values calculated for the ballistic regime, provide additional evidence 
for the hydrodynamic nature of the observed vortices. 
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Fig. 3. Vortex stability phase diagram. a-b, Vortex stability phase diagram showing the magnitude of the 
circulating vortex current, 𝐼𝐼𝑣𝑣, in the chambers vs. the aperture angle 𝜃𝜃 and the Gurzhi length scaled by the 
strip width, 𝐷𝐷/𝑊𝑊, for no-stress, 𝜉𝜉 = ∞ (a), and no-slip, 𝜉𝜉 = 0 (b), boundary conditions. The dashed green 
line indicates the vortical-to-laminar phase transition line 𝜃𝜃𝑡𝑡(

𝐷𝐷
𝑊𝑊

) in the 𝐷𝐷/𝑊𝑊 ≪ 1 limit. The symbols ⊙, 
⊖, and × mark the parameters of the chambers that feature single vortex, double vortex, and no vortices, 
respectively. The double-vortex state at 𝜃𝜃 = 35° is described in Fig. 5. c-f, Measured 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) in WTe2 
sample with 𝜃𝜃 = 20° (c) and the corresponding simulated 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) for 𝐷𝐷/𝑊𝑊 = 0.28 and electron slip length 
at the edges of 𝜉𝜉 = ∞ (d), 200 nm (e), and 0 (f). g-j, Measured 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) in WTe2 sample with 𝜃𝜃 = 35° (g) 
and the corresponding simulated 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) for 𝜉𝜉 = ∞ (h), 200 nm (i), and 0 (j). 

Our finding of a large slip length 𝜉𝜉 ≳ 200 nm in the hydrodynamic flow is consistent with several transport 
studies of graphene [1,34,36], but are in an apparent disagreement with recent spatially resolved studies 
of graphene [7–9] and WTe2 [10], which have suggested diffuse or no-slip boundary conditions in the 
hydrodynamic regime. Note, however, that these studies are based on the analysis of current profiles in a 
strip geometry in which ballistic transport and hydrodynamic flow with large slip length result in essentially 
indistinguishable current profiles (see further discussion in Methods and Extended Data Fig. 3).   
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Transition from laminar to vortex flow 

We now examine more closely the transition between laminar and vortex flows. Figure 4 shows the 
experimental current distributions in samples with apertures 𝜃𝜃 = 90°, 72°, 54°, and 35°. The first two 
geometries, 𝜃𝜃 = 90° and 72°, show laminar (no vortex) flow, in good agreement with the numerical results 
(Figs. 4a-j). In the sample with a smaller aperture 𝜃𝜃 = 35°, a well-resolved vortex is observed in each 
chamber—also in agreement with simulations (Figs. 4p-t). The intermediate 𝜃𝜃 = 54° aperture shows, 
however, a markedly different 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) flow pattern (Fig. 4l). The corresponding numerical simulations (Fig. 
4m-o) reveal that at the vortex-to-no-vortex phase transition (𝜃𝜃 = 𝜃𝜃𝑡𝑡), rather than vanishing continuously, 
the vortex elongates into an arc (see Methods and Supplementary Video 1) and eventually splits into two 
sub-vortices in the top and bottom parts of the chamber as shown by the streamlines in Fig. 4o. As a result, 
in each chamber, 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) shows two pairs of red-blue streaks, one for each sub-vortex (Fig. 4l), instead of 
a single pair of streaks as in Fig. 4q. The numerical simulations show that the double-vortex flow occurs 
only in a narrow interval of parameters just below the 𝜃𝜃𝑡𝑡(𝐷𝐷/𝑊𝑊) phase transition line (where 𝐼𝐼𝑣𝑣 = 0 
according to our definition, because all the streamlines at 𝑦𝑦 = 0 become laminar), which allows us to 
determine 𝜃𝜃𝑡𝑡 ≅ 54° and 𝐷𝐷/𝑊𝑊 ≅ 0.28 in our devices. Importantly, the double-vortex state can occur only 
in the hydrodynamic regime and is precluded in the ballistic transport (see Methods and Supplementary 
Video 2), thus providing additional strong evidence for the hydrodynamic origin of the observed vortex 
flow.  

Fig. 4. Laminar to double-vortex to single-vortex transition. a-e, Measurements of WTe2 sample with 𝜃𝜃 = 
90° and corresponding simulations in the hydrodynamic regime with 𝐷𝐷 = 155 nm and 𝜉𝜉 = 200 nm. a, 
Measured current density 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) normalized by 𝐼𝐼0/𝑊𝑊 at 𝐼𝐼0 = 50 µA. b, Measured current density 
𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦). c, Simulated 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦). d, Simulated 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦). e, Simulated laminar (red) current streamlines. f-j, 
Same as (a-e) for 𝜃𝜃 = 72° sample. k-o, Same as (a-e) for 𝜃𝜃 = 54° sample showing double vortex with 
laminar (red) and vortex (blue) current streamlines in (o). p-t, Same as (a-e) for 𝜃𝜃 = 35° sample showing 
single vortex with laminar (red) and vortex (blue) current streamlines in (t). 
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Current dependence 

Our SOT microscope setup is limited to operation at temperatures of about 4 K, but the electron 
temperature can be raised substantially by increasing the applied current, as was originally employed in 
the hydrodynamic studies in GaAs 2DEG [17,18]. Since both 𝑙𝑙𝑒𝑒𝑒𝑒 and 𝑙𝑙𝑚𝑚𝑚𝑚 decrease with temperature, 
increasing the current 𝐼𝐼0 is expected to reduce the Gurzhi length 𝐷𝐷. Figure 5 shows the evolution of 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) 
in the 𝜃𝜃 = 35° sample upon increasing 𝐼𝐼0 up to 400 µA. The normalized 𝐽𝐽𝑥𝑥/(𝐼𝐼0/𝑊𝑊) circulating in the vortex 
gradually decreases as 𝐼𝐼0 grows, until the double-vortex state is formed at our highest applied current. 
This behavior is qualitatively consistent with the expected decrease of 𝐷𝐷 as indicated by the arrow in Fig. 
3a. The degree of the reduction in 𝐷𝐷 is, however, surprising. By measuring the sample resistance as a 
function of 𝐼𝐼0 and comparing it to the temperature dependence of the resistance, we infer that the 
electron temperature reaches about 18 K at our highest applied current. Based on the theoretical estimate 
of the temperature dependence of 𝑙𝑙𝑒𝑒𝑒𝑒 and 𝑙𝑙𝑚𝑚𝑚𝑚 [10], such temperature increase should have reduced 𝐷𝐷 by 
more than an order of magnitude relative to the value at 4.5 K. In contrast, Fig. 3a indicates that 𝐷𝐷 has 
decreased by less than a factor of two. Note that in Ref. [10], the measured temperature evolution was 
also found to be weaker than predicted. This finding of weak temperature dependence of the Gurzhi length 
provides an important insight into the mechanism underlying hydrodynamics in our system. 

Fig. 5. Current dependence of the vortex state. a-d, 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) measured in WTe2 sample with 𝜃𝜃 = 35° 
normalized by 𝐼𝐼0/𝑊𝑊 for applied currents of 𝐼𝐼0 = 100 µA (a), 200 µA (b), 300 µA (c), and 400 µA (d), showing 
a transition from single-vortex to double-vortex state in the chambers. 

Discussion 

Perhaps our most unexpected finding is that we observe fluid-like spatial momentum transport 
characterized by 𝐷𝐷 ≅ 155 nm, a value that is much smaller than 𝐷𝐷 = �𝑙𝑙𝑚𝑚𝑚𝑚𝑙𝑙𝑒𝑒𝑒𝑒/2 estimated based on the 
bulk microscopic parameters. Indeed, transport measurements indicate that 𝑙𝑙𝑚𝑚𝑚𝑚 values in our bulk 
samples are in excess of 10 µm (Methods and Extended Data Fig. 1). Recent band structure calculations 
[10] suggest that bare 𝑙𝑙𝑒𝑒𝑒𝑒 in WTe2 is of the order of a few mm at 4 K. Accounting for phonon-mediated 
electron-electron interactions can reduce 𝑙𝑙𝑒𝑒𝑒𝑒 to about 100 µm [10]. By taking into account the 
compensated semimetal band structure of WTe2 and the proximity to band edges, we show that the bare 
𝑙𝑙𝑒𝑒𝑒𝑒 can be of the order of 10 µm (Methods and Extended Data Fig. 5). Yet, even with this lower bound, 𝑙𝑙𝑒𝑒𝑒𝑒 
remains much larger than 𝑊𝑊, which should have resulted in transport deep in the ballistic regime, with 
𝐷𝐷 = �𝑙𝑙𝑚𝑚𝑚𝑚𝑙𝑙𝑒𝑒𝑒𝑒/2 ≅ 5 µm.  

To gain insight into the origin of this surprising behavior, it is instructive to recall the general derivation of 
the Ohm-Stokes law, Eq. 1. Kinetic theory links momentum relaxation to the decay rate 𝛾𝛾1 of the first 
angular harmonic of the nonequilibrium electron momentum distribution, giving 𝑙𝑙𝑚𝑚𝑚𝑚 = 𝑣𝑣𝐹𝐹/𝛾𝛾1, whereas 

the kinematic viscosity 𝜂𝜂 = 1
4
𝑣𝑣𝐹𝐹
2

𝛾𝛾2
 is expressed through the decay rate 𝛾𝛾2 of the second harmonic of the 

momentum distribution, where 𝑣𝑣𝐹𝐹 is the Fermi velocity (Methods). This results in 𝐷𝐷 = �𝜂𝜂/𝛾𝛾1 =
𝑣𝑣𝐹𝐹/�4𝛾𝛾1𝛾𝛾2 (see also [35]). Importantly, this expression is completely general and is valid for any 
microscopic momentum-scattering mechanism. Usually 𝛾𝛾1 and 𝛾𝛾2 originate, respectively, from impurity or 
phonon scattering and electron-electron collisions, giving 𝛾𝛾1 = 𝑣𝑣𝐹𝐹/𝑙𝑙𝑚𝑚𝑚𝑚, 𝛾𝛾2 = 𝑣𝑣𝐹𝐹/𝑙𝑙𝑒𝑒𝑒𝑒, and resulting in 𝐷𝐷 =
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�𝑙𝑙𝑚𝑚𝑚𝑚𝑙𝑙𝑒𝑒𝑒𝑒/2. As discussed above, because of the large values of bulk 𝑙𝑙𝑚𝑚𝑚𝑚 and 𝑙𝑙𝑒𝑒𝑒𝑒, these relations are 
inconsistent with 𝐷𝐷 inferred from the observed behavior.  

However, momentum-conserving electron-electron scattering is not required in order to generate spatial 
diffusion of the momentum. There is another scattering mechanism that could result in both the diffusion 
and relaxation of electron momenta, related to the finite thickness 𝑑𝑑 of the sample. The resistivity of WTe2 
flakes has been found to be strongly thickness dependent [68,69], a behavior attributed to surface 
oxidation. Our transport measurements show that the conductivity of the flakes is one to two orders of 
magnitude lower than that of the bulk crystals (see Methods), indicating a large reduction in 𝑙𝑙𝑚𝑚𝑚𝑚 and an 
enhancement of 𝛾𝛾1 induced by the momentum relaxing scattering off the surfaces. However, an 
enhancement of 𝛾𝛾1 alone, such that 𝛾𝛾1 > 𝛾𝛾2, would of course lead to an ohmic transport with no vorticity, 
in contrast to the observed hydrodynamic flow, which requires 𝛾𝛾2 > 𝛾𝛾1. Yet, it has recently been pointed 
out [35] that enhancement in 𝛾𝛾1 implies an enhancement in 𝛾𝛾2. Indeed, using the method described in 
[59], we show in Methods that small-angle scattering results in 𝛾𝛾2 ≅ 4𝛾𝛾1, giving rise to hydrodynamic-like 
transport with 𝐷𝐷 = 𝑣𝑣𝐹𝐹/�4𝛾𝛾1𝛾𝛾2 = 𝑣𝑣𝐹𝐹/4𝛾𝛾1 = 𝑙𝑙𝑚𝑚𝑚𝑚/4. Based on 𝐷𝐷 ≅ 155 nm derived from the vortex 
stability diagram, we arrive at the effective surface-induced 𝑙𝑙𝑚𝑚𝑚𝑚 = 4𝐷𝐷 ≅ 620 nm in our samples. This value 
compares well with the effective 𝑙𝑙𝑚𝑚𝑚𝑚 ≅ 530 nm derived independently from transport measurements of 
conductivity in thin flakes (Methods).  

The emerging picture is therefore as follows. For a fully specular surface scattering, the transport is 
ballistic. Small-angle scattering at the surfaces results in two effects: enhancement in momentum 
relaxation and a concurrent enhancement of the lateral momentum diffusion. In this para-hydrodynamic 
mechanism, momentum diffusion does not occur through the usual momentum-conserving electron-
electron scattering, but rather through multiple, close-to-specular scattering events between the top and 
bottom surfaces without inter-electron momentum transfer. The resulting surface-induced para-
hydrodynamics opens a unique possibility of observing and utilizing hydrodynamic phenomena in a wide 
range of high mobility materials without the necessity of the hard-to-achieve strong bulk electron-electron 
interactions. 
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Methods 

Synthesis of WTe2 crystals 

To obtain high quality WTe2 single crystals we conducted a series of synthesis experiments using both 
chemical vapor transport (CVT) and the flux growth technique, as well as starting materials with different 

purity. These experiments led to progressively better crystals with increased 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝜌𝜌(300 K)
𝜌𝜌(2 K)

 and magneto 

resistance ratio 𝑀𝑀𝑅𝑅 = 𝜌𝜌(9 T)−𝜌𝜌(0 T)
𝜌𝜌(0 T)

, as summarized in Extended Data Fig. 1c, and are described here in 

chronological order. Eventually all devices for the hydrodynamic flow experiments were fabricated from 
our highest quality single crystals described last. The first crystals were grown by CVT [70,71] using 
elemental W (99.95%) and Te (99.99%) from Stanford Advanced Materials. Initially, polycrystalline WTe2 
was prepared by solid-state reaction in a vacuum-sealed quartz ampule at 750 °C. The obtained precursor 
material was then vacuum-sealed (1.33 × 10-5 mbar) in a 16 cm long quartz tube with a minute amount of 
TeBr4 transport agent, and placed in a temperature gradient of 850 °C – 750 °C for several days. Few 
millimeters wide sheet-shaped single crystals were collected from the cold end of the ampule after cool 
down. However, we found that both 𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑀𝑀𝑅𝑅 of the CVT grown crystals were extremely low, despite 
testing a range of different growth conditions. 

Much higher quality crystals were obtained using tellurium self-flux growth [72]. Elemental W and Te were 
mixed at a molar ratio of 1:30, loaded into frit-disc alumina crucibles, and sealed in a quartz ampule under 
vacuum. All steps of materials handling were performed in an Ar glove box with O2 and H2O concentration 
< 0.1 ppm. Quartz ampule, alumina crucibles, and quartz wool for cushioning were heat treated at 800 °C 
prior to the growth experiment. The tungsten tellurium mixture was heated in a box furnace to 1100 °C at 
a rate of 30 °C/h, followed by soaking at 1100 °C for 10 h. The metal solution was then slowly cooled down 
to 650 °C at a rate of 2 °C/h, followed by centrifuging to separate the Te flux from the crystals. To remove 
any trace of Te flux from the crystal surfaces, they were again vacuum sealed in a quartz ampule and placed 
on the hot side of a temperature gradient of 400 °C – 190 °C. Although these needle shaped crystals were 
of much higher quality than those grown by CVT, they were still inferior to the best crystals reported in 
literature [72]. Subsequent optimization of the growth parameters, such as a higher sample-to-flux ratio 
of W:Te = 1:50 and  W:Te = 1:120, varying cooling rates, changing crucible arrangements, using pre-reacted 
WTe2 and excess tellurium as starting materials, led to further improvements but the 𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑀𝑀𝑅𝑅 values 
were still unsatisfactory; see two points with lowest 𝑅𝑅𝑅𝑅𝑅𝑅 in Extended Data Fig. 1c.  

The deciding factor that led to our best quality crystals was the use of higher purity W (99.999%) and Te 
(99.9999%) from Furuuchi Chemical Corporation. In addition the starting materials were loaded directly 
into the quartz tube, using a quartz wool filter instead of the frit-disc alumina crucibles. This allowed us to 
use larger amounts of starting materials, which should improve the volume to surface ratio of the melt in 
favor of a lower impurity density in the crystals from contact contamination with the quartz tube. Using 
our previously optimized mixing ratio of W:Te = 1:120, and a cooling rate of 2 °C/h from 1000 °C to 600 °C 
followed by centrifuging, we obtained crystals with excellent 𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑀𝑀𝑅𝑅 values on par with the best 
crystals reported in literature (see Extended Data Fig. 1c). We note that a cooling rate of 1 °C/h resulted 
in crystals with slightly lower quality.  

Device fabrication 

WTe2 crystals were mechanically exfoliated onto an oxidized silicon wafer (290 nm of SiO2) and suitable 
flakes were identified by optical microscopy. Standard nano-fabrication techniques were used for device 
fabrication: electron beam lithography (EBL), inductively coupled plasma etching (ICP), and electron gun 
metal deposition (E-gun). Separate EBL steps were used to define the mesa and the contact geometries. 
The WTe2 mesa was etched with ICP using SF6 (15 sccm) and O2 (5 sccm), RF power of 20 W, resulting in 
an etch rate of ∼0.8 nm/s. 
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The Au reference samples and contacts to WTe2 flakes were fabricated by E-gun deposition of Ti (2 nm) 
and Au (30 to 60 nm) followed by a lift-off procedure in acetone. Ar ion milling was used prior to the 
contact metal deposition for removal of the WTe2 oxidation layer. For transport characterization, separate 
devices were fabricated in Hall bar geometry with width 𝑊𝑊 = 5 µm, thickness 𝑑𝑑 ≅ 40 nm, and distance 
between the voltage contacts 𝐿𝐿 ≅ 3.3 µm. 

Extended Data Fig. 1. Transport characterization of bulk WTe2 single crystals. a, Resistivity, 𝜌𝜌, as a 
function of temperature of our highest purity crystal. At 𝑇𝑇 = 2 K, the resistivity is 𝜌𝜌 = 0.23 µΩ⋅cm 
corresponding to 𝑅𝑅𝑅𝑅𝑅𝑅 ≅ 3,250. Inset: optical image of crystals from the optimized quality growth. b, 

Magnetoresistance, 𝑀𝑀𝑅𝑅 = 𝜌𝜌(𝐵𝐵)−𝜌𝜌(0)
𝜌𝜌(0) , as a function of magnetic field at 2 K showing 𝑀𝑀𝑅𝑅 ≅ 62,000 at 9 T. c, 

𝑀𝑀𝑅𝑅 vs. 𝑅𝑅𝑅𝑅𝑅𝑅 at 𝑇𝑇 = 2 K and 𝐵𝐵 = 9 T of our different crystals synthesized by flux growth (black dots) in 
comparison to reported values (open circles) in the literature [72–74]. The black line is a guide to the eye. 
d, Longitudinal and transverse conductivities 𝜎𝜎𝑥𝑥𝑥𝑥 and 𝜎𝜎𝑥𝑥𝑦𝑦 vs. magnetic field at 4.2 K and their fit to the two 
band model with resulting parameters 𝑛𝑛𝑒𝑒 = 2.4×1019 cm-3, 𝑛𝑛ℎ = 2.3×1019  cm-3, 𝜇𝜇𝑒𝑒 = 5.1×105 cm2/Vs,  and 
𝜇𝜇ℎ = 2.7×105 cm2/Vs.  

Magnetotransport measurements 

For bulk transport measurements, crystals with elongated geometry were selected with typical dimensions 
of width 𝑊𝑊 = 250 to 350 µm, thickness 𝑑𝑑 = 22 to 240 µm, and distance between the voltage contacts 𝐿𝐿 = 
1 to 3.7 mm. Electrical contacts were made with conductive silver epoxy resin (EPO-TEK H20E) using 50 
µm diameter gold wire. The epoxy contacts were cured at 150 oC under continuous N2 flow. An optical 
image of a representative crystal with current and voltage contacts is shown in the inset of Extended Data 
Fig. 1b. The transport measurements (temperature and field dependence of resistivity) were carried out 
in a physical property measurement system (PPMS, Quantum Design) using a dc current of 1 to 5 mA for 
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bulk samples and an ac current of 100 nA at frequency of 𝑓𝑓 = 11.51 Hz for crystal flakes. Transverse and 
longitudinal voltages were symmetrized and anti-symmetrized with respect to the magnetic field.  

WTe2 is a nearly compensated semimetal with electron and hole pockets contributing to transport [70,72–
77]. We thus use a two-band conductivity model for the analysis of the magnetotransport: 

 𝜎𝜎𝑥𝑥𝑥𝑥(𝐵𝐵) = 𝑒𝑒 �
𝑛𝑛ℎ𝜇𝜇ℎ

1 + 𝜇𝜇ℎ2𝐵𝐵2
+

𝑛𝑛𝑒𝑒𝜇𝜇𝑒𝑒
1 + 𝜇𝜇𝑒𝑒2𝐵𝐵2

� , 𝜎𝜎𝑥𝑥𝑦𝑦(𝐵𝐵) = 𝑒𝑒 �
𝑛𝑛ℎ𝜇𝜇ℎ2𝐵𝐵

1 + 𝜇𝜇ℎ2𝐵𝐵2
−

𝑛𝑛𝑒𝑒𝜇𝜇𝑒𝑒2𝐵𝐵
1 + 𝜇𝜇𝑒𝑒2𝐵𝐵2

�,         

where 𝑒𝑒 and 𝐵𝐵 are the elementary charge and applied magnetic field, and 𝑛𝑛𝑒𝑒, 𝑛𝑛ℎ, 𝜇𝜇𝑒𝑒, and 𝜇𝜇ℎ are the 
electron and hole densities and mobilities, which are the fitting parameters.  

Extended Data Fig. 1a shows the resistivity 𝜌𝜌(𝑇𝑇) measurement of a crystal from our best quality batch. 
The attained 𝑅𝑅𝑅𝑅𝑅𝑅 ≅ 3,250 slightly exceeds the values of 𝑅𝑅𝑅𝑅𝑅𝑅 = 900 to 2500 reported in previous 
landmark studies [72–74,78]. Also, the magnetoresistance (MR) at 2 K (Extended Data Fig. 1b) shows an 
exceptionally high value of ~ 62,000 at 9 T, even exceeding the values of 𝑀𝑀𝑅𝑅 ≅ 42,000 in WP2 [79] and 
𝑀𝑀𝑅𝑅 ≅ 17,500 in WTe2 [73], measured at the same field. At 14 T, our WTe2 crystal attains 𝑀𝑀𝑅𝑅 ≅ 140,000. 
In Extended Data Fig. 1c, we compare the 𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑀𝑀𝑅𝑅 values in some of our crystals from different 
batches with previously reported values. By fitting the conductivity at low fields to the two-band model, 
we obtained the electron and hole concentrations and their mobilities shown in Extended Data Fig. 1d. We 
took the average electron mobility in our bulk samples to be 𝜇𝜇𝑒𝑒 ≅ 2.5 × 105 cm2/Vs at 4.2 K, from which 
we derived the electron momentum-relaxing mean free path 𝑙𝑙𝑚𝑚𝑚𝑚 = ℏ𝑘𝑘𝐹𝐹𝜇𝜇𝑒𝑒/𝑒𝑒 ≅ 20 µm (𝑘𝑘𝐹𝐹 = 1.22 nm-1 is 
the Fermi wavelength [74]). 

Transport measurements of our WTe2 flakes in Hall bar geometry with thickness 𝑑𝑑 ≅ 40 nm show typical 
conductivities of 𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒 ≅ 8×104 Ohm-1cm-1 at 4.2 K, which are significantly lower than the bulk 
conductivities, 𝜎𝜎𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 ≅ 3×106 Ohm-1cm-1, leading to estimated effective 𝑙𝑙𝑚𝑚𝑚𝑚 ≅ 530 nm in our flakes. 

SQUID-on-tip and magnetic imaging 

For the magnetic imaging measurements, Pb SOTs were fabricated with diameters ranging from 120 nm 
to 140 nm following the methods described in Ref. [13]. The SOTs were protected from oxidation by 
deposition of 3 to 5 nm thick Ti films below and on top of the Pb film. The SOTs included integrated shunt 
resistors on the tip [80] and had magnetic sensitivity of approximately 50 nT/Hz1/2 in applied magnetic field 
of 60 mT. The SOT readout was carried out using a cryogenic SQUID series array amplifier (SSAA)  [81–83]. 
For height control, the SOT was attached to a quartz tuning fork as described in Ref. [84]. 

Magnetic imaging was carried out at 4.5 K in 25 µbar residual He pressure in the chamber. For the 
measurements in Figs. 1 to 4, an ac current of 𝐼𝐼0 = 50 µA at frequency 𝑓𝑓 = 186.4 Hz was applied to the 
WTe2 or Au samples and the corresponding out-of-plane component of the Oersted field 𝐵𝐵𝑧𝑧(𝑥𝑥,𝑦𝑦) was 
measured by a lock-in amplifier at a constant height of 50 nm above the sample surface. For the scans in 
Fig. 5, the ac current was varied between 𝐼𝐼0 = 100 µA and 𝐼𝐼0 = 400 µA. The images were acquired with a 
pixel size of 13 nm, acquisition time of 40 ms/pixel, and image size of 430 × 305 pixels.  

Current density reconstruction 

For the reconstruction of the 2D current density 𝑱𝑱(𝑥𝑥,𝑦𝑦) from the measured 𝐵𝐵𝑧𝑧(𝑥𝑥,𝑦𝑦), we have used the 
inversion method described in detail in Ref. [66]. The procedure allows for correction of a small possible 
tilt of the SOT from the vertical axis and for its finite size, and takes into account the finite thickness 𝑑𝑑 of 
the sample.  

The inversion, however, is an ill posed problem and as such is prone to various artifacts, including high 
sensitivity to noise and fluctuations, boundaries of the imaging window, fields arising from sources outside 
the imaging window, ringing at sharp edges due to scanning height related low-pass filtering, and high 
sensitivity to the assumed height of the sensor. To stabilize the solution with respect to fluctuations, 
filtering and regularization methods are required [66,85]. As a result, the qualitative features of the 
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resulting 𝑱𝑱(𝑥𝑥,𝑦𝑦) are well reproduced; however, the precise quantitative details and the fine structure are 
less reliable. In the following, we detail the artifacts arising due to ringing and sensor height. 

For controlling the scanning height, the SOT is attached to a quartz tuning fork (TF) [84]. The TF is exited 
electrically at its resonance frequency ∼33 kHz and the shift in its phase is monitored as a function of height 
ℎ upon approaching the sample surface. A threshold of 1° phase shift is defined as the “poking” height, 
ℎ = 0. We then retract the SOT and scan at a nominal height of ℎ = 50 nm. We note that the actual 
effective height of the magnetic imaging should be larger due to the low phase shift threshold, possible 
surface residues, and the finite thickness of the Ti/Pb/Ti film of the SOT. In addition, the accuracy of the 
calibration of the vertical displacement of the piezoelectric scanner is limited.   

Extended Data Fig. 2 demonstrates the effect of the assumed effective sensor height ℎ on the current 
distribution reconstructed from the measured 𝐵𝐵𝑧𝑧(𝑥𝑥,𝑦𝑦) in the 𝜃𝜃 = 35∘ sample. It shows that the qualitative 
features of the current flow patterns, including the vortices in the chambers, are robust with respect to 
the assumed height in the range of ℎ = 20 to 150 nm. Inspection of 𝐽𝐽𝑦𝑦 shows, as expected, that low ℎ of 
20 and 50 nm results in some broadening of the derived current profiles (Extended Data Figs. 2g,h), 
whereas higher ℎ of 100 and 150 nm gives rise to enhanced ringing at the edges with negative current 
visible outside the sample edges (light blue in Extended Data Figs. 2i,j). This ringing is much less 
pronounced in the 𝐽𝐽𝑥𝑥 distribution in Extended Data Figs. 2b-d and is noticeable in Extended Data Fig. 2e 
predominantly near the chamber apertures. The ringing in 𝐽𝐽𝑥𝑥 is less significant because the value of 𝐽𝐽𝑥𝑥 in 
the strip and in the chambers is comparable and its absolute value is a much lower than 𝐽𝐽𝑦𝑦 in the strip. To 
minimize the ringing in 𝐽𝐽𝑦𝑦, we therefore use the nominal height ℎ = 50 nm for the current reconstruction 
in all of the figures in the main text. 

The ringing at the sharp edges, however, is an unavoidable feature of the low-pass filtering of the inversion 
procedure and is one of the limiting factors in determining quantitatively the accurate current profiles. 
This is exemplified by taking a uniform current density 𝐽𝐽𝑦𝑦 in an infinite strip of width 𝑊𝑊 = 550 nm and 
thickness 𝑑𝑑 = 48 nm (as expected in a Au strip). We then calculate numerically 𝐵𝐵𝑧𝑧(𝑥𝑥) at ℎ = 150 nm, and 
perform numerical inversion back to current. The resulting reconstructed 𝐽𝐽𝑦𝑦 (green dots in Extended Data 
Fig. 3a) deviates substantially from the original uniform current density (light green line). It shows ringing 
both inside and outside of the strip and finite slope at the edges. The ringing artifacts depend on the 
various parameters of the inversion procedure, including the pixel size, but they cannot be eliminated. 
Thus deriving precise current profiles from the measured magnetic field has always a limited accuracy. The 
black solid line in Extended Data Fig. 3a shows the current profile reconstructed from the experimentally 
measured 𝐵𝐵𝑧𝑧(𝑥𝑥) across the Au strip assuming effective height of 150 nm. It shows a qualitative agreement 
with the green dotted curve, consistent with a uniform current distribution in the ohmic regime in Au. 
Assuming a lower effective height results in visible broadening of 𝐽𝐽𝑦𝑦(𝑥𝑥), while higher effective ℎ causes 
large oscillations.  

In the strip geometry the current profile in the hydrodynamic regime is given by  

 𝐽𝐽𝑦𝑦(𝑥𝑥) = 𝐽𝐽0 �
1+(𝜉𝜉 𝐷𝐷⁄ ) tanh(𝑊𝑊 2𝐷𝐷⁄ ) −cosh(𝑥𝑥 𝐷𝐷⁄ ) cosh(𝑊𝑊 2𝐷𝐷⁄ )⁄

1+(𝜉𝜉 𝐷𝐷⁄ −2𝐷𝐷 𝑊𝑊⁄ ) tanh(𝑊𝑊 2𝐷𝐷⁄ ) �, (2) 

where 𝜉𝜉 is the slip length at the boundaries. For no slip conditions (𝜉𝜉 = 0), one obtains the familiar 
Poiseuille profile as shown by the light blue curve in Extended Data Fig. 3b. Even though the no-slip 
boundary conditions have been considered for the analysis of current profiles [7–10], it has been argued 
that they are not physical in electron fluids, and that 𝜉𝜉 of the order of 𝑙𝑙𝑒𝑒𝑒𝑒 should be expected even in the 
case of fully diffuse boundaries [67]. From the analysis of vortex intensity in Fig. 3, we conclude 𝜉𝜉 = 200 
nm or larger in our samples. In this regime, the hydrodynamic current profiles in the strip geometry are 
almost indistinguishable from the ballistic profiles given by 

𝐽𝐽𝑦𝑦(𝑥𝑥) = 𝐽𝐽0
𝜋𝜋 ∫ 𝑑𝑑𝜃𝜃𝜋𝜋

−𝜋𝜋 cos2 𝜃𝜃 �1− (1 − 𝑟𝑟) cosh(csc𝜃𝜃[𝑊𝑊−2𝑥𝑥sgn(𝜃𝜃)] 2𝑓𝑓𝑚𝑚𝑚𝑚⁄ )+sinh(csc𝜃𝜃[𝑊𝑊−2𝑥𝑥sgn(𝜃𝜃)] 2𝑓𝑓𝑚𝑚𝑚𝑚⁄ )
−𝑚𝑚+cosh(𝑊𝑊⋅csc|𝜃𝜃| 𝑓𝑓𝑚𝑚𝑚𝑚⁄ )+sinh(𝑊𝑊⋅csc|𝜃𝜃| 𝑓𝑓𝑚𝑚𝑚𝑚⁄ )  �, (3) 
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where 0 < 𝑟𝑟 < 1 is the reflectivity coefficient, with 𝑟𝑟 = 0 corresponding to fully diffuse boundaries and 
𝑟𝑟 = 1 describing specular boundaries. Extended Data Figs. 3e-g compare the ballistic profiles for 𝑟𝑟 = 0, 
0.5, and 1 (red) with the hydrodynamic case with 𝜉𝜉 = 200 nm (blue). These results show that in a strip 
geometry, the difference between these cases based on the reconstructed 𝐽𝐽𝑦𝑦(𝑥𝑥) (blue and red dots) is 
small and experimentally insignificant. In contrast, in the chamber geometry, the vortex stability differs 
greatly between ballistic and hydrodynamic cases and is hardly affected by the boundary conditions, as 
shown in Fig. 3. 

Extended Data Fig. 2. Dependence of the reconstructed current densities on the assumed SOT scanning 
height. a, Numerical simulation of 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) normalized by the average current density 𝐼𝐼0/𝑊𝑊 in the strip in 
𝜃𝜃 = 35∘ sample for 𝐷𝐷/𝑊𝑊 = 0.28 and 𝜉𝜉 = 200 nm. The span of the color scale is ±0.05. b-e, Current 
densities 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) reconstructed from the inversion of the measured 𝐵𝐵𝑧𝑧(𝑥𝑥,𝑦𝑦) in WTe2 sample A with 𝜃𝜃 =
35∘ assuming effective SOT scanning heights of ℎ = 20 nm (b), 50 nm (c), 100 nm (d) and 150 nm (e). The 
nominal scanning height was 50 nm. The span of the color scale is ±0.05. f-j, Same as a-e, but for 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) 
on color scale of ±1. k-o, Same as f-j, but on expanded color scale of ±0.05. The 𝐽𝐽𝑦𝑦 vortex counterflow 
current (light blue) is resolved in the chambers on a large artificial ringing background outside the strip 
edges. 

Taking the above limitations into account, we now inspect 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) more carefully within the chambers. 
Extended Data Fig. 2k shows the calculated 𝐽𝐽𝑦𝑦 with color scale expanded 20 times, such that the color of 
the laminar current in the strip (red) is strongly saturated. On this expanded scale, the 𝐽𝐽𝑦𝑦 counterflow 
becomes visible (light blue). Note that the density of the vortex current counterflow both in 𝐽𝐽𝑥𝑥 and 𝐽𝐽𝑦𝑦 is 
only about 1% of the laminar current density in the strip as seen in Extended Data Figs. 2a,k. By expanding 
the color scale of the experimental 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) in Extended Data Figs. 2l-o by the same factor of 20, the 
counterflow in 𝐽𝐽𝑦𝑦 (light blue) becomes visible. On this expanded scale the ringing in 𝐽𝐽𝑦𝑦 is very pronounced 
even for ℎ = 20 nm and grows significantly with ℎ, but the enhanced light blue signal of 𝐽𝐽𝑦𝑦 in the far side 
of the chambers is resolved at all values of ℎ and shows little dependence on ℎ. Note that the experimental 
𝐽𝐽𝑥𝑥 in Extended Data Figs. 2b-e is presented on the same color scale as 𝐽𝐽𝑦𝑦 in Extended Data Figs. 2l-o, 
demonstrating that the magnitude of the backflow in 𝐽𝐽𝑦𝑦 matches the scale of 𝐽𝐽𝑥𝑥 in the chambers, providing 
an independent confirmation for the observation of a vortex. Since the ringing problem in 𝐽𝐽𝑥𝑥 is much less 
pronounced, the counterflow of the vortex current is readily resolved in 𝐽𝐽𝑥𝑥 despite being only about 1% of 
the driving current density.  
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Extended Data Fig. 3. Current profiles in narrow Au and WTe2 strips. a, A uniform current density 𝐽𝐽𝑦𝑦(𝑥𝑥)  
in 𝑊𝑊 = 550 nm strip (light green line) from which 𝐵𝐵𝑧𝑧(𝑥𝑥) is computed at a height ℎ = 150 nm. The 𝐽𝐽𝑦𝑦(𝑥𝑥)   
(green dotted symbols) is then reconstructed by inversion of the calculated 𝐵𝐵𝑧𝑧(𝑥𝑥), showing the 
unavoidable distortions and ringing. The 𝐽𝐽𝑦𝑦(𝑥𝑥) reconstructed from the experimental 𝐵𝐵𝑧𝑧(𝑥𝑥) in the Au strip 
(black line) shows consistency with a uniform current distribution in the ohmic regime. b, Same as (a) for 
a Poiseuille current profile (light blue) with 𝐷𝐷/𝑊𝑊 = 0.28 and no-slip boundary conditions. The 
reconstructed 𝐽𝐽𝑦𝑦(𝑥𝑥) from the experimentally measured 𝐵𝐵𝑧𝑧(𝑥𝑥) in WTe2 strip (black) is inconsistent with the 
theoretically reconstructed 𝐽𝐽𝑦𝑦(𝑥𝑥) (dotted blue) from 𝐵𝐵𝑧𝑧(𝑥𝑥) corresponding to the Poiseuille profile. c, Same 
as (b) for hydrodynamic flow with 𝐷𝐷/𝑊𝑊 = 0.28 and slip length 𝜉𝜉 = 200 nm (light blue) showing good 
correspondence between the theoretically reconstructed 𝐽𝐽𝑦𝑦(𝑥𝑥) (dotted blue) and the experimentally 
derived 𝐽𝐽𝑦𝑦(𝑥𝑥) (black) in accord with the conclusions in the main text. d, Same as (b) for hydrodynamic flow 
with 𝐷𝐷/𝑊𝑊 = 0.28 and no-stress boundary conditions (light blue). The reconstructed theoretical 𝐽𝐽𝑦𝑦(𝑥𝑥) 
(dotted blue) underestimates the experimentally derived 𝐽𝐽𝑦𝑦(𝑥𝑥) (black) supporting the conclusion of a finite 
slip length. e-g, Comparison between theoretically calculated current profiles in the hydrodynamic regime 
with 𝜉𝜉 = 200 nm (light blue line) and in the ballistic flow (light red line) with boundary reflectivity 
coefficients of 𝑟𝑟 = 0 (fully diffuse) (e), 𝑟𝑟 = 0.5 (f), and 𝑟𝑟 = 1 (specular) (g). The solid lines show 𝐽𝐽𝑦𝑦(𝑥𝑥) 
calculated from Eqs. 2 and 3 while the dotted lines are the current profiles reconstructed from the 
calculated corresponding 𝐵𝐵𝑧𝑧(𝑥𝑥). These results demonstrate the difficulty in using reconstructed current 
profiles in strip geometry for distinguishing between the hydrodynamic flow with finite slip length and the 
ballistic transport, in contrast to vastly different vortex stability phase diagrams in these two regimes.  

COMSOL numerical simulations 

The 2D finite-element numerical simulation of an ohmic electron flow and of transport described by Eq. 1 
for the ohmic, ballistic and hydrodynamic regimes, as discussed in the main text, were carried out using 
COMSOL Multiphysics 5.4. We used the Coefficients Form PDE module, which solves the general equation: 

 𝑒𝑒𝑓𝑓
𝜕𝜕2𝒖𝒖
𝜕𝜕𝑡𝑡2

+ 𝑑𝑑𝑓𝑓
𝜕𝜕𝒖𝒖
𝜕𝜕𝑡𝑡

+ ∇ ⋅ (−𝑐𝑐∇𝒖𝒖 − 𝛼𝛼𝒖𝒖 + 𝛾𝛾) + 𝛽𝛽 ⋅ ∇𝒖𝒖 + 𝑎𝑎𝒖𝒖 = 𝑓𝑓,  

where the field 𝒖𝒖 is: 
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 𝒖𝒖 = �
𝜙𝜙
𝐽𝐽𝑥𝑥
𝐽𝐽𝑦𝑦
�,  

and the coefficients were chosen to match Eq. 1: 

where 𝐷𝐷 is the Gurzhi length, 𝜎𝜎 is the conductivity, and the source and drain are simulated by Dirichlet 
boundary conditions on the potential 𝜙𝜙. The resulting current density field 𝑱𝑱(𝑥𝑥,𝑦𝑦) was normalized by the 
average current density 𝐽𝐽0 = ∫ 𝐽𝐽𝑦𝑦(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑥𝑥𝑊𝑊 𝑊𝑊⁄  in the strip. A complete description of the problem is given 
by employing boundary conditions. The boundary conditions for the perpendicular current were  𝑱𝑱⊥ = 𝑱𝑱 ⋅
𝑛𝑛� = 0 in all simulations. For the tangential current, 𝑱𝑱∥ = (𝑱𝑱 − 𝑱𝑱⊥ ⋅ 𝑛𝑛�), we have used the three types of 
boundary conditions described in the main text: (i) no slip, 𝑱𝑱∥ =  0, (ii) no stress, 𝑛𝑛� ⋅ ∇𝑱𝑱∥ = 0, and (iii) a 
finite slip length, 𝑱𝑱∥ = 𝜉𝜉𝑛𝑛� ⋅ ∇𝑱𝑱∥. The dimensions of the simulated devices were chosen to be equal to those 
of our samples, with the width of the central strip 𝑊𝑊 = 550 nm in the dual chamber geometry and the 
disk radius of the chambers of 𝑅𝑅 = 900 nm. 

For derivation of the vortex stability phase diagram, a geometry depicted in Fig. 3 was used, with variable 
𝐷𝐷 and 𝜃𝜃. The vortex current 𝐼𝐼𝑣𝑣 for each simulated geometry and 𝐷𝐷 was calculated according to  

 𝐼𝐼𝑣𝑣(𝐷𝐷,𝜃𝜃) = 1
4 ∫�|𝐽𝐽𝑦𝑦(𝑥𝑥, 0)| − 𝐽𝐽0�𝑓𝑓 d𝑥𝑥,  

where the integral was carried out along the cross-section through the central horizontal line connecting 
the centers of the disk chambers. For 𝐷𝐷 𝑊𝑊⁄ > 1, the maximum of 𝐼𝐼𝑣𝑣 occurs at 𝜃𝜃 = 60° when the aperture 
and the radius of the disk chambers form an equilateral triangle. An equilateral triangle in the context of 
hydrodynamic flow was also reported in Ref. [23]. Upon 𝐷𝐷 𝑊𝑊⁄  decreasing, the maximum point of 𝐼𝐼𝑣𝑣 shifts 
to lower 𝜃𝜃. 

Supplementary Videos 1 and 2 show the evolution of the streamlines upon decreasing 𝜃𝜃 in the 
hydrodynamic and ballistic regimes, respectively. As 𝜃𝜃 increases, on approaching the vortex-to-laminar 
transition, the laminar streamlines (red) penetrate deeper into the chambers causing distortion of the 
vortex into a banana shape. In the ballistic case the vortex (blue streamlines) is pushed out of the chamber 
as a whole, while in the hydrodynamic regime it splits into two vortices at the top and bottom of the 
chambers. This enhanced stability of the two-vortex solution in the hydrodynamic regime is well captured 
by the analytical estimates presented in the theory section below. 

Theory 

Angular scattering, diffusion along the Fermi surface and para-hydrodynamics 

This section aims to provide a microscopic justification of Eq. 1 which is used as a benchmark model in the 
main text. We consider a Fermi gas in two dimensions with a cylindrically symmetric dispersion and a 
circular Fermi surface. Transport in the system weakly perturbed away from equilibrium is described by a 
steady-state carrier distribution of the form 𝑓𝑓̅(𝑝𝑝, 𝑟𝑟) = 𝑓𝑓̅ + 𝛿𝛿𝑓𝑓(𝑟𝑟,𝜑𝜑), with 𝑓𝑓 ̅ being the equilibrium 
distribution and 𝛿𝛿𝑓𝑓(𝑟𝑟,𝜑𝜑) a perturbation, where 𝜑𝜑 is the angle on the Fermi surface, 𝑝𝑝 is electron 
momentum and 𝑟𝑟 = (𝑥𝑥,𝑦𝑦). The steady-state distribution satisfies the linearized kinetic equation: 

 𝑣𝑣𝐹𝐹 cos𝜑𝜑
𝜕𝜕𝛿𝛿𝑓𝑓
𝜕𝜕𝑥𝑥

+ 𝑣𝑣𝐹𝐹 sin𝜑𝜑
𝜕𝜕𝛿𝛿𝑓𝑓
𝜕𝜕𝑦𝑦

− 𝐼𝐼𝛿𝛿𝑓𝑓 = −𝐅𝐅 ∙ ∇𝑝𝑝𝑓𝑓 ̅ (4) 

 𝑒𝑒𝑓𝑓 = 𝑑𝑑𝑓𝑓 = 𝛼𝛼 = 𝛾𝛾 = 𝑓𝑓 = 0,  

 𝑐𝑐 = �
0 0 0
0 𝐷𝐷2 0
0 0 𝐷𝐷2

�,      𝑎𝑎 = �
0 0 0
0 1 0
0 0 1

�,      𝛽𝛽 =

⎝

⎜⎜
⎛
�0

0� �1
0� �0

1�

�𝜎𝜎0� �0
0� �0

0�

�0
𝜎𝜎� �0

0� �0
0�⎠

⎟⎟
⎞

,  
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Here 𝐼𝐼 is the linearized collision operator of the elastic scattering and 𝐅𝐅 is an external force. Equation 4 is 
valid for a collision operator of a general form; below, we apply it to describe scattering at the sample 
upper and lower surfaces, the process discussed in the main text. Following [59], we expand our 
perturbation over angular harmonics: 

 𝛿𝛿𝑓𝑓(𝑦𝑦,𝜑𝜑) = �
𝑑𝑑2𝑘𝑘

(2𝜋𝜋)2
� 𝑓𝑓𝑚𝑚(𝑘𝑘)𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚+𝑖𝑖𝒌𝒌𝒌𝒌

𝑚𝑚=∞

𝑚𝑚=−∞
. 

Statistical isotropy of scattering means that the angular harmonics are eigenfunctions of the scattering 
operator: 𝐼𝐼𝑓𝑓𝑚𝑚 = −𝛾𝛾𝑚𝑚𝑓𝑓𝑚𝑚. Because of the cos𝜑𝜑 and sin𝜑𝜑 structure of the streaming term in Eq. 4, the 
harmonics 𝑓𝑓𝑚𝑚(𝑘𝑘) satisfy a tridiagonal system of linear equations. The contribution generated by the 𝑚𝑚-th 
harmonic of the right-hand side of Eq. 4 (denoted 𝐵𝐵𝑚𝑚) satisfies the equation: 

 𝛾𝛾𝑚𝑚𝑓𝑓𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑓𝑓𝑚𝑚+1 + 𝑖𝑖�̅�𝑖𝑓𝑓𝑚𝑚+1 = 𝐵𝐵𝑚𝑚,  (5) 

where  𝑖𝑖 = (𝑘𝑘𝑥𝑥 − 𝑖𝑖𝑘𝑘𝑦𝑦)𝑣𝑣𝐹𝐹/2. Following [59], we solve Eq. 5 for the ratios 𝛼𝛼𝑚𝑚 = 𝑖𝑖𝑓𝑓𝑚𝑚+1/𝑓𝑓𝑚𝑚, which for 𝑛𝑛 ≠
𝑚𝑚 satisfy the recursive relation  

𝛼𝛼𝑛𝑛−1 =
�̅�𝑖

𝛾𝛾𝑛𝑛 + 𝑖𝑖𝛼𝛼𝑛𝑛−1
 . 

The solution of this problem is given in a closed form as a continued fraction 

𝛼𝛼𝑛𝑛−1 =
�̅�𝑖

𝛾𝛾𝑛𝑛 + |𝑖𝑖|2

𝛾𝛾𝑛𝑛+1 + |𝑖𝑖|2
𝛾𝛾𝑛𝑛+2 +⋯

 

Similarly for 𝛽𝛽𝑚𝑚 = 𝑖𝑖𝑓𝑓𝑚𝑚−1/𝑓𝑓𝑚𝑚 we obtain the fraction running down: 

𝛽𝛽𝑛𝑛+1 =
�̅�𝑖

𝛾𝛾𝑛𝑛 + |𝑖𝑖|2

𝛾𝛾𝑛𝑛−1 + |𝑖𝑖|2
𝛾𝛾𝑛𝑛−2 +⋯

 . 

Substituting into Eq. 5 yields a contribution to the 𝑚𝑚-th harmonic of perturbed distribution as follows: 

 
𝑓𝑓𝑚𝑚 =

𝐵𝐵𝑚𝑚

𝛾𝛾𝑚𝑚 + (𝑘𝑘𝑣𝑣𝐹𝐹/2)2

𝛾𝛾𝑚𝑚−1 + (𝑘𝑘𝑣𝑣𝐹𝐹/2)2
𝛾𝛾𝑚𝑚−2 + ⋯

+ (𝑘𝑘𝑣𝑣𝐹𝐹/2)2

𝛾𝛾𝑚𝑚+1 + (𝑘𝑘𝑣𝑣𝐹𝐹/2)2
𝛾𝛾𝑚𝑚+2 +⋯

 . 
(6) 

Considering long-wavelength limit, we retain only the terms up to quadratic in wavenumber, which gives 
dissipation and diffusion terms: 

�𝛾𝛾𝑚𝑚 +
(𝑘𝑘𝑣𝑣𝐹𝐹)2

4𝛾𝛾𝑚𝑚−1
+

(𝑘𝑘𝑣𝑣𝐹𝐹)2

4𝛾𝛾𝑚𝑚+1
�𝑓𝑓𝑚𝑚 = 𝐵𝐵𝑚𝑚. 

For 𝑚𝑚 = 0, one usually has  𝛾𝛾0 = 0 due to charge conservation, so that we have pure diffusion. For a locally 
homogeneous electric field we have 

𝑣𝑣𝐹𝐹 cos𝜑𝜑
𝜕𝜕𝛿𝛿𝑓𝑓
𝜕𝜕𝑦𝑦

+ 𝑣𝑣𝐹𝐹 sin𝜑𝜑
𝜕𝜕𝛿𝛿𝑓𝑓
𝜕𝜕𝑥𝑥

− 𝐼𝐼𝛿𝛿𝑓𝑓 = −𝑒𝑒
𝜕𝜕𝑓𝑓̅
𝜕𝜕𝜖𝜖

�𝑣𝑣𝐹𝐹 cos𝜑𝜑
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦

+ 𝑣𝑣𝐹𝐹 sin𝜑𝜑
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥
�    

𝛾𝛾𝑚𝑚𝑓𝑓𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑓𝑓𝑚𝑚+1 + 𝚤𝚤𝑖𝑖���𝑓𝑓𝑚𝑚+1 = 𝐵𝐵𝛿𝛿𝑚𝑚,1 + 𝐵𝐵�𝛿𝛿𝑚𝑚,−1.     

Here, 2𝐵𝐵 = 𝑒𝑒(𝐸𝐸𝑥𝑥 + 𝑖𝑖𝐸𝐸𝑦𝑦)𝑣𝑣𝐹𝐹𝜕𝜕𝑓𝑓̅/𝜕𝜕𝜖𝜖, where 𝜖𝜖 is electron energy. In this case, Eq. 6 is the current-field 
relation with a nonlocal conductivity: 

 𝑱𝑱𝒌𝒌 = 𝜎𝜎(𝑘𝑘)𝑬𝑬𝒌𝒌,  (7) 
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 𝜎𝜎(𝑘𝑘) =
𝑛𝑛𝑒𝑒2/𝑚𝑚
𝛾𝛾1 + 𝛤𝛤(𝑘𝑘)

, 𝛤𝛤(𝑘𝑘) =
(𝑘𝑘𝑣𝑣𝐹𝐹/2)2

𝛾𝛾2 + (𝑘𝑘𝑣𝑣𝐹𝐹/2)2
𝛾𝛾3 + ⋯

 . (8) 

In the long-wavelength limit set by the 𝑚𝑚 = 3 harmonic decay rate, such that (𝑘𝑘𝑣𝑣𝐹𝐹)2 < 4𝛾𝛾2𝛾𝛾3, Eqs. 7 and 
8 give 

 
(𝑘𝑘𝑣𝑣𝐹𝐹)2

4𝛾𝛾1𝛾𝛾2
𝑱𝑱𝒌𝒌+𝑱𝑱𝒌𝒌 = −𝜎𝜎𝑬𝑬𝒌𝒌.  (9) 

After applying a Fourier transform, we recover Eq. 1 from the main text with 𝐷𝐷 = 𝑣𝑣𝐹𝐹/�4𝛾𝛾1𝛾𝛾2: 

 −𝐷𝐷2∇2𝑱𝑱+ 𝑱𝑱 = −𝜎𝜎∇𝜙𝜙. (10) 

Notably, this equation is applicable not only in the hydrodynamic and ohmic regimes but also in the ballistic 
regime. This behavior is unique to the situation when 𝛾𝛾3 ≫ 𝛾𝛾2, since in this case the condition for the 
length scales (𝑘𝑘𝑣𝑣𝐹𝐹)2 < 4𝛾𝛾2𝛾𝛾3 used to derive Eq. 10 is valid in both the hydrodynamic and ballistic regimes. 
This is in contrast to the conventional electron fluids, where Eq. 10 is valid only in the hydrodynamic and 
ohmic regimes, but not in the ballistic regime. The extended validity range of Eq. 10 is a salient feature due 
to small-angle scattering.  

The relation between our interpretation of the observed hydrodynamic behavior in terms of Eq. 10 and 
the assumption that the rates 𝛾𝛾1, 𝛾𝛾2, 𝛾𝛾3 … are determined by the small-angle scattering on sample surfaces 
can be further substantiated as follows. The requirement for Eq. 10 to hold is 𝛾𝛾3 ≫ 𝛾𝛾2 ≫ 𝛾𝛾1. This condition 
can be approximately fulfilled for small-angle scattering that leads to angular diffusion. Indeed, in this case 

we have 𝐼𝐼 ≈ 𝛾𝛾 𝜕𝜕2

𝜕𝜕𝑚𝑚2
, and therefore 𝛾𝛾𝑚𝑚 = 𝛾𝛾1𝑚𝑚2. The condition for the long-wavelength limit is then 𝑘𝑘𝑣𝑣𝐹𝐹 <

�4𝛾𝛾2𝛾𝛾3 = 12𝛾𝛾1. In terms of the effective momentum-relaxation length 𝑙𝑙𝑚𝑚𝑚𝑚 = 𝑣𝑣𝐹𝐹/𝛾𝛾1, the condition takes 
the form 𝑘𝑘𝑙𝑙𝑚𝑚𝑚𝑚 < 12, which is not too restrictive. Indeed, if we put 𝑘𝑘 ≅ 1/𝑊𝑊, the Eq. 10 with 𝐷𝐷 = 𝑙𝑙𝑚𝑚𝑚𝑚/4 
is expected to work reasonably well for 𝑙𝑙𝑚𝑚𝑚𝑚 < 12𝑊𝑊, a regime well satisfied for our parameters. In contrast, 
for large-angle scattering, the decay rates for different harmonics take similar values, 𝛾𝛾3 ≅ 𝛾𝛾2 ≅ 𝛾𝛾1. In this 
case, depending on the size of (𝑘𝑘𝑣𝑣𝐹𝐹)2, Eq. 8 can only be truncated at zeroth order or never, thus precluding 
a regime where Eq. 10 holds. 

Hydrodynamic vs. ballistic vortex formation: general considerations and scaling analysis 

The discussion in this section provides qualitative arguments in support of the hydrodynamic origin of the 
observed vortices, as suggested by our simulation results. In a system of size 𝑊𝑊, the flow pattern depends 
on two dimensionless parameters, 𝑙𝑙𝑒𝑒𝑒𝑒/𝑊𝑊 and 𝑙𝑙𝑚𝑚𝑚𝑚/𝑊𝑊. The hydrodynamic regime occurs when 𝑙𝑙𝑒𝑒𝑒𝑒 𝑊𝑊⁄ → 0 
and 𝑙𝑙𝑚𝑚𝑚𝑚/𝑊𝑊 → ∞, whereas the ballistic regime corresponds to 𝑙𝑙𝑒𝑒𝑒𝑒/𝑊𝑊 → ∞ and 𝑙𝑙𝑚𝑚𝑚𝑚/𝑊𝑊 → ∞, and the 
ohmic regime takes place when both 𝐷𝐷/𝑊𝑊 → 0 and 𝑙𝑙𝑚𝑚𝑚𝑚/𝑊𝑊 → 0. To gain insight into the character of the 
flow patterns in all three limits we consider the dissipation in the flow: ∫𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦�𝜎𝜎|𝐽𝐽|2 + ∑ (𝜎𝜎𝑖𝑖𝑖𝑖)2/2𝜂𝜂𝑖𝑖𝑖𝑖 �. 
Here, the first term is the ohmic dissipation, while the second term is the viscous dissipation, determined 
by the stress 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜂𝜂�𝜕𝜕𝑣𝑣𝑖𝑖 𝜕𝜕𝑥𝑥𝑖𝑖 + 𝜕𝜕𝑣𝑣𝑖𝑖 𝜕𝜕𝑥𝑥𝑖𝑖⁄⁄ �. The physical flow can be obtained by minimizing this 
dissipation functional supplemented with suitable boundary conditions, a procedure known as the 
principle of minimum entropy production.  

The flow in the ohmic limit tends to minimize the current density everywhere, while the ballistic limit tends 
to minimize stress globally. Finally, the hydrodynamic limit minimizes stress locally, but not globally 
(Extended Data Fig. 4). As discussed below, the vortex stability phase boundary and the crossovers 
between different regimes can be obtained directly from the analysis based on the principle of minimum 
entropy production.  

 



25 
 

Extended Data Fig. 4. Schematic streamlines for purely ohmic, hydrodynamic and ballistic flow. a, If the 
sample is purely ohmic, the current leaks into the chamber, forming a current dipole decaying as inverse 
distance squared. b, For a purely hydrodynamic flow, no laminar current (red) leaks from the strip into the 
chamber. Instead, a vortex forms in the vicinity of the aperture in the chamber (blue) in order to decrease 
the shear due to the gradient in the velocity profile. c, In a purely ballistic flow, only the geometry dictates 
the streamlines, producing a vortex (blue) whose center is positioned near the chamber center.  

Hydrodynamic-to-ohmic and ballistic-to-ohmic crossovers 

Since there is no vortex in the ohmic regime, the transition to this regime (upon a decrease in 𝑙𝑙𝑚𝑚𝑚𝑚, for 
instance) from either hydrodynamic or ballistic flow can be understood as a weakening of the vortex in the 
chamber. As vortex weakens, the laminar current 𝑗𝑗𝑓𝑓 from the strip is expected to penetrate deeper and 
deeper into the chamber. As a result, the laminar streamlines superimpose onto the vortex streamlines in 
panels (b) or (c) in Extended Data Fig. 4. In the core of the ballistic or hydrodynamic vortex, the 
superimposed laminar flow points in the direction of the strip flow, which means that the combined flow 
pattern in the presence of a small laminar component has its vortex center (where the current vanishes) 
displaced further away from the aperture compared to the purely ballistic or hydrodynamic case.  

In the following analysis, we consider three components that comprise the total current density: laminar 
current 𝑗𝑗𝑓𝑓, hydrodynamic current 𝑗𝑗ℎ𝑦𝑦𝑦𝑦, and ballistic current  𝑗𝑗𝑏𝑏𝑓𝑓𝑓𝑓. The aperture presents a small dipolar 
source and sink of the laminar component of the current, which leaks from the strip into in the chamber. 
Along the chamber boundary and as a function of the distance 𝛿𝛿 from the aperture, the density of the 
laminar component thus decays as 𝑗𝑗𝑓𝑓~1/𝛿𝛿2 (for 𝑙𝑙𝑚𝑚𝑚𝑚 > 𝑊𝑊). In contrast, the vortical components (blue in 
Extended Data Fig. 4) do not flow into or out of the strip, but circulate entirely within the chamber. The 
ballistic vortex is almost rotationally symmetric and is positioned close to the center of the chamber. As a 
result, its density along the chamber boundaries is almost constant, 𝑗𝑗𝑏𝑏𝑓𝑓𝑓𝑓~𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡. The hydrodynamic vortex, 
in contrast, forms directly outside the aperture, producing a flow that decays as 𝑗𝑗ℎ𝑦𝑦𝑦𝑦~1/𝛿𝛿 far outside the 
vortex core. Thus, if the laminar flow is strong enough to push the vortex core out to the far side of the 
chamber, it inevitably overpowers the flow in the upper and lower segments of the chamber, meaning 
that no vortical flow remains in either the hydrodynamic or the ballistic case. However, for hydrodynamic 
flow, the streamlines are not uniquely fixed by the geometry, and more than one vortex might form. This 
is indeed the case, as we demonstrate next: in the hydrodynamic regime, vortical flow can be stabilized by 
creating two vortex cores even if the single, large vortex is annihilated. In contrast, ballistic flow cannot 
form two vortex cores next to each other, because ballistic trajectories intersect each other without any 
effect, which means that the vortex cores do not repel each other, and instead merge into a single large 
vortex. 

Principal components of hydrodynamic flow  

To illustrate the basic physics behind the appearance and disappearance of vortices in the chamber, we 
develop a simple model which allows us to estimate dissipation and choose a state that minimizes it. We 
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want to model the vortex that forms when current in a strip of width 𝑊𝑊 leaks into a large chamber or open 
space through an aperture in the strip wall at 𝑥𝑥 = 0 of size ∆= 2𝑅𝑅 sin(𝜃𝜃/2), where 𝑅𝑅 is the chamber 
radius. The relevant current densities are 𝑗𝑗𝑐𝑐 in the strip, 𝑗𝑗𝑣𝑣 of the vortex, and 𝑗𝑗𝑓𝑓 the laminar current in the 
open space. These current densities are taken to be additive, where the relative amplitudes are 
determined by the requirement that the resulting flow minimizes the dissipation.  

First we consider laminar flow, which can be modelled as a dipole describing current that flows out into 
the 𝑥𝑥 > 0 half-plane in the interval −∆

2
< 𝑦𝑦 < 0  and returns in the interval 0 < 𝑦𝑦 < ∆/2. For 

concreteness, we take the profile of the outflow through the aperture to be parabolic of the 
form ~𝑦𝑦(|𝑦𝑦| − ∆/2), with the 𝑦𝑦 dependence sign-changing with a zero net current. For weak ohmic 
dissipation, a laminar ballistic flow in a half plane injected through an aperture with such a profile yields 

 𝒋𝒋𝒍𝒍(𝑥𝑥,𝑦𝑦) = 𝑗𝑗𝑓𝑓0 � 𝑑𝑑𝑦𝑦′
𝑦𝑦′(|𝑦𝑦′| − ∆/2)
(𝑦𝑦 − 𝑦𝑦′)2 + 𝑥𝑥2

�
𝑥𝑥

𝑦𝑦 − 𝑦𝑦′�
∆/2

−∆/2
, (11) 

with the 𝑥𝑥 component odd in 𝑦𝑦 and the 𝑦𝑦 component even in 𝑦𝑦. This is a dipole source, and the integral 

can be done analytically. Expanding in large 𝑥𝑥 for 𝑦𝑦 = 0 yields |𝒋𝒋𝒍𝒍(𝑥𝑥, 0)| = 𝑖𝑖𝑙𝑙0∆4

6𝑥𝑥2
, meaning that the current 

decays inversely with distance squared at large distances from the aperture, as expected. 

Next we consider a vortex positioned inside the chamber in proximity to the aperture. We assume that it 
has the shape of a Kaufmann vortex, with current density in polar coordinates given by 𝒋𝒋𝒗𝒗(𝑟𝑟,𝜑𝜑) =
𝑗𝑗𝑣𝑣0 𝑟𝑟𝑅𝑅𝑐𝑐/(𝑟𝑟2 + 𝑅𝑅𝑐𝑐2)𝒆𝒆�𝑚𝑚. Here, 𝑅𝑅𝑐𝑐 is the size of the vortex core, and 𝑗𝑗𝑓𝑓0 and 𝑗𝑗𝑣𝑣0 measure the strength of the 
laminar and vortical flows, respectively. We assume that the vortex is located at 𝑥𝑥 = 𝑑𝑑𝑣𝑣, and account for 
the boundary conditions close to the walls by adding a counter-rotating image vortex centered around 
𝑥𝑥 = −𝑑𝑑𝑣𝑣. We further impose a condition that the total current 𝐼𝐼0 is conserved in any cross-section with a 
fixed 𝑦𝑦, which leads to the condition that in the presence of the laminar outflow into the half-space, the 
current in the strip at 𝑦𝑦 = 0 becomes 𝐼𝐼0 − 𝑐𝑐𝑐𝑐𝜌𝜌𝑗𝑗𝑓𝑓∆, where 𝑐𝑐𝑐𝑐𝜌𝜌 is a dimensionless geometrical factor.  

Turning to the discussion of dissipation, we note that the decreased current density in the strip also 
reduces viscous dissipation, which we account for by subtracting the current densities from both the 
laminar current and the vortical flow. The current profile across the strip is parabolic if 𝐷𝐷~𝑊𝑊. However, in 
the hydrodynamic limit when 𝐷𝐷 ≪ 𝑊𝑊, the current profile becomes very flat and the viscous dissipation is 
only relevant in a small boundary region. In this latter case, the term for the viscous dissipation acquires 
an additional factor of 𝐷𝐷 in the denominator. We therefore write an approximate expression for the total 
dissipation in our system area which is affected by the chamber (i.e. for the chamber itself and for the strip 
section between −∆/2 and ∆/2), in which we treat the laminar and vortical flows as additive contributions. 
This gives 

 𝑃𝑃(𝒋𝒋𝒍𝒍, 𝒋𝒋𝒗𝒗,𝑅𝑅𝑐𝑐) = 𝑃𝑃𝜌𝜌,𝑊𝑊 + 𝑃𝑃𝑣𝑣,𝑊𝑊 + 𝑃𝑃𝜌𝜌,𝑅𝑅 + 𝑃𝑃𝑣𝑣,𝑅𝑅 + 𝑃𝑃𝜌𝜌,𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑦𝑦 + 𝑃𝑃𝑣𝑣,𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑦𝑦. (12) 

Here, ohmic dissipation 𝑃𝑃𝜌𝜌 = 𝑃𝑃𝜌𝜌,𝑊𝑊 + 𝑃𝑃𝜌𝜌,𝑅𝑅 + 𝑃𝑃𝜌𝜌,𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑦𝑦 measures the local current density squared, 
integrated over the system area, while the viscous dissipation  𝑃𝑃𝑣𝑣 = 𝑃𝑃𝑣𝑣,𝑊𝑊 + 𝑃𝑃𝑣𝑣,𝑅𝑅 + 𝑃𝑃𝑣𝑣,𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑦𝑦 measures the 
square of the current density gradients. For the central strip, the effective area is 𝑊𝑊∆ for current in the 
strip, while it is ∆2 for the laminar flow that penetrates from the strip into the chamber, and 𝑅𝑅𝑐𝑐2 for the 
vortical flow. For the viscous dissipation, we note that the gradients are usually smooth and essentially 
cancel the area integral. Only in the strip, for small 𝐷𝐷 ≪ 𝑊𝑊, this is not true and the current density 
gradients are restricted to a narrow boundary region of size 𝐷𝐷. Therefore, 𝑃𝑃𝜌𝜌,𝑊𝑊 = 𝜌𝜌

2
(𝐼𝐼0 − 𝑐𝑐𝑐𝑐𝜌𝜌𝑗𝑗𝑓𝑓∆)2 ∆

𝑊𝑊
 is the 

ohmic dissipation in the strip section, while 𝑃𝑃𝑣𝑣,𝑊𝑊 = 𝜂𝜂
2

(𝐼𝐼0
𝑊𝑊
− 𝑐𝑐𝑐𝑐𝜂𝜂(𝑗𝑗𝑓𝑓 + 𝑗𝑗𝑣𝑣))2 ∆

min [𝐷𝐷,𝑊𝑊]
 is the viscous dissipation 

in the same area (𝜌𝜌 is the sheet resistance). The leading term, proportional to 𝜌𝜌
2
𝐼𝐼02, does not affect the 

competition between the vortex and no-vortex states. Analogously, in the chamber we find 𝑃𝑃𝜌𝜌,𝑅𝑅𝑐𝑐 =
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𝜌𝜌
2

(𝑐𝑐𝑓𝑓𝜌𝜌𝑗𝑗𝑓𝑓2Δ2 + 𝑐𝑐𝑣𝑣𝜌𝜌𝑗𝑗𝑣𝑣2𝑅𝑅𝑐𝑐2) and 𝑃𝑃𝑣𝑣,𝑅𝑅𝑐𝑐 = 𝜂𝜂
2

(𝑐𝑐𝑓𝑓𝜂𝜂𝑗𝑗𝑓𝑓2 + 𝑐𝑐𝑣𝑣𝜂𝜂𝑗𝑗𝑣𝑣2), up to logarithmic corrections in 𝑅𝑅/𝑊𝑊. Here, 𝑐𝑐𝑐𝑐𝜂𝜂, 𝑐𝑐𝑐𝑐𝜂𝜂, 
𝑐𝑐𝑓𝑓𝜌𝜌, 𝑐𝑐𝑣𝑣𝜌𝜌, 𝑐𝑐𝑓𝑓𝜂𝜂, 𝑐𝑐𝑣𝑣𝜂𝜂 are dimensionless form factors.  

One implication of the construction of the flow in terms of 𝑗𝑗𝑓𝑓 and 𝑗𝑗𝑣𝑣 is that for both ohmic and viscous 
dissipation, the mixed terms in Eq. 12 between both components are negligible, a property that greatly 
simplifies the analysis. From our general considerations, we know that the effective size of the vortex goes 
to zero as the chamber opening is made smaller, i.e. 𝑅𝑅𝑐𝑐(∆→ 0) = 0. As the first main observation, we thus 
find that 𝑃𝑃𝜌𝜌,𝑅𝑅𝑐𝑐(∆→ 0) = 0. In contrast, the viscous dissipation 𝑃𝑃𝑣𝑣,𝑅𝑅 does not depend explicitly on the size 
of ∆ (and 𝑅𝑅𝑐𝑐), and therefore the ratio 𝑃𝑃𝜌𝜌,𝑅𝑅𝑐𝑐/𝑃𝑃𝑣𝑣,𝑅𝑅𝑐𝑐 → 0, i.e. for small apertures, the ohmic dissipation is 
negligible compared to the viscous one. Consequently, for small opening sizes Δ, the solution is 
independent of 𝑃𝑃𝜌𝜌,𝑅𝑅𝑐𝑐. This suffices to find a unique solution to 𝑗𝑗𝑓𝑓0 and 𝑗𝑗𝑣𝑣0 (cf. Eq. 11 and below), and 
subsequently construct an upper bound for the existence of a single vortex depending on whether the 
total dissipation is smaller with rather than without vortical flow. The vortex is energetically favorable as 
long as 

 
∆1
𝑊𝑊

<
𝑐𝑐𝑓𝑓𝜂𝜂𝑐𝑐𝑣𝑣𝜂𝜂

𝑐𝑐𝑐𝑐𝜂𝜂2 (𝑐𝑐𝑓𝑓𝜂𝜂 + 2𝑐𝑐𝑣𝑣𝜂𝜂)
min[𝐷𝐷,𝑊𝑊]

𝑊𝑊
. (13) 

This result provides the general form of the vortex stability phase diagram: for 𝐷𝐷/𝑊𝑊 ≪ 1, the vortex to 
no-vortex phase transition line is linear with ∆1/𝑊𝑊 ≅ 𝜃𝜃, while for 𝐷𝐷/𝑊𝑊 > 1, 𝜃𝜃 saturates at a finite value, 
consistent with the numerically derived phase diagram in Figs. 3a,b.  

Using the same ansatz, but starting from two vortex cores, the same condition Eq. 13 is recovered for the 
limiting opening size ∆2, but where 𝑐𝑐𝑣𝑣𝜂𝜂 is replaced by 4𝑐𝑐𝑣𝑣𝜂𝜂, (the factor 4 is due to the square of the current 
which enters in the dissipation) to account for the viscous dissipation from two cores. Since it holds that 
∆2> ∆1 this means that there is a narrow range of opening sizes where not one but instead two vortices 
can form. We note that by the same argument, even more vortex cores might be stabilized. However, at 
the same time, the positive effect of the vortex formation on the stress at the strip opening diminishes, 
making these more exotic solutions incompatible with the geometrical constraints imposed by the 
chamber. Numerically, all form factors are of order 1 and depend little on the particular choices of 
integration cutoffs. Specifically, for the dipole laminar flow and a Kaufmann vortex, we find that 𝑐𝑐𝑓𝑓𝜂𝜂 ≈ 4.0 
and 𝑐𝑐𝑣𝑣𝜂𝜂 ≈ 2.0 + 0.8log(𝑊𝑊/𝑅𝑅𝑐𝑐). We further estimate that 𝑊𝑊/𝑅𝑅𝑐𝑐~3 and 𝑐𝑐𝑐𝑐𝜂𝜂~1/2, in which case ∆1<
4.7min[𝐷𝐷,𝑊𝑊] and ∆2< 6.8min[𝐷𝐷,𝑊𝑊]. These numbers are reasonably close to both the numerical and 
experimental findings, even though the ratio of ∆2/∆1 seems to be somewhat smaller in the simulations. 
In summary, for weakly ohmic flow, a single hydrodynamic vortex can form inside the chamber close to 
the aperture, with a size of vortex core that increases with the aperture size. For large apertures, this 
vortex becomes unstable, and we find a narrow range of parameters where it is favorable to form two 
vortices instead. Vortical flow disappears once the aperture size becomes sufficiently large to allow 
spreading of the laminal currents over the entire area of the chamber. 

Electron-electron scattering length in a compensated semimetal 

Here, we estimate the electron-electron scattering rate using the fermionic self-energy calculated in the 
random phase approximation (RPA). To that end, we consider three contributions that might be relevant 
in reducing 𝑙𝑙𝑒𝑒𝑒𝑒 below the values reported in [10]. They are all related to the compensated nature of WTe2, 
where the band edges of several bands are close to (but not at) the Fermi level.  

(i) Firstly, the proximity of the band edges violates the core requirement of semiclassical estimates of the 
relaxation rate that the ratio of temperature over Fermi energy, 𝑇𝑇/𝐸𝐸𝐹𝐹 ≪ 1, so that a fully quantum-
mechanical treatment is needed. In this latter approach [86], the relaxation rate explicitly contains the 
occupation functions which account for both virtual and thermal fluctuations of the electron fluid. Given 
a dispersion 𝜖𝜖𝑚𝑚𝑓𝑓 and eigenfunctions |𝑢𝑢𝑚𝑚𝑓𝑓⟩, where 𝑚𝑚 is the band index and 𝑘𝑘 the momentum, the 
imaginary part of the self-energy Σ assumes the form, 
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 Im Σ�𝑞𝑞, 𝜖𝜖𝑛𝑛𝑛𝑛� = ��
𝑑𝑑3𝑘𝑘

(2𝜋𝜋)3 Im �
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2
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� �𝑏𝑏�𝜖𝜖𝑚𝑚𝑓𝑓 − 𝜖𝜖𝑛𝑛𝑛𝑛� + 𝑛𝑛(𝜖𝜖𝑚𝑚𝑓𝑓)�

𝑚𝑚

. (14) 

Here 𝑏𝑏 and 𝑛𝑛 denote the Bose and Fermi functions, respectively. The dielectric function is determined by 
the charge susceptibility Π in the RPA-approximation, 

 Π(𝑞𝑞,𝜔𝜔) = ��
𝑑𝑑3𝑘𝑘

(2𝜋𝜋)3 ��𝑢𝑢𝑖𝑖𝑓𝑓�𝑢𝑢𝑖𝑖 𝑓𝑓+𝑛𝑛��
2 𝑛𝑛(𝜖𝜖𝑖𝑖𝑓𝑓) − 𝑛𝑛(𝜖𝜖𝑖𝑖 𝑓𝑓+𝑛𝑛)
𝑖𝑖0+ + 𝜔𝜔 + 𝜖𝜖𝑖𝑖𝑓𝑓 − 𝜖𝜖𝑖𝑖𝑓𝑓+𝑛𝑛𝑖𝑖𝑗𝑗

, (15) 

while the Coulomb interaction is 

 𝐶𝐶(𝑘𝑘) =
4𝜋𝜋𝑒𝑒2

|𝑘𝑘|2
. (16) 

(ii) Secondly, the presence of band edges also precludes the extrapolation of relaxation rates obtained at 
high temperatures under the assumption of a simple Fermi-liquid 𝑇𝑇2-scaling, at least a priori. We find in 
particular that the 𝑇𝑇2-dependence is violated for temperatures above 100 K.  

(iii) Thirdly, the compensated nature of the material with both hole and electron Fermi surfaces requires 
a high-fidelity calculation with a fine momentum space grid to properly resolve the nesting between 
electron and hole Fermi surfaces. For example, we observe convergence of the obtained relaxation rates 
only for grid sizes larger than 100×50×7 in the 𝑥𝑥-𝑦𝑦-𝑧𝑧 momentum volume.  

Extended Data Fig. 5. Fermi surface and electron-electron mean free path. a, Fermi surface cut for 𝑘𝑘𝑧𝑧 =
0. Typical for a compensated semimetal, small electron and hole pockets appear close to the compensation 
point. If the hole density is slightly larger than the electron density, the Fermi surface features hole pockets 
near the Gamma point (red) and electron pockets (blue). b, 𝑙𝑙𝑒𝑒𝑒𝑒 as calculated from Eq. 14 for 20 bands as a 
function of temperature (red points). For 𝑇𝑇 = 145 K, we also show the values for a smaller number of 
bands. The blue lines denote upper and lower estimates for the 𝑇𝑇−2 dependence of 𝑙𝑙𝑒𝑒𝑒𝑒, where the lower 
one corresponds to the low-temperature asymptotics.  

Taking all these issues into account, we calculated 𝑙𝑙𝑒𝑒𝑒𝑒 for temperatures between 70 K and 300 K, checked 
for convergence in terms of grid resolution, and extrapolated to lower temperatures based on a power-
law fit. To decrease runtime, as an approximation we restricted the effects of the Coulomb interaction to 
the first Brillouin zone and set the imaginary part of the dielectric function to zero for bands far from the 
chemical potential. Extended Data Fig. 5 shows the Fermi surface near the compensation point, and the 
scaling of 𝑙𝑙𝑒𝑒𝑒𝑒 with temperature, averaged for band 55 which forms one of the hole pockets, taking into 
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account a total of 20 bands closest to the chemical potential. Comparable values are obtained for the other 
Fermi pockets. As is clearly visible, the low-temperature asymptotic temperature dependence sets in only 
below 100 K. We also confirmed the convergence of our calculation with respect to contributions from far 
bands by comparing the obtained relaxation rates for 4, 8, 12, 16 and 20 bands at an intermediate 
temperature of 145 K. Extrapolating our results to low temperatures under the assumption of a 𝑇𝑇−2 
dependence, we obtain 𝑙𝑙𝑒𝑒𝑒𝑒 = 0.5 µm at 𝑇𝑇 = 20 K and 𝑙𝑙𝑒𝑒𝑒𝑒 = 4 µm at 𝑇𝑇 = 7 K. We note that these values 
are lower than the ones reported for the electron-electron mean free path in [10], which was calculated 
with a much smaller grid resolution. However, they are comparable to the latter’s estimate for the phonon-
mediated interacting mean free path. While a full analysis is beyond the scope of this work, we point out 
that the combined momentum-conserving mean free path could thus be even slightly smaller. These 
estimated lower values of 𝑙𝑙𝑒𝑒𝑒𝑒 give credence to the mechanism described in the main text whereby a weakly 
ballistic flow can effectively become hydrodynamic in thin samples. 

Transition from vortex to laminar flow in additional samples 

Analogously to the analysis in the main text (sample A), we show the transition from vortex to laminar flow 
in two additional samples, B and C. These samples provide additional insight into the dependence of the 
flow on the geometrical parameters, including the width the central strip, 𝑊𝑊, the chamber radius, 𝑅𝑅, and 
the sample thickness, 𝑑𝑑. Importantly, samples A and B were fabricated from the same batch of WTe2 
crystals, while sample C was exfoliated from a different batch of lower quality. AFM images of samples A, 
B, and C are shown in Extended Data Fig. 6.  

Extended Data Fig. 6. AFM images of WTe2 devices. a, AFM image of device A analyzed in the main text 
with 𝑊𝑊 = 550 nm, 𝑅𝑅 = 900 nm, 𝑑𝑑 = 48 nm, and aperture angles 𝜃𝜃 = 20°, 35°, 54°, 72°, 90°, and 120°. b, 
Device B used for Extended Data Fig. 7 with 𝑊𝑊 = 350 nm, 𝑅𝑅 = 450 nm, and 𝑑𝑑 = 23 nm.  c,  Device C with 
𝑊𝑊 = 770 nm and 𝑑𝑑 = 30 nm, and 𝑅𝑅 = 950, 725, and 500 nm (Extended Data Figs. 8) and dual-drive 
geometry at the bottom part (Extended Data Figs. 9).  

Sample B is characterized by 𝑊𝑊 = 350 nm, 𝑅𝑅 = 450 nm, and 𝑑𝑑 = 23 nm. To avoid current heating due to 
the narrower central strip, the excitation current was reduced to 𝐼𝐼0 = 25 µA. Similar to the behavior in 
sample A in Fig. 4, the 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) images in Extended Data Figs. 9a,d,g show a transition from single-vortex 
to two-vortex to no-vortex state upon increasing 𝜃𝜃. This is in good agreement with simulations of  𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) 
(Extended Data Figs. 7b,e,h) as well as simulated current streamlines (Extended Data Figs. 7c,f,i). Here, the 
two-vortex state occurs at 𝜃𝜃𝑡𝑡 = 60° as compared to 𝜃𝜃𝑡𝑡 = 54° in sample A. This aperture angle allows us to 
deduce 𝐷𝐷 𝑊𝑊⁄ = 0.35 and resulting 𝐷𝐷 = 123 nm in sample B. Thus, the smaller strip width 𝑊𝑊 of sample B 
results in an effective vertical upshift of the data points in Fig. 3a.  
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Extended Data Fig. 7. Transition from single-vortex to two-vortex to laminar flow in sample B. a-c, 
Measurement of single vortex state in device B with 𝜃𝜃 = 44° and corresponding simulations in the 
hydrodynamic regime with 𝐷𝐷 = 123 nm and 𝜉𝜉 = 200 nm. a, Measured current density 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) normalized 
by 𝐼𝐼0/𝑊𝑊 at 𝐼𝐼0 = 25 µA. b, Simulated 𝐽𝐽𝑦𝑦(𝑥𝑥, 𝑦𝑦). c, Simulated current streamlines showing laminar (red) flow 
in the central strip and vortex flow (blue) in the chambers. d-f, Same as (a-c) for 𝜃𝜃 = 60° showing banana-
shaped vortex at the transition from a single to double-vortex state. g-i, Same as (a-c) for 𝜃𝜃 = 100°, 
showing laminar flow.  

Extended Data Fig. 8 shows 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) distributions in sample C, which is characterized by 𝑊𝑊 = 770 nm and 
𝑑𝑑 = 30 nm. Here, the disc chambers of radius 𝑅𝑅 = 950 nm show single-vortex state for aperture angles of 
𝜃𝜃 = 24° (a), 𝜃𝜃 = 45° (b), and 𝜃𝜃 = 60° (c), and laminar flow for 𝜃𝜃 = 180° (d). Although, no chamber with 𝜃𝜃 
between 60° and 180° was available in this sample, the presence of a single vortex at 𝜃𝜃 = 60∘ indicates 
𝐷𝐷 𝑊𝑊⁄ > 0.35. The resulting 𝐷𝐷 > 270 nm significantly exceeds the values derived for samples A and B. This 
may be attributed to the different batches of source material with different microscopic parameters or to 
variations in fabrication resulting in differences in the top and bottom surface quality.  

In addition, single-vortex behavior was found in chambers with 𝑅𝑅 = 725 nm and 𝜃𝜃 = 45° as well as for 
𝑅𝑅 = 500 nm and 𝜃𝜃 = 60° (Extended Data Figs. 8e,f), which shows the stability of the single-vortex state 
with respect to chamber radius. 
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Extended Data Fig. 8. Vortex flow in sample C with different geometrical parameters. Current density 
𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) in sample C with 𝑊𝑊 = 770 nm and 𝑑𝑑 = 30 nm and various chamber parameters: 𝜃𝜃 = 24° and 𝑅𝑅 =  
950 nm (a), 𝜃𝜃 = 45° and 𝑅𝑅 =  950 nm (b),  𝜃𝜃 = 60° and 𝑅𝑅 =  950 nm (c), 𝜃𝜃 = 180° and 𝑅𝑅 =  950 nm (d), 
𝜃𝜃 = 45° and 𝑅𝑅 =  725 nm (e) and 𝜃𝜃 = 60° and 𝑅𝑅 =  500 nm (f). Laminar flow is observed in (d), while 
vortex flow is present in all the rest of the geometries.  

Dual-drive geometry 

We have also studied an alternative geometry of a central disk with two apertures with 𝜃𝜃 = 44° on 
opposite sides connected to two current-driven strips patterned in WTe2 sample C with 𝑑𝑑 = 30 nm, and in 
Au film of similar thickness, as shown in Extended Data Fig. 9. An ac current of 𝐼𝐼𝐿𝐿 = 50 µA was applied to 
the left strip with source at the bottom and drain at the top. A lower excitation frequency of 𝑓𝑓 = 17.73 Hz 
was used to reduce capacitive currents between the two strips. A separate floating current source was 
used to apply current to the right strip with three values, 𝐼𝐼𝑅𝑅 = 0, −50 µA, and 50 µA.  

Panels a1 and a2 in Extended Data Fig. 9 show the 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) and 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) current distributions in Au sample 
for 𝐼𝐼𝑅𝑅 = 0. In the ohmic regime, the current penetrates substantially into the central chamber similar to 
Fig. 1j. In the hydrodynamic case of WTe2 (panel b1), in contrast, the 𝐽𝐽𝑦𝑦 is mostly concentrated along the 
left strip with little protrusion into the chamber, analogous to Fig. 2g and consistent with the numerical 
simulations in panels g1 and h1. The transverse current, 𝐽𝐽𝑥𝑥(𝑥𝑥, 𝑦𝑦), reveals a laminar flow in Au (panel a2) and 
a vortical flow in WTe2 (panel b2) in the chamber, consistent with the numerical simulations in panels g2 
and h2, and with the simulated streamlines in panels g3 and h3. This configuration is equivalent to Figs. 1m 
and 2j of the main text.  

Upon applying 𝐼𝐼𝑅𝑅 = −50 µA, interesting flow patterns are observed in the central chamber. In the ohmic 
case, instead of flowing in and out of the chamber as observed for a single drive in panel a2, part of the 
current traverses the chamber in its lower part (red 𝐽𝐽𝑥𝑥 in panel c2), and then flows down to the bottom 
drain of the right strip as corroborated by the simulated streamlines in panel i3. In the top half of the 
chamber, an opposite flow from top source of the right strip to the top drain on the left strip occurs (blue 
𝐽𝐽𝑥𝑥), exchanging part of the currents from the two sources. Remarkably, in the hydrodynamic case, the 
shear forces of counter propagating currents in the two strips add up constructively and propel a single 
massive clockwise vortex in the entire chamber as observed in panel d2 and simulated in panel j2. The 
simulated streamlines in panel j3 show that in this case the currents of the left and right sources do not 
mix: the laminar streams in the two strips are isolated by the whirlpool in the central chamber.  
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One would then expect that in the case of copropagating currents in the two strips (panel f1), the opposing 
shear forces at the two apertures act destructively, annihilating the massive vortex. Instead, we find that 
a vortex–antivortex pair is nucleated in the chamber as visualized by 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) in panel f2 and simulated in 
panels l2 and l3.  

Extended Data Fig. 9. Vortex–antivortex formation in dual-drive geometry. a-f, Experimentally derived 
current densities 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) (top row) and 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) (bottom row) in Au and WTe2 samples. a-b, Current 𝐼𝐼𝐿𝐿 = 
50 µA is driven in the up direction in the left strip with no current applied to the right strip resulting in a 
single vortex in the WTe2 chamber in b2. c-d, Counterpropagating currents 𝐼𝐼𝐿𝐿 = 50 µA and 𝐼𝐼𝑅𝑅 = −50 µA 
applied to the right and left strips, giving rise to a single massive vortex in d2. e-f, Copropagating currents 
𝐼𝐼𝐿𝐿 = 50 µA and 𝐼𝐼𝑅𝑅 = 50 µA applied to both strips which generates a vortex–antivortex pair in f2. g-l, 
Numerical simulations of current densities 𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦) (top row), 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) (middle row) and the corresponding 
streamlines (bottom row) in the ohmic and hydrodynamic regimes for the three current configurations. 
The laminar streamlines are marked in red and the vortex streamlines in blue. The experimental data were 
acquired with pixel size of 10 nm, acquisition time of 40 ms/pixel, and image size of 600×350 pixels/image.  
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Captions of Supplementary Videos 

Supplementary Video 1 | Simulations of vortical-to-laminar flow transition in the para-hydrodynamic 
regime vs. 𝜽𝜽. Numerical simulation of the current density 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) (top right) and the corresponding 
streamlines (bottom right) in the double-chamber geometry upon increasing the aperture angle 𝜃𝜃 for 
𝐷𝐷 𝑊𝑊⁄ = 0.28. The left panel shows the vortex stability phase diagram with no stress boundary conditions 
as presented in Fig. 3a. The purple dot marks the value of the varying 𝜃𝜃 along the 𝐷𝐷 𝑊𝑊⁄ = 0.28 line. For 
𝜃𝜃 ≤ 54°, there is a single vortex in each chamber (blue streamlines). Upon increasing 𝜃𝜃 further, the laminar 
flow (red streamlines) splits the single vortex in each chamber into two vortices, which are stable up to 
𝜃𝜃 ≤ 60°. Finally, for 𝜃𝜃 > 60°, the laminar streamlines fill the entire area of the chambers. 

Supplementary Video 2 | Simulations of vortical-to-laminar flow transition in the quasi-ballistic regime 
vs. 𝜽𝜽. Numerical simulation of the current density 𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦) (top right) and the corresponding streamlines 
(bottom right) in the double-chamber geometry upon increasing 𝜃𝜃 for 𝐷𝐷 𝑊𝑊⁄ = 1.5. The left panel shows 
the vortex stability phase diagram with no stress boundary conditions as presented in Fig. 3a. The purple 
dot marks the value of the varying 𝜃𝜃 along the 𝐷𝐷 𝑊𝑊⁄ = 1.5 line. With increasing 𝜃𝜃, the laminar streamlines 
(red) gradually penetrate deeper into the chambers, distorting the vortices (blue streamlines) and pushing 
them towards the outer boundaries. The vortices become extinct at 𝜃𝜃 ≅ 150° without splitting into double 
vortices as is the case in the hydrodynamic regime in Supplementary Video 1. For 𝜃𝜃 > 150°, the laminar 
streamlines fill the entire area of the chambers. 

 

 



Hydrodynamic approach to two-dimensional electron
systems

Boris N. Narozhny

Abstract The last few years have seen an explosion of interest in hydrody-
namic effects in interacting electron systems in ultra-pure materials. One such
material, graphene, is not only an excellent platform for the experimental
realization of the hydrodynamic flow of electrons, but also allows for a con-
trolled derivation of the hydrodynamic equations on the basis of kinetic theory.
The resulting hydrodynamic theory of electronic transport in graphene yields
quantitative predictions for experimentally relevant quantities, e.g. viscosity,
electrical conductivity, etc. Here I review recent theoretical advances in the
field, compare the hydrodynamic theory of charge carriers in graphene with
relativistic hydrodynamics and recent experiments, and discuss applications
of hydrodynamic approach to novel materials beyond graphene.

Keywords Hydrodynamics · Kinetic theory · Electronic transport ·
Viscosity · Hall effect · Graphene · Compensated semimetals · Topological
materials

1 Hydrodynamics and condensed matter

Collective excitations in solid state physics – phonons, magnons, plasmons, etc.
– are often considered in the long-wavelength (small wavevector) limit with
the corresponding observables describing long-distance properties of matter.
One way to develop a macroscopic theory reflecting such physics [1] is to
combine continuity equations (manifesting conservation laws) with thermody-
namic arguments to identify how the entropy of the system responds to local
density fluctuations of the conserved quantities. Requiring the total entropy
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2 Boris N. Narozhny

production rate to be non-negative, one may establish the “constitutive re-
lations” between the macroscopic currents and the external bias. Closing the
equations with the help of the thermodynamic relations one can complete the
description of the long-wavelength dynamics of the system. The resulting the-
ories are macroscopic since their variables are densities of physical quantities
and the corresponding currents. They are also phenomenological since they
provide no means of calculating the coefficients in the constitutive relations
(i.e., the “generalized susceptibilities”). Such approach is justified at distances
that are much larger than any length scales corresponding to the underlying
“microscopic” scattering processes, the condition that is very often satisfied
in experiments.

The most common equation describing the long-wavelength dynamics in
solids is the diffusion equation [1]. In the simplest example, spin diffusion [2,3]
arises in a system of spin-1/2 particles with a velocity- and spin-independent
interaction leaving the total magnetization conserved. This behavior has been
observed experimentally (see, e.g., Ref. [4]) and is generally expected to be
applicable to a wide variety of spin systems (with the possible exception of
one-dimensional integrable models, see Refs. [5,6,7,8]).

Low-temperature charge transport is also often considered to be diffusive
[9]. In the simplest case, charge carriers are assumed to be independent and
noninteracting, so that their total number is a conserved quantity, while the
dominant relaxation process is the electron-impurity scattering described by
the transport mean free time, τ . The latter defines both the diffusion constant
and electrical conductivity [10] and is still one of the most important quantities
characterizing conductive properties of experimental samples. The diffusive
behavior is commonly expected to take place in real metals and semiconductors
as long as the sample size is large compared to the mean free path (typically,
` = vF τ with vF being the Fermi velocity) [11] and at low temperatures,
Tτ � 1 [12] (the units with ~ = kB = 1 are used throughout this paper).

A common feature of the above theories is the decaying (diffusive) nature
of collective modes (defined as the normal modes of the set of linearized macro-
scopic equations). In contrast, the collective modes in conventional fluids, both
classical (e.g., water [13,14]) and quantum (e.g., 3He [15]), include also sound
waves (with the linear dispersion). This crucial difference can be attributed
to the momentum conservation. Indeed, the usual description of a fluid (or a
gas, see [16]) assumes a system of “particles” (molecules or atoms) interact-
ing by means of local collisions. In the simplest case (of a single-component,
monoatomic fluid) the collisions preserve momentum, and hence overall there
are three global conserved quantities – the number of particles, energy, and
momentum. If, moreover, Galilean invariance is assumed, then the current is
defined by the momentum, which is the key point ultimately leading to the
existence of the sound-like collective mode.

The macroscopic theory describing flows of a conventional fluid – namely,
hydrodynamics – can be derived in the several ways. One can follow the above
prescription using the continuity equations and entropy [1], one can “guess” (or
postulate) the constitutive relations based on the Galilean invariance (or, in
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the relativistic case, Lorentz invariance) [13], or one can use the “microscopic”
kinetic theory [16]. The latter approach is justified, strictly speaking, in a
dilute gas, but yields the same set of hydrodynamic equations as the more
phenomenological methods. This fact is typically attributed to the universality
of the hydrodynamic approach: the belief that long-distance properties are
largely independent of the short-distance (microscopic) details. As a result,
strongly interacting fluids (such as water) can be successfully described by the
same hydrodynamic theory as an ideal gas [16].

In condensed matter context, hydrodynamic approaches have been applied
to phonons [17] (also see the recent experiment [18] and references therein)
and magnons [19], while applications to electronic systems [20,21,22] have
only recently attracted widespread attention [23,24,25]. This may appear sur-
prising, after all the Fermi Liquid theory originally developed for 3He [15] has
become a dominant paradigm in solid state physics. In 3He, the Fermi Liquid
theory can be used to derive the hydrodynamic equations [26], so why cannot
the same be done in solids? Unlike helium atoms, electrons in solids exist in
the environment created by a crystal lattice and can scatter off both lattice
imperfections (or “disorder”) and lattice vibrations (phonons). In both cases,
their momentum is not conserved. As a result, the electron motion is typically
diffusive [9], unless the sample size is smaller than the mean free path and the
system is “ballistic” [11]. For most typical scattering mechanisms in solids,
the mean free path is strongly temperature dependent. In conventional metals
[10] electron-impurity scattering dominates at low temperatures, leading to,
e.g., the residual resistance. At high temperatures, the main scattering mech-
anism is the electron–phonon interaction. In many materials, at least one of
these two mechanisms is more effective than electron–electron interaction at
any temperature, leaving no room for hydrodynamic behavior. In terms of the
associated length scales, this statement can be formulated as `ee � `dis, `e−ph
(in the self-evident notation). If a material would exist, where the opposite
condition were satisfied at least in some temperature range, then one would
be justified in neglecting momentum non-conserving processes and applying
the hydrodynamic theory. For a long time such a material was not known. In
recent years, several extremely pure materials became available bringing elec-
tronic hydrodynamics within experimental reach [27,28,29,30,31,32,33,34,35,
36].

2 Experimental signatures of hydrodynamic behavior

The parameter regime supporting the hydrodynamic behavior can be read-
ily found in systems where the temperature dependence of key length scales
(`ee, `dis, `e−ph, etc.) is sufficiently different. This may happen, for exam-
ple, in two-dimensional (2D) systems where the electron-electron scattering
length varies with temperature as `ee ∼ T−2 (within the typical Fermi Liq-
uid description), while the contribution of acoustic phonon scattering to the
electronic mean free path varies as `e−ph ∼ T−1. At the same time, the low
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temperature values of `ee are easily surpassed by the mean free path `dis in
ultrapure samples. Hence, 2D systems may offer an intermediate tempera-
ture window [23,24,37,38], where electron-electron interaction is the domi-
nant scattering process and hence appear to be plausible candidates to sup-
port the hydrodynamic behavior. It is then not surprising that many exper-
iments on electronic hydrodynamics were focusing on 2D systems and espe-
cially on graphene. The latter is a particularly convenient material [27,28,39,
40,41,42,43] where the mean free path remains long up to room temperatures,
max[`dis, `e−ph] > 1µm. At the same time, at T > 150 K the electron-electron
scattering length decreases to `ee ≈ 0.1÷ 0.3µm. Since the pioneering work on
the nonlocal resistance [27] and Wiedemann-Franz law violation [28], several
impressive experiments [39,41,42,43,44,45] aimed at uncovering the hydro-
dynamic behavior of the electronic system in graphene. In particular, it was
suggested that a viscous hydrodynamic flow in electronic systems might exhibit
enhanced, higher-than-ballistic conduction [39,44,45]. More recently, several
breakthrough experiments [30,34,44,45,46,47,48,49,50,51,52,53,54] demon-
strated various distinct imaging techniques making it possible to “observe”
the electronic flow in graphene “directly”.

Hydrodynamic flow of electrons in solids should be observable not only in
graphene, but in any material that is clean enough to satisfy the condition
that the electron-electron scattering length is much shorter than the disorder
mean free path. In particular, modern semiconductor technology allows fab-
ricating ultra-high-mobility heterostructures [30,32,36,55,56,57], a noticeable
improvement since the original observation of the Gurzhi effect [58].

At the same time, the hydrodynamic behavior might be observable in a
wide range of novel materials including the 2D metal palladium cobaltate [29],
topological insulators (where the conducting surface states may exhibit hy-
drodynamic behavior), and Weyl semimetals [59,60]. The latter systems have
attracted considerable attention since they exhibit a solid-state realization
of the Adler-Bell-Jackiw chiral anomaly [61,62,63,64,65]. One of the hallmark
manifestations of the anomaly in Weyl systems [59,66] is the recently observed
negative magnetoresistance [64,67]. Observation of relativistic Weyl hydrody-
namics in these systems is the next milestone in the field.

2.1 Gurzhi effect

In his pioneering work [17,20,21], Gurzhi considered an idealized problem of
the electric current flowing in a thin, clean wire. In this case there are two com-
peting scattering processes: the electron scattering off the walls of the wire
(i.e., system boundaries) and the electron-electron interaction, either direct
or effective (e.g., phonon-mediated). Assume that at the lowest temperatures
the electron-electron scattering length is longer than the width of the wire,
`ee � d. Then boundary scattering will dominate leading to the approximately
temperature-independent resistivity, ρ ∼ 1/d. Now, the electron-electron scat-
tering length `ee is inversely proportional to some power of temperature (for
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Fig. 1 Gurzhi effect. Left panel: a sketch of the theoretically predicted resistance minimum
(reprinted with permission from Ref. [17]; copyright (1968) Uspekhi Fizicheskikh Nauk).
Right panel: experimental (IIa and IIIa) and theoretical (IIb and IIIb) differential resistance
dV/dI as a function of the current I at the lattice temperatures T = 4.5, 3.1, 1.8 K, from
top to bottom (reprinted with permission from Ref. [58]; copyright (1995) by the American
Physical Society).

the direct electron-electron interaction `ee ∝ T−2 [20], while for the phonon-
mediated interaction `ee ∝ T−5 [21], see Fig. 1). As the temperature increases,
`ee will eventually become smaller than d. In the limit `ee � d, the resistivity
will be determined by the electron-electron scattering, ρ ∼ `ee/d2 [20,21] and
hence will decrease with the increasing temperature. This effect can be seen as
the electronic analogy of the crossover between the Knudsen (molecular) flow
and the Poiseuille (viscous) flow in a rarefied gas driven through a tube [68].

The above conclusion crucially depends on the assumption that the effec-
tive mean free path d2/`ee is much smaller than the length scale `dis describing
bulk momentum-relaxing processes (i.e., electron-impurity or electron-phonon
scattering). Then the electronic momentum is approximately conserved and
one can introduce the hydrodynamic description (the expression for ρ follows
from the standard expression for the kinematic viscosity, ν = vF `ee/3 [20]).

Once the effective mean free path due to electron-electron interaction ex-
ceeds the disorder scattering length, d2/`ee � `dis, the system becomes dif-
fusive and the resistivity resumes its usual growth with temperature. Hence,
ρ(T ) is expected to exhibit a minimum, see Fig. 1, the result now known as
the Gurzhi effect.

A direct observation of the Gurzhi effect in metals is hindered by several
factors: in addition to the electron-impurity and electron-phonon scattering,
Umklapp scattering, nonspherical Fermi surface shapes, or Kondo effect may
all contribute to the temperature dependence of the resistivity. An elegant way
around these obstacles was suggested by de Jong and Molenkamp [58]. They
used 2D wires defined electrostatically in the two-dimensional electron gas
(2DEG) in semiconductor (GaAs/AlGaAs) heterostructures. Given the weak-
ness of the electron-phonon coupling in this system, it was possible to control
the electronic temperature selectively without changing the temperature of
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Fig. 2 Hall bar geometry for nonlocal transport measurements. Traditional four-terminal
measurement involves passing a current between leads 1 and 4, while measuring the voltage
drop between leads 2 and 3. The resulting resistance R23,14 = V23/I14 is related to the
longitudinal resistivity, ρxx = R23,14W/L, where W and L are the width and length of
the Hall bar. In contrast, a nonlocal measurement consists of passing a current between,
e.g., 2 and 6, while measuring the voltage between leads 3 and 5. In the case of usual
diffusive transport such voltage should be exponentially suppressed [69], RNL = R35,26 ∼
ρxx exp(−πL/W ) (From Ref. [70]. Reprinted with permission from AAAS).

the whole sample by passing a dc current. The resulting measurement exhib-
ited a minimum in the differential resistance as a function of the current, see
Fig. 1, which was argued to be equivalent to the Gurzhi effect. More recently,
the observed decrease of resistivity with increasing temperature typical of the
Gurzhi effect (ρ ∼ T−2) was reported in Ref. [32].

2.2 Nonlocal transport measurements

The “modern era” in electronic hydrodynamics was announced in the three
back-to-back Science papers in 2016 reporting the negative vicinity resistance
[27] and Wiedemann-Franz law violation [28] in graphene, as well as hints of the
hydrodynamic behavior in [29] in PdCoO2. These groundbreaking experiments
opened the door for further studies focusing on unconventional aspects of
electronic transport in ultra-pure materials.

Conventional experiments aimed at uncovering inner workings of solids of-
ten rely on transport measurements [10,16], the tool that proved to be indis-
pensable throughout the history of condensed matter physics. In a traditional
experiment one measures a current-voltage characteristic and extracts linear
response functions determined by properties of the unperturbed system. A ba-
sic quantity that can be measured in this way is the Ohmic resistance R. At the
simplest level, R can be described by the Drude theory [10,71], which essen-
tially amounts to writing down classical equations of motion of charge carriers
in applied electric and magnetic fields with a phenomenological friction term.

A more intricate question concerns the spatial distribution of the electric
current density, which is most relevant in small samples (chips) with multi-
ple leads. Here the current density may exhibit complex patterns depending
on the external bias, electrostatic environment, chip geometry, and magnetic
field. One way to detect such patterns is provided by nonlocal transport mea-



Hydrodynamic approach to two-dimensional electron systems 7

surements [72,73,74,75,76,77,78], i.e., by measuring voltage drops between
various leads that are spatially removed from the source and drain, see Fig. 2.
These techniques were devised to study ballistic propagation of charge carriers
in mesoscopic systems, but recently they were applied to investigate possible
hydrodynamic behavior in ultra-pure conductors [23,24,27,41,42].

Nonlocal resistance measurements have also been used to study edge states
accompanying the quantum Hall effect [70,79,80,81,82,83]. While the exact
nature of the edge states has been a subject of debate, the nonlocal resistance,
RNL, appears to be an intuitively clear consequence of the fact that the electric
current flows along the edges of the sample. Such a current would not be
subject to exponential decay [69] exhibited by the bulk charge propagation
leading to a much stronger nonlocal resistance.

2.2.1 Giant nonlocality in magnetic field

While traditional studies of electronic transport tended to focus on low tem-
peratures, more recent experimental work has been gradually shifting towards
measurements at nearly room temperatures [27,41,42,70,77]. A detailed analy-
sis of the nonlocal resistance in a wide range of parameters (temperatures, car-
rier densities, and magnetic fields) was performed in Ref. [70] using graphene
samples.

At low temperatures and in strong magnetic fields, graphene exhibits the
quantum Hall effect (QHE) with well-defined plateaus in Hall resistivity corre-
sponding to regions of the carrier density where ρxx = 0. At the same densities,
the nonlocal resistance also remains zero, but in between the QHE zeros may
reach values as high as 1 kΩ. At high temperatures, all but one such peaks
disappear. The remaining peak at charge neutrality exhibits behavior that ap-
pears to be inconsistent with the QHE interpretation. In particular, the strong
signal persists at near room temperatures, way beyond the QHE regime with
the peak value RNL ≈ 1.5 kΩ at B = 12 T and T = 300 K, three times higher
than that at T = 10 K, see Fig. 3.

The unexpected “giant” nonlocality in neutral graphene was originally ex-
plained by diffusion of the mismatched spin-up and spin-down quasiparticles in
the presence of the Zeeman splitting [70]. This interpretation was disputed in
Ref. [84] where the effect was not observed in the nearly parallel field (the Zee-
man splitting is independent of the field direction). Moreover, the magnitude
of the effect proposed in Ref. [70] was disputed in Ref. [85], where the residual
quasiparticle density due to Zeeman splitting (at T = 0 and B = 10 T) was
estimated to be ρQ ≈ 2.2 × 106 cm−2 leading to a nonlocal resistance that is
much weaker than the data of Ref. [70].

The alternative explanation suggested in Ref. [85] was based on the “two
band” phenomenology of the electronic system in neutral graphene [86,87,88].
Indeed, at the charge neutrality point, the conductance and valence bands in
graphene touch. At finite temperatures, both bands contain mobile carriers
leading to a two-component nature of the electronic system. Given the exact
particle-hole symmetry at neutrality, this system is “compensated” and hence
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Fig. 3 Nonlocal resistance in graphene. Left panel: QHE regime at T = 10 K and B = 12 T
(the red curve indicates that no signal could be detected at B = 0 within the experimental
resolution; the curve is downshifted for clarity and magnified). Right panel: high-temperature
regime, T = 300 K. (From Ref. [70]. Reprinted with permission from AAAS).

there is no classical Hall effect, such that the bulk Hall conductivity vanishes,
ρxy = 0, and the longitudinal conductivity is unaffected by the magnetic field.
In contrast, the same approach yields the nonlocal response that is strongly
field dependent. Indeed, the presence of two types of carriers (electrons and
holes) leads to the existence of two macroscopic currents: the electric current
J and the total quasiparticle (or “imbalance” [89]) current jI ,

j = je − jh, jI = je + jh, J = ej, (1)

where je(h) is the electron (hole) current and e is the electron charge. In the
absence of the magnetic field, the neutral current jI is decoupled from J and
is practically undetectable (it does not couple to the electric field). The elec-
trons and holes are drifting in parallel, but opposite directions. However, the
magnetic field bends the quasiclassical trajectories of charge carriers coupling
the two currents and turning jI in the direction that is orthogonal to J . Now
the neutral current can transport charge carriers to distant parts of the sam-
ple, where a nonlocal response is induced, again, by the magnetic field, see
Section 4 for more details.

The arguments of Ref. [85] yield the nonlocal response capturing the main
qualitative features of the effect observed in Ref. [70]. Quantitatively, these
results are consistent with the rapid decay of the nonlocal signal away from
the neutrality point, but overestimate the magnitude of the effect. The latter
discrepancy was attributed to the simplicity of the model that did not take
into account the effects of electron-electron interaction contributing to resis-
tivity of neutral graphene, the residual carrier population at neutrality due to
fluctuations of the electrostatic potential [84], and viscous phenomena, all of
which are expected to suppress RNL.

Viscous effects are of particular interest in the context of electronic hydro-
dynamics and may also lead to nonlocality. However, these effects are expected
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to occur in the absence of magnetic field as well and in graphene are most pro-
nounced away from charge neutrality.

2.2.2 Negative vicinity resistance

Away from charge neutrality, i.e., when the chemical potential exceeds the
temperature, µ � T , electrons in graphene are typically expected to behave
similarly to 2DEG in semiconductor heterostructures. The contribution of the
valence band is exponentially suppressed and the electronic system comprises
only the single component. In that case, a Fermi liquid is expected to behave
hydrodynamically [26], the issue with the electronic systems being whether
the material is pure enough.

Assuming the hydrodynamic regime is possible, the single-component elec-
tronic system should obey the Navier-Stokes-like equation [13,90,91,92] with
an additional damping due to disorder scattering [21], as well as the continuity
equation. Within linear response and in the static limit, these equations can
be written as (see, e.g., Section 3)

eE = −mν∆u +mu/τdis, ∇u = 0, (2)

where u is the hydrodynamic velocity, ν is the kinematic viscosity, and m is
the effective mass (in graphene this should be replaced by µ/v2g , with µ being
the chemical potential and vg the velocity of the Dirac spectrum). The electric
current is expressed in terms of the hydrodynamic velocity as

j = nu, (3)

where n is the carrier density, see also Eq. (1).
The resulting behavior of the current density is determined by the relative

strength of the viscosity and disorder scattering, which can be expressed in
terms of the dimensionless “Gurzhi number” (note that this definition is writ-
ten in analogy to the Reynolds number [13] and is the inverse of the number
defined in Ref. [93])

Gu =
l2

ντdis
, (4)

where l is the typical length scale of the problem. Large values of Gu indicate
that the disorder scattering dominates (such that the current density exhibits
patterns typical to the traditional diffusive behavior), whereas small values of
Gu correspond to the hydrodynamic viscous flow [94,95,96,93,97,98].

In confined geometries, viscous flows may be accompanied by vortices (or
whirlpools) [94,95,96,93], which may be detected by observing negative non-
local resistance by placing the leads on the opposite sides of a vortex. This
idea was realized in the pioneering experiment of Ref. [27]. Here (unlike the
measurement in Ref. [70]) the leads were placed close to each other (based on
the expected vortex size), see Fig. 4, hence the measured quantity was referred
to as “vicinity resistance”.
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Fig. 4 Negative vicinity resistance in graphene. Left panel: multi-lead device with the
measurement schematic. Right panel: color map showing a wide, intermediate temperature
range where the vicinity resistance is negative (From Ref. [27]. Reprinted with permission
from AAAS).

Fig. 5 Vorticity in electronic flows in graphene. Top panel: simulated flow in the experimen-
tal device shown in Fig. 4 (from Ref. [27]. Reprinted with permission from AAAS). Bottom
panel: double vortex in a long device suggested in Ref. [93]. The red and blue colors indicate
the alternating sign of the deviation of the electrochemical potential from its median value.
(Reprinted with permission from IOP Publishing).

In agreement with the expectation that the hydrodynamic behavior should
occur at intermediate temperatures, the measured vicinity resistance is neg-
ative roughly between 70 K and 250 K (with the actual range being density
dependent), see Fig. 4. This observation was supported in Ref. [27] by a so-
lution to the above equations (2) showing formation of a vortex close to the
leads. Similar theoretical results were reported in Refs. [94,95,96,93], see also
Ref. [99].

Despite the apparent agreement between theory and experiment, observa-
tion of the negative vicinity resistance does not represent the proverbial “smok-
ing gun” proving that the system is in fact in the hydrodynamic regime. The
reason is that ballistic systems may also exhibit negative nonlocal resistance
[51] as has been shown both experimentally [77] and theoretically [100]. This
issue has been specifically studied in Ref. [41], where it was shown that in ad-
dition to being negative, the vicinity resistance has to grow with temperature
(the crossover from the ballistic to hydrodynamic behavior was identified with
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the minimum in the vicinity resistance as a function of temperature). More re-
cently, Ref. [93] reported a numerical solution to the hydrodynamic equations
(2) showing the existence of multiple vortices in long samples, see Fig. 5. Since
the vorticity of the adjacent vortices has the opposite sign, placing multiple
leads along the sample and measuring the voltage as a function of distance
from the source electrode should yield a sign-alternating nonlocal resistance
which should in principle distinguish the ballistic and hydrodynamic behavior.
Alternatively, one could try to use one of the novel imaging techniques [50,51,
52,53] to observe vortices “directly”.

2.3 Hydrodynamic flow around macroscopic obstacles

The collective hydrodynamic flow is expected to differ strongly from the single-
particle ballistic motion in systems with macroscopic obstacles. Whereas par-
ticles tend to scatter off anything they may encounter – sample boundaries,
other geometrical features, or long-range potentials, a viscous fluid tends to
avoid obstacles by flowing around them. As a result, the collective flow maybe
more efficient in carrying the constituent particles through the system in ques-
tion. In the context of the traditional hydrodynamics of rarefied gases, this
fact has been established already by Knudsen [68]. In the context of electronic
hydrodynamics, this issue was first addressed theoretically in Ref. [101] and
experimentally in Ref. [39].

2.3.1 Superballistic transport

One of the most common types of “obstacles” studied in the context of elec-
tronic transport is a constriction (or a point contact). This object was exten-
sively studied in mesoscopic physics [11], with the conductance quantization
[102,103] being the hallmark effect. In particular, it was established that bal-
listic propagation of charge carriers through a point contact yields the con-
ductance that is constrained by a fundamental upper bound [104].

Quantization of the point contact conductance can be understood by con-
sidering one-dimensional (1D) subbands in the constriction of the width W
(corresponding to the quantized values of the transverse momentum, ky =
±πn/W ). Each subband contributes equally to the conductance due to the
cancellation of the group velocity and the 1D density of states (DoS) [11]. Ob-
serving that the number of the occupied subbands is naturally an integer, one
finds that the total conductance is quantized, Gb = 2Ne2/h. In the classical
limit, the number of propagating (Landauer) channels in 2D can be estimated
as N = [kFW/π] (square brackets indicate the integer value), yielding the
upper bound known as the Sharvin limit [11,104].

The above argument neglects electron-electron interaction and is justified
when the corresponding scattering length is large compared to the width of the
constriction, `ee �W . In the hydrodynamic regime, `ee �W , electrons move
collectively avoiding the boundaries and thus may carry the charge through the
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Fig. 6 Superballistic transport in graphene. Left panel: a typical measuring device showing
multiple point contacts varying in width from W = 0.1 to W = 1.2µm. Right panel: point
contact resistance for a W = 0.5µm constriction at representative carrier densities. The
experimental data are represented by dots, while the horizontal lines indicate the Sharvin
limit of the maximum classical ballistic conductance. Lower-than-the-limit resistance at
intermediate temperatures is indicative of the collective, viscous flow of electrons. (From
Ref. [39]. Reprinted with permission from Springer Nature).

point contact more effectively than free fermions (i.e., achieving conductance
higher thanGb, see Fig. 6). Indeed, the solution to the hydrodynamic equations
describing the electron flow through a simplest 2D constriction reported in
Ref. [101] yields the conductance

Gh =
πe2n2W 2

32η
, (5)

where η is the shear viscosity. Since Gh grows with width faster than Gb, there
is a possibility for the “superballistic” conduction for wide enough channels.

The theoretical expectation (Gh > Gb) was first confirmed in the experi-
ment of Ref. [39], see Fig. 6, and more recently corroborated in Ref. [44], where
a novel imaging technique was applied to the point contact problem (see Sec-
tion 2.4), see also Ref. [45]. The theory of Ref. [101] was revisited and expanded
upon in Ref. [37], where the same hydrodynamic equation was solved for the
current density profile. The authors of Ref. [37] also analyzed the intermediate
parameter regime where hydrodynamic flows could be realistically observed.
Heating effects in similar inhomogeneous flows ware analyzed in Ref. [105].

2.3.2 Flows around macroscopic obstacles

The transition from the Ohmic to hydrodynamic flow observed in the point
contact geometry in Refs. [39,44] is similar to the transition between the Knud-
sen and Poiseuille flows [17,68,58]. The tendency of the viscous flow to avoid
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Fig. 7 Numerical simulation of the Poiseuille flow in a 2D channel with randomly placed
macroscopic obstacles (represented by white shapes). The color map indicates the magnitude
of the flow velocity (ranging from zero shown in blue to the maximum shown in dark red).

Fig. 8 Stokes flow around an obstacle in GaAs. Left panel: image of the Hall bar with
two anti-dots used in the experiment [32]. Right panel: the disorder (squares) and electron-
electron interaction (circles) scattering rates obtained from the experimental data measured
in sample with (red) and without (black) the obstacle (From Ref. [32]).

obstacles is well known in hydrodynamics and is illustrated in Fig. 7. However,
a naive solution of the hydrodynamic equations in a 2D system with macro-
scopic obstacles within linear response leads to the so-called “Stokes paradox”
[13,14,32,106,107].

The problem of a motion of a spherical object through an otherwise sta-
tionary viscous fluid (or equivalently, viscous flow around a stationary sphere
subject to the condition of constant flow velocity at infinity) is a classic prob-
lem in hydrodynamics [13,14,92]. For flows characterized by small Reynolds
numbers, one may neglect the nonlinear term in the Navier-Stokes equation
[13,90,91] and solve the resulting system of linear equations. In 3D the prob-
lem can be solved analytically not only for the sphere but also for several other
simple shapes [14], where one typically calculates the “drag force” acting on
the obstacle.

The above simple solution of the linearized hydrodynamic equations ap-
pears to fail if the obstacle has the form of an infinitely long cylinder (or
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equivalently, in 2D), the issue known as the “Stokes paradox”. The reason for
the apparent paradox lies in the approximation used to linearize the Navier-
Stokes equation: the Reynolds number (i.e., the quantitative expression for the
relative strength of the nonlinear and viscous terms) is scale-dependent and
cannot be assumed small at arbitrary large distances [13,14]. Instead of simply
neglecting the nonlinear term, one should linearize it following Oseen [108],
whose modified equation yields a consistent solution (as well as the corrected
expression for the drag force).

In contrast to traditional hydrodynamics, in solid state physics one is typ-
ically interested in linear response properties and has to take into account
momentum relaxation due to weak impurity scattering. The latter allows one
to stabilize the solution, while keeping it within linear response [106,107]. In-
deed, in ultra-pure electronic systems the Gurzhi number (4) may be much
larger than the Reynolds number

Gu

Re
=
l2/(ντdis)

ul/ν
=

l

uτdis
, (6)

justifying the Stokes approximation in the presence of the impurity scattering.
Stokes flow in the 2D electron system with a circular obstacle was observed

in Ref. [32]. The experiment was performed in a GaAs heterostructure with
the role of the obstacle played by an anti-dot (or a micro-hole) in the middle
of the Hall bar, see Fig. 8. The measured resistivity was interpreted using the
macroscopic approach of Refs. [109,110]. The two scattering mechanisms (one
due to impurity scattering and another due to viscosity) were treated as two
parallel channels of momentum relaxation (based on the fact that the corre-
sponding relaxation rates can be attributed to the first and second moments
of the semiclassical distribution function). The two contributions can be sep-
arated since they have a different temperature dependence, in particular, the
viscous contribution should exhibit the Gurzhi-like ρ ∼ T−2 behavior. Now,
the obstacle does not seem to affect the latter, while the disorder contribution
at low temperatures is significantly enhanced, see Fig. 8, which is consistent
with the expectation of the viscous fluid avoiding the obstacle (as opposed to
individual electrons scattering off it).

2.4 Imaging of electronic flows

Although traditional linear response measurements may be strongly affected
by the collective, hydrodynamic behavior, interpretation of such experiments
is not straightforward [41]. It would be much easier if one could simply “watch”
the flow (in a close analogy to the usual hydrodynamics). Fortunately, in recent
years several “scanning” or “imaging” techniques were suggested allowing one
to do just that even if indirectly.

The basic requirement for any imaging technique is that it should be non-
invasive, i.e., it should not disrupt the flow itself. When trying to image the
flow of electrons, one can rely either on detecting spatial variation of electric
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potential [51,52] or on detecting the local magnetic field induced by the charge
motion [50].

2.4.1 Scanning carbon nanotube single-electron transistor

Electric current flowing through a conductor is known to generate a local
change in electrostatic potential (or “voltage drop”). This potential can be
detected using the capacitive coupling to a local probe such as the scanning
single-electron transistor (SET), see Fig. 9. In particular, a nanotube SET
may exhibit extreme voltage sensitivity, while the planar probe design could
help minimizing the back action on (or gating) the sample [52]. Moreover, by
applying weak perpendicular magnetic field, the same probe is able to resolve
the Hall voltage associated with the flow, yielding a direct measure of the local
current density.

Applying the nanotube SET technique to doped graphene in the hydro-
dynamic regime allowed to image the Poiseuille flow of charge carriers [51].
Similarly to the case of the Gurzhi effect, see Sec. 2.1, the main goal of the
experiment was to distinguish the collective (hydrodynamic) motion from the
single-particle (ballistic) behavior (assuming `dis is the largest length scale in
the problem). However, instead of contrasting the temperature dependence
of the sample’s resistance [41], here one has to compare the spatial profile of
the current density. In the channel geometry, see Fig. 9, one studies its de-
pendence on the lateral coordinate, j = j(y)ex (where ex is the unit vector
directed along the channel and y is the coordinate across the channel). The dif-
ficulty is that in contrast to the textbook diffusive behavior, where the current
density is uniform (except in the narrow regions close to the sample bound-
aries), both in the ballistic and hydrodynamic cases j(y) is characterized by a
non-uniform profile with the maximum at the center of the channel [11,112],
making it difficult to distinguish the two regimes experimentally.

The hydrodynamic Poiseuille flow in a narrow channel is a textbook prob-
lem [13]. Taking into account weak impurity scattering and making the com-
mon assumption of the no-slip boundary conditions, one finds for the electric
current density in doped graphene in the channel geometry

Jx = σEx

[
1− cosh(y/`G)

cosh[W/(2`G)]

]
, (7)

where σ in the bulk longitudinal conductivity and `G is the Gurzhi length [93,
110,113,114,115]

`G =
√
ντdis. (8)

Here ν is the kinematic viscosity, see Eq. (2). The parabolic current density
profile typical of the standard Poiseuille flow [13,116] can be recovered by
assuming a large Gurzhi length, `G �W . In this limit, the sample resistance
is proportional to the shear viscosity [114], a manifestation of the Gurzhi effect
[17].
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Fig. 9 Spatial imaging of the voltage drop of flowing electrons in the diffusive (top) and bal-
listic (bottom) regimes [52]. Both plots show the imaged electrostatic potential normalized
by the total current (yielding a quantity with the units of resistance). The data were mea-
sured at T = 4 K. The diffusive flow was observed at charge neutrality (determined by the
sharp maximum in the two-terminal resistance of the sample), while the ballistic behavior
was imaged at the hole density of 1×1012 cm−2. In the latter case, most of the voltage drop
occurs at the contacts, with the contact resistance approaching the ideal Sharvin value [104,
111]. The bottom plane shows the equipotential contours superimposed on the schematic
of the graphene channel and contacts, indicating the gradual voltage drop in the diffusive
case contrasted to the flat potential typical of the ballistic motion [112] (From Ref. [52].
Reprinted with permission from Springer Nature).

Introducing more realistic (Maxwell’s) boundary conditions with nonzero
slip length [117] effectively sets the coordinates where the catenary curve (7)
reaches zero outside of the channel, but does not significantly affect the current
density in the bulk of the sample. From the experimental viewpoint, however,
the resulting curve is difficult to distinguish from the non-uniform current
density in the ballistic regime, see the bottom panel in Fig. 10 and Sec. 3.2.
As a result, one has to perform other measurements (e.g., the Hall field, see
Fig. 10) to distinguish the two regimes [51].

2.4.2 Quantum spin magnetometry

An alternative technique for imaging the electric current density is based on
the idea of measuring the associated stray magnetic field [50]. A sensitive
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Fig. 10 Spatial imaging of the hydrodynamic flow of electrons in doped graphene [51].
Top: the Hall field Ey as obtained by numerical differentiation of the measured Hall voltage
with respect to y, normalized by the classical value, Ecl = BJ/(neW ). The top left panel
shows data taken at T = 7.5 K, B = ±12.5 mT, and Ecl = 91 Vm−1. The right top panel
shows data in the presumed hydrodynamic regime at T = 75 K, B = ±18 mT, and Ecl =
162 Vm−1. The right vertical axis converts the field into the units of the current density by
scaling with ne/B. Bottom: calculated current density Jx/Ju (with Ju = J/W ) and Hall
field Ey/Ecl. The numerical values were obtained using the parameters corresponding to
the experimental data in the top panels. (From Ref. [51]. Reprinted with permission from
Springer Nature).

quantum spin magnetometer was realized using nitrogen vacancy (NV) centers
in diamonds [118]. In contrast to Ref. [51], the experiment of Ref. [50] targeted
the so-called Dirac fluid in neutral graphene and contrasted the presumed
hydrodynamic regime with the diffusive behavior in low-mobility devices. The
latter measurements served as a benchmark and yielded the standard picture of
nearly uniform current (exhibiting a sharp decay near the channel boundaries,
see also Sec. 3.2) shown in Fig. 11.

The main result of Ref. [50] is the observation (by means of the scanning
NV magnetometry) of a Poiseuille-like flow of the electric current in neutral
graphene described by a catenary curve (7). Comparing the data to Eq. (7) the
authors have extracted the kinematic viscosity of the Dirac fluid in graphene
(see the right panel in Fig. 11) showing a good quantitative agreement with
the theoretical calculations of Ref. [119] (without any fitting procedure). Nev-
ertheless, the results of Ref. [50] remain controversial. Within the existing
theory of electronic hydrodynamics, the electric current is related to the hy-
drodynamic velocity by Eq. (3) up to an Ohmic correction. Precisely at charge
neutrality, n = 0, and Eq. (3) yields zero, implying that any electric current
at charge neutrality is not hydrodynamic, but is rather given by the Ohmic
correction [120,121] with the corresponding bulk conductivity determined by
electron-electron interaction [122]. The situation is more involved if the system
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Fig. 11 Spatial imaging of the electric current in neutral graphene [50]. Left: reconstructed
current density as a function of the lateral coordinate. The current is normalized by the
average charge carrier flux I/W , where I is the total flux and W = 1µm is the width of
the channel. The spatial coordinate y is normalized by W and centered on the channel. Red
points show data measured in neutral graphene, gray points – in palladium channel, orange
points – low-mobility graphene. The curves correspond to idealized theoretical expectations:
blue – ideal viscous flow, green – uniform current, purple dashed – the current profile of
non-interacting electrons with diffusive boundary condition. Center: similar measurement for
W = 1.5µm compared to the data on the left. Solid lines are fit to Eq. (7). Right: bounds on
kinematic viscosity obtained from fitting the data to Eq. (7). The black curve is the result
of a theoretical calculation of Ref. [119] at T = 300 K and no adjustable parameters (From
Ref. [50]. Reprinted with permission from Springer Nature).

is subjected to the external magnetic field. In that case, the Ohmic correction
acquires an additional dependence on the hydrodynamic velocity [120], which
in particular leads to positive magnetoresistance [123,124]. However, a recent
theoretical calculation of the electronic flow in a channel geometry in neutral
graphene based on the direct solution of hydrodynamic equations (see Sec. 4)
yields the so-called “anti-Poiseuille” flow [125], with the current density ex-
hibiting a minimum in the center of the channel – in contrast to the maximum
in Eq. (7), see Sec. 5.

Another feature of the data shown in Fig. 11 not accounted for by the
existing theory is that the electric current vanishes at the channel boundaries.
Indeed, the boundary conditions for the Ohmic correction to Eq. (3) should
be derived from the kinetic theory similarly to those describing ballistic prop-
agation of electrons [11]. In that case, one has to solve the kinetic equation
imposing boundary conditions on the electronic distribution function. Both ex-
treme limits typically considered in literature, namely the diffusive and specu-
lar boundary conditions, do not lead to the current vanishing at the boundary.
Moreover, the kinetic theory derivation of the hydrodynamic equations yields
the Maxwell’s boundary conditions for the hydrodynamic velocity [117]. Fi-
nally, there is strong experimental evidence [53] for the existence of classical
edge currents in graphene that are not taken into account in existing theories
but casting further doubts on the results shown in Fig. 11.

The importance of edge physics is further highlighted by the experiment of
Ref. [44], where the NV magnetometry was used to image the flow of charge
through a constriction (or a slit) in neutral graphene. The authors performed
measurements in a channel geometry as well with somewhat contradicting
results, see Fig. 12. While the channel measurement at nearly room tempera-
ture (T = 298 K) yielded the current density profile similar to that reported in
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Fig. 12 Spatial imaging of the electric current in neutral graphene [44]. (a) Optical image
of the graphene device showing the locations used in obtaining the current density measure-
ments for the channel geometry (b-c), W = 2.7µm, and the slit geometry (d-f). (b) Current
density profile in the channel near the charge neutrality point (CNP) at T = 298 K. The
black dots are the reconstructed current density. (c) Measurement of the current density pro-
file of the channel at the same position as in (b), but at T = 100 K and n = 7× 1011 cm−2.
(d) Reconstructed current density magnitude at T = 298 K, near the CNP, showing the char-
acteristic double peaks of Ohmic flow. (d) Temperature dependence of the reconstructed jy
at fixed carrier density n = 7× 1011 cm−2 in a line cut through the constriction. (e) Carrier
density dependence of jy at fixed temperature T = 100 K. (From Ref. [44]. Reprinted with
permission from the authors).

Ref. [50], see Fig. 11, the same profile was observed at T = 100 K implying that
the charge flow in the channel is not very sensitive to the variation of the scat-
tering length. In contrast, the current density measured in the slit geometry
exhibited Ohmic behavior at room temperature, while at lower temperatures
and finite charge densities the Ohmic double peaks disappeared indicating the
crossover into the hydrodynamic regime. The authors of Ref. [44] explained
the contradiction between the results in the channel and slit geometries by
fact that the latter is not affected by the boundary conditions as much as the
former. They conclude that while the edge physics is poorly understood the
slit geometry is better suited to observe the Ohmic-viscous crossover.

2.4.3 Non-topological edge currents

Sample edges play a crucial role in all of the experiments discussed so far. Yet,
understanding of the physics of the edges themselves has proven somewhat
challenging. In traditional condensed matter physics [10], the focus is typi-
cally on bulk behavior and hence a system is modeled to be infinite. Sample
geometry and edge scattering becomes important in mesoscopic physics [11,
112], but most details are encoded in the boundary conditions. Finally, edge
states are being actively researched in the context of the Quantum Hall Effect
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Fig. 13 DFT calculation of the local density of states (LDoS) in a graphene flake [131]. The
enhanced LDoS at the edges appears regardless of the shape of the edge and the presence
of macroscopic defects in the bulk (From Ref. [131]).

Fig. 14 Thermal imaging of a graphene sample [53]. Both images show the local tempera-
ture distribution obtained using the scanning SOT at the background temperature T = 4.2 K
and B = 0. Left: enhanced nonlocality in neutral graphene – heat dissipation is extended
into the left and right arms of the Hall bar. Right: Ohmic behavior – heat dissipation is
confined to the central region of the sample between the source and drain electrodes. (From
Ref. [53]. Reprinted with permission from Springer Nature).

(QHE) [126,127] and more generally in the field of topological insulators [128].
But even in the latter case, the edge behavior is dictated by the topological
properties of the bulk. At the same time, experiments show that sample edges
(in particular, in graphene, see Fig. 13) may exhibit charge accumulation [48,
129,130,131] and carry non-topological currents [53,132].

Charge accumulation at the surface is a known phenomenon in semicon-
ductors [133] and is a key feature in the traditional theory of the Schottky
barrier [134]. Typically, these effects are associated with “band bending” or
local, position-dependent changes in quasiparticle energy levels in the vicin-
ity of the sample surface (or an interface). The band bending can also occur
in 2D systems. In particular, it has been suggested that in graphene band
bending leads to p-doping of the edges, due to either intrinsic mechanisms or
charged impurities (or defects) [48,132,135]. The resulting hole accumulation
at the sample edges has been used in Ref. [53] to interpret the highly unusual
nonlocal transport observed by means of SQUID-on-tip (SOT) thermal imag-
ing and scanning gate microscopy [47,48,136] (for applications of scanning
gate microscopy to 2D electron systems in semiconductor heterostructures see
Ref. [137]).
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Fig. 15 Classical model mimicking the effects of charge accumulation at the sample edges
[53]. Top: the setup – a strip-like sample of width W with bulk conductivity σ and narrow
edge regions (width w/2) with the conductivity ησW/w with η being the phenomenological
measure of charge accumulation. Bottom: nonuniform current density in the presence of the
magnetic field B featuring the bulk flow in the direction opposite to the applied electric
field. (From Ref. [53]. Reprinted with permission from Springer Nature).

The experiment of Ref. [53] provided a deeper insight into the giant non-
locality observed in neutral graphene subjected to magnetic field in Ref. [70],
see Sec. 2.2.1. While confirming the giant enhancement of the nonlocal resis-
tance at charge neutrality and in magnetic field, the new data show a number
of novel features: (i) the nonlocality exists even in the absence of magnetic
field; although the observed RNL is much smaller than in the presence of the
field, it is still an order of magnitude stronger that the Ohmic expectation;
(ii) the observed nonlocality is asymmetric with respect to electron and hole
doping; (iii) in magnetic field, the system exhibits the Hall voltage of the op-
posite sign (as compared to the naive expectation); and most importantly,
(iv) the observed nonlocality can be suppressed by applying a potential at the
sample edges. The latter observation represents the key evidence in support
of the interpretation of the data offered in Ref. [53]. The authors argue that
the sample edges may carry electric current which in turn leads to nonlocal
resistance. The fact that this current can be suppressed by a local potential
points towards its non-topological origin (a topological current tends to flow
around obstacles [48] such that applying a potential would just “redefine” the
edge). The existence of the edge current is further corroborated by the thermal
imaging, see Fig. 14.

The authors of Ref. [53] offer a simple theoretical model to account for
the experimental data. Consider a sample that is infinite in x direction, while
having a width W in the y direction. Without charge accumulation at the
edges, the sample can be assumed to host a uniform charge density, while the
current density can be found using the Ohm’s law and the continuity equation.
Consider now a different situation, where the charge density in narrow regions
close the sample edge exceeds the bulk density. Now, the same equations have
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Fig. 16 Wiedemann-Franz law violation in neutral graphene [28]. The color scheme shows
the Lorenz number as a function of the charge density and bath temperature. The unusually
large Lorenz number is observed in the vicinity of charge neutrality and in a temperature
window above the disorder-dominated regime, but below the onset of electron-phonon cou-
pling (From Ref. [28]. Reprinted with permission from AAAS).

to be solved separately in the edge and bulk regions leading to the complicated
behavior shown in Fig. 15.

The classical model accounts for the unexpected inversion of the Hall volt-
age and edge currents observed in the experiment, but does not explain the
physical origin of these effects at a microscopic level. Some of these features
appear to be rather general for the usual transport equations in the strip
geometry. For example, current flows against the direction of the applied elec-
tric fields have also been reported in Ref. [115], where the hydrodynamics-like
phenomenology was used to define distinct edge regions where charge carriers
react to the applied magnetic field differently than carriers in the bulk of the
sample, see also Ref. [87].

Although implications of the results of Ref. [53] are not fully understood at
the time of writing, it is clear that the boundary effects play a very important
role in the observed behavior of small graphene samples. This presents a clear
challenge for the theory which so far was focusing on bulk systems, see Sec. 3.
In particular, the existing solutions of the hydrodynamic equations in the strip
geometry (similar to Fig. 15) were found under the simplest model assumptions
of either the no-slip or Maxwell’s boundary conditions, see Sec. 3.

One could try to avoid the issue of the boundary conditions (except for the
boundaries with the source and drain electrodes [138]) by utilizing the Corbino
disk geometry [139]. Due to inherently inhomogeneous current flow (even in
the Ohmic regime), the Corbino disk was suggested as a potential device to
measure electronic viscosity [140]. More recently, hydrodynamic behavior in
this setting was reported in the imaging experiment of Ref. [54].

2.5 Wiedemann-Franz law violation

Unconventional charge transport properties exhibited by electronic systems
presumed to be in the hydrodynamic regime may be accompanied by un-
usual heat transport leading to strong violations of the Wiedemann-Franz law
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[141,142]. Initially an empirical observation, the Wiedemann-Franz law can be
readily understood within the standard, single-particle transport theory [10].
Qualitatively, if both charge and heat are carried by the same excitations and
affected by the same scattering mechanisms (as is the case for noninteracting
electron models), then the only difference between the electric and thermal
conductivities is the dimensionality, leading to the famous expression

κ

σ
= LT, L = L0 =

π2

3e2
. (9)

Here σ and κ are the electric and thermal conductivities and the coefficient L
is known as the Lorenz number, while the “universal” value L0 corresponds
to free electrons. Now, electrons in solids are typically not free and hence
there is no reason for Eq. (9) to be universally valid. In conventional metals,
the Wiedemann-Franz law is approximately obeyed, for example the Lorenz
number in copper exhibits deviations from L0 up to a factor of 2 at intermedi-
ate temperatures (depending on sample purity) [143]. Consequently, a strong
violation of the Wiedemann-Franz law almost certainly an indication of un-
conventional physics, that in the context of electronic systems may include
hydrodynamic behavior.

2.5.1 Large Lorenz number in neutral graphene

Unconventional thermal transport in neutral graphene was reported already
in early experiments of Refs. [144,145]. The Wiedemann-Franz law was then
studied in detail in Ref. [28] where it was interpreted as evidence for the
hydrodynamic “Dirac fluid”. An observation of the related phenomenon of
giant thermal diffusivity in a Dirac fluid was reported in Ref. [146].

In hindsight, strong violation of the Wiedemann-Franz law in graphene
should have been expected on the basis of the two celebrated features (see also
Ref. [147]) – the linear spectrum [148,149,150] and “quantum” conductivity
[122,151,152,153,154,155]. The latter indicates that the unusual feature of
the electrical conductivity at charge neutrality is not its value, but rather the
scattering mechanism behind it – electron-electron interaction. In contrast,
the former ensures that the electron-electron interaction does not relax the
energy current (since it is equivalent to the momentum flux, see Sec. 3), which
implies that the thermal conductivity is determined by disorder scattering. As
a result, the Lorenz number is expected to be proportional to the ratio of the
disorder mean free time to the electron-electron scattering time, which in the
hydrodynamic regime (or otherwise in ultra-clean graphene in the appropriate
temperature interval) is assumed to be large, L ∝ τdis/τee � 1, see Fig. 16.

The intermediate nature of the hydrodynamic regime suggested by the
data in Fig. 16 is corroborated by the results of the experiments on the ther-
moelectric power [40]. Here it manifested itself in the failure to uncover the
ideal hydrodynamic limit where (in the absence of disorder) the thermopower
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Fig. 17 Wiedemann-Franz law violation in topological materials. Left: the Lorenz number
extracted from measurements of the electrical and thermal conductivities in a WP2 micro-
ribbon (width 2.5µm) (Reprinted from Ref. [156]). The inset shows the zoomed-in low-
temperature region of the same data. Central: the Lorenz number in bulk (mm-sized) single
crystals of WP2 (Reprinted from Ref. [31]). Green dots show the data from the left plot.
Right: the Lorenz number in MoP (Reprinted from Ref. [157]).

equals the thermodynamic entropy per carrier charge [89,158]. Still, the ob-
served thermopower at relatively high temperatures significantly exceeded the
standard Mott relation indicating the hydrodynamic behavior [40].

Interestingly, the hydrodynamic theory predicts the Wiedemann-Franz law
violation even in doped graphene (in the Fermi-liquid regime) [24,159] (for a
detailed discussion of the Wiedemann-Franz law violation in Fermi liquids in
general see Ref. [160]), but now the Lorenz number is predicted to be small
(and in fact vanish in the limit of large densities, see Sec. 3). The effect can not
be clearly seen in Fig. 16, presumably due to relatively low densities explored
in the data shown. This prediction suggests a possible relation with the small
Lorenz number observed in topological materials, which has not been fully
addressed so far.

2.5.2 Small Lorenz number in topological materials

Recently, hints of electronic hydrodynamics have been observed in the topolog-
ical material WP2 [31,156], where the Wiedemann-Franz law is also strongly
violated, see Fig. 17. The measured thermal and electrical conductivities in
WP2 exhibit features that are significantly different from those observed in
graphene. The presumed hydrodynamic regime is limited to temperatures be-
low 20 K (as determined by the electron-phonon scattering dominating trans-
port properties at higher temperatures). Here, the measured Lorenz number
turns out to be small, L � L0, the result that was attributed to the existence of
the hydrodynamic regime (confirmed by the extremely large measured values
of the typical length scale describing momentum-relaxing scattering proper-
ties). Interestingly enough, similar effects have been observed in a different
topological material, MoP [157].

The precise microscopic nature of the proposed hydrodynamic state and
especially its relation to the hydrodynamic regime in graphene remains un-
clear. An interesting proposal on the experimental measurement of one of the
relevant length scales, the “momentum-relaxing” length (e.g., `dis), which to-
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gether with the “momentum-conserving” length `ee determines whether the
sample is in the hydrodynamic, ballistic, or Ohmic regime, was suggested in
Ref. [161]. The authors used Sondheimer oscillations [162] to extract `dis even
in the ballistic case `dis � L (where L is the typical system size) and suggested
that this effect can be used as an effective quantitative probe for identifying
scattering processes in ultra-clean materials.

3 Electronic hydrodynamics

Hydrodynamic description of interacting particles (or excitations) has long
been part of the theoretical toolbox used (in addition to traditional fluid me-
chanics [13]) in a wide range of fields including many-body theory [3], superflu-
ids [15,26], quark-gluon plasma [163], or interstellar matter [164]. The underly-
ing general idea allowing to develop the hydrodynamic theory suitable to such
different circumstances is the universality of the long-time, long-wavelength
behavior, i.e., the assumption that macroscopic (long-distance) physics is in-
dependent of microscopic details and is governed by symmetries, which can be
expressed in terms of continuity equations.

The most common symmetry assumed in physics is time translation invari-
ance leading to energy conservation. The corresponding continuity equation
reads

∂tnE + ∇·jE = 0, (10a)

where nE is the energy density and jE is the energy current.
The second conservation law typically assumed in the context of electronic

systems is the particle number (or charge) conservation (manifesting gauge
invariance) described by the continuity equation

∂tn+ ∇·j = 0. (10b)

Here n and j are the particle number and current densities while the charge
and electric current densities differ by a factor of the electric charge, see also
Eq. (1).

Supplementing equations (10a) and (10b) by the thermodynamic equation
of state and the entropy balance equation [1] one may arrive at the macro-
scopic theory describing the long-distance properties of the system and find
the spectrum of the collective modes. The resulting behavior is diffusive (i.e.,
equivalent to the standard Drude-like approach to electronic transport [10]).

In contrast, conventional fluids are additionally assumed to be transla-
tionally invariant which implies momentum conservation described by the
continuity-like equation for the momentum density, nk,

∂tn
α
k +∇βΠαβ

E = 0. (10c)

Here Παβ
E is the momentum flux (or stress-energy) tensor. Introducing mo-

mentum conservation has a drastic effect on the collective modes of the system
leading to the appearance of a mode with the linear dispersion, i.e., the sound
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mode [1]. The existence of the latter is the crucial distinction between hydro-
dynamics and other macroscopic, long-wavelength theories (although a more
general interpretation of the term “hydrodynamics” is also used in literature,
see, e.g., Ref. [1]).

The explicit form of the hydrodynamic equations can be obtained by sup-
plementing the continuity equations (10) by the so-called “constitutive rela-
tions” reducing the amount of independent variables and turning Eqs. (10)
into a closed set. This is typically done under the assumption of local equilib-
rium [13]. Moreover, the form of the stress-energy tensor in the moving fluid
is often obtained by relating to the properties of the stationary fluid (that are
assumed to be known). To do that, one needs to change the reference frame
to the rest frame of the fluid. Consequently, traditional hydrodynamics [13]
distinguishes the two cases of Galilean- and Lorentz-invariant fluids, i.e., the
classical and relativistic hydrodynamics. While early applications of the hydro-
dynamic approach to electronic transport were based on the classical theory
[17,22,165], it is the possibility of realization of relativistic hydrodynamics in
graphene that ignited the current interest in the field.

3.1 Relativistic hydrodynamics in a solid state laboratory

The discovery of graphene and Dirac fermions in it [151] has provided a unique
opportunity to study relativistic effects in a solid state laboratory [166]. In par-
ticular, early work on collective electronic flows attempted to adapt relativistic
hydrodynamics in (2 + 1) dimensions to Dirac fermions in graphene [147,167].

3.1.1 Ideal relativistic fluid

Standard equations of relativistic hydrodynamics [13] are encoded in the rela-
tion

∂T ki
∂xk

= 0, (11)

where T ik is the relativistic stress-energy tensor (in graphene, this is a 3 × 3
tensor in the (2 + 1)-dimensional space-time)

T ik = wuiuk − pgik, (12a)

with w and p being the enthalpy and pressure, respectively, in the local rest
frame.

For the purposes of this review, it will be instructive to write down the
explicit form of the individual components of T ik: the energy density

T 00 =
w

1− u2/v2g
− p, (12b)
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the momentum density (here we adopt the usual practice of denoting the space
components by Greek indices, while the Roman indices refer to the space-time)

T 0α =
wuα

vg
(
1− u2/v2g

) , (12c)

and finally the momentum flux density

Tαβ =
wuαuβ

v2g
(
1− u2/v2g

) + pδαβ . (12d)

The energy flux density is proportional to the momentum density and is given
by vgT

0α. This fact will be explored in more detail below.

The relativistic generalization of the Euler equation [168] can be obtained
by projecting Eq. (11) onto the direction perpendicular to the 3-velocity ui

[13]. This yields

w

1− u2/v2g

[
∂

∂t
+ u·∇

]
u + v2g∇p+ u

∂p

∂t
= 0. (13a)

Supplementing the Euler equation (13a) by the relativistic continuity equation

∂
(
nuk

)
∂xk

= 0, (13b)

and the thermodynamic equation of state

w = 3p, (13c)

one can quickly convince oneself that the ideal flow described by Eq. (13a) is
isentropic

∂
(
suk
)

∂xk
= 0. (13d)

Equations (13) represent the closed set of hydrodynamic equations describing
an ideal (non-dissipative) flow of a single-component relativistic fluid in a
(2 + 1)-dimensional space-time with the velocity vg playing the role of the
speed of light. This theory possesses a collective mode [24,121,122,169,170,
171,172,173,174,175,176] with the linear dispersion relation

ω =
vgq√

2
. (14)

In the literature, this mode has been referred to as the “cosmic sound” [169]
or the “second sound” [174].
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3.1.2 Electronic fluid in graphene

The ideal hydrodynamic theory outlined in the previous Section can be con-
sidered a purely phenomenological since it is based on an implicit assumption
of equilibrium in the local rest frame without discussing the physical pro-
cesses responsible for the equilibration. In the case of graphene, that has to be
electron-electron interaction, which is the classical, three-dimensional Coulomb
interaction. The latter point refers to the fact that although graphene is atom-
ically thin so that the electron motion is restricted to two dimensions, the elec-
tric field induced by the electron charges is not. The former point refers to the
orders of magnitude difference between the electron velocity and the speed of
light, vg � c, preventing the above hydrodynamic theory and electromagnetic
fields to be transformed by the same Lorentz transformation. This issue was
addressed in detail in Ref. [147].

Coulomb interaction can be included in the hydrodynamic description by
re-writing the relativistic Euler equation (11) in the form

∂T ki
∂xk

=
e

c
Fikj

k. (15)

Notice, that in the right-hand side of this equation one has to write the speed of
light, which is inconsistent with the use of the velocity vg in the stress-energy
tensor (12). A possibility to resolve this issue was suggested in Ref. [147].
Indeed, redefining the electromagnetic field tensor Fik and the current jk as

Fik =

 0 (c/vg)Ex (c/vg)Ey
−(c/vg)Ex 0 −B
−(c/vg)Ey B 0

 , (16)

jk =
(
vgn, j

)
, (17)

one may remove the inconsistency from Eq. (15) turning it into the standard
form of the relativistic Euler equation. However, this is only a partial solution
since the redefined field tensor (16) leaves only two Maxwell’s equations intact,

∇×B = 0, ∇·E = 4πen, (18)

while the other two are violated leaving the above approach questionable.
Even if the modified equation (15) can be accepted for those problems

that do not involve the two violated Maxwell’s equations (e.g., a description
of stationary currents), there are other issues that prevent one from treating
electronic flows in graphene as truly relativistic. As already mentioned above,
there are other scattering processes in graphene (and in any other solid) af-
fecting the behavior of charge carriers. These may include electron-phonon
and disorder scattering, Auger processes, and three-particle collisions, none of
which are Lorentz-invariant. Moreover, typical currents studied in present-day
experiments are small enough, such that the hydrodynamic velocity is small as
well, u� vg. As a result, one would be interested in the non-relativistic limit
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of the hydrodynamic equation (15) anyways. Now, the non-relativistic form
of hydrodynamics can also be derived within the kinetic theory approach (see
the next Section), where all of the above issues can be consistently taken into
account. In the absence of dissipative processes, the generalized Euler equation
for the hydrodynamic electronic flows in graphene obtained from the kinetic
theory does indeed closely resemble Eq. (13a), while containing additional
terms taking into account scattering processes that were not considered so far.
In addition, introducing dissipative processes within the phenomenological ap-
proach involves defining new parameters, such as electrical conductivity and
viscosity, that can only be determined in an experiment. While the kinetic
theory provides a method to “calculate” these parameters, the accuracy of
these calculations may be limited depending on the initial assumptions allow-
ing one to formulate the kinetic equation in the first place. The form of the
dissipative corrections remains the same in both approaches providing a useful
checkpoint.

3.2 Kinetic theory approach

Kinetic approach has been used to describe electronic transport in solids for
decades [10]. While applicability of the kinetic theory to quantum many-body
systems remains an active area of research [177], it is often assumed that at
least at high enough temperatures electrons behave semiclassically such that
the kinetic theory is applicable. At the same time, this implies that quasi-
particle excitations are long-lived, the assumption that might not be valid in
strongly correlated or hydrodynamic regimes. Strictly speaking, the kinetic
equation can only be applicable in weakly interacting electronic systems. This
might be a problem in graphene, where the effective coupling constant in
an idealized model is αg = e2/vg ≈ 2.2 (which may be reached in suspended
graphene) and while an insulating substrate may reduce this value (by a factor
of the dielectric constant), the resulting αg is not small (typically, αg ≈ 0.2÷0.3
[43,178]). Consequently, derivation of the hydrodynamic equations has to rely
on universality: one assumes that the form of the equations is independent of
the interaction strength (similarly to how the Navier-Stokes equation derived
from the kinetic theory of rarefied gases [16] can be used to describe properties
of water, where the kinetic equation is not applicable). Calculation of kinetic
coefficients then has to rely on the renormalization group procedure [179,119]
treating αg as a running coupling constant [180,181,182,183]. One renormal-
izes the theory to the parameter regime, where the coupling constant is small,
solves the kinetic equations, and then renormalizes back to realistic param-
eter values. For a more microscopic approach to deriving the hydrodynamic
equations based on the nonequilibrium Keldysh technique, see Ref. [184]. This
paper provides a proper microscopic treatment of inelastic electron-electron
scattering that is responsible for establishing the local equilibrium that is the
central assumption of the kinetic approach discussed below.
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3.2.1 Quasiclassical Boltzmann equation

At high enough temperatures (where the hydrodynamic behavior is observed
[27,39,41,42]), the quasiparticle spectrum in monolayer graphene [185] com-
prises two bands of carriers (the “conductance” and “valence” bands) that
touch in the corners of the hexagonal Brillouin zone, i.e., at the “Dirac points”
(multilayer graphene was discussed in Ref. [186]). In the vicinity of the Dirac
points the spectrum can be approximately considered to be linear (logarithmic
renormalization due to electron-electron interaction [181], see also Ref. [187],
is observed at much lower temperatures [188]). The linearity of the Dirac spec-
trum leads to two important kinematic effects: (i) the suppression of Auger
processes [89,189] and hence approximate conservation of the number of parti-
cles in each band independently [23,24,89,190]; and (ii) the so-called “collinear
scattering singularity” [122,123,124,153,180,190,191,192]. The former repre-
sents an additional conservation law that is not taken into account in the above
phenomenological hydrodynamics. The latter is justified by the smallness of
the effective coupling constant and allows for a nonperturbative solution of
the Boltzmann equation (recall that the Boltzmann approach itself is justified
in the weak coupling limit, αg → 0).

Consider now the two-band model of low-energy quasiparticles in graphene.
Within the kinetic approach, the quasiparticles can be described by a distribu-
tion function, fλk, where each quasiparticle state is characterized by the band
index (or chirality), λ = ±1, and 2D momentum, k. The spectrum is assumed
to be linear,

ελk = λvgk, (19a)

with the straightforward relation between velocities and momenta,

vλk = λvg
k

k
, k =

λk

vg
vλk =

ελkvλk
v2g

. (19b)

The distribution function satisfies the kinetic (Boltzmann) equation

Lfλk = Stee[fλk] + StR[fλk] + Stdis[fλk], (20a)

where the left-hand side (LHS) is defined by the Liouville’s operator

L = ∂t + v ·∇r +
(
eE+

e

c
v×B

)
·∇k, (20b)

and the right-hand side (RHS) represents the collision integral.
In the simplest Golden-Rule-like approximation, different scattering pro-

cesses contribute to the collision integral in the additive fashion; hence, the
form of the RHS in Eq. (20a). In the hydrodynamic regime, the electron-
electron interaction (described by Stee) is the dominant scattering process
responsible for equilibration of the system. Consequently, local equilibrium is
described by the distribution function that nullifies Stee [16]

Stee

[
f
(le)
λk

]
= 0, f

(le)
λk =

{
1+exp

[
ελk−µλ(r)−u(r)·k

T (r)

]}−1
, (21)
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where µλ(r) is the local chemical potential and u(r) is the hydrodynamic (or
“drift”) velocity. The local equilibrium distribution function (21) allows for
independent chemical potentials in the two bands, which can be expressed in
terms of the “thermodynamic” and “imbalance” [89] chemical potentials

µλ = µ+ λµI . (22)

In global equilibrium (i.e., for stationary fluid)

f (0) = f
(le)
λk (µI = 0,u = 0). (23)

In addition, two more scattering processes need to be taken into account.
Even ultra-pure graphene samples contain some degree of (weak) disorder.
Scattering on impurities violates momentum conservation leading to a weak
decay term in the generalized Euler equation [23,24,120,121]. This process
(as well as other momentum-relaxing processes) is described in Eq. (20a) by
Stdis. At the same time, electron-phonon interaction may lead not only to the
loss of electronic momentum (which is already taken into account in Stdis),
but also to the loss of energy. Consequently, despite being subdominant in the
hydrodynamic regime the electron-phonon interaction should be taken into ac-
count as one of the dissipative processes. However, due to the linearity of the
Dirac spectrum, lowest order scattering on acoustic phonons is kinematically
suppressed. Instead, it is a higher order process, the so-called disorder-assisted
electron-phonon scattering [193] or “supercollisions” [194,195,196,197], that
plays the most important role in the hydrodynamic regime. Indeed, super-
collisions violate not only energy conservation, but also conservation of the
number of particles in each band. As a result, continuity equations for en-
ergy and single-band particle numbers also acquire weak decay terms. In the
kinetic equation (20a), these effects are described by StR (the subscript “R”
here stands for “recombination”, see Refs. [86,87,88,89,114,198,199,200]).

Within the kinetic theory, conservation laws are manifested in the sum
rules for the collision integrals. There are four conservation laws to consider:
energy, momentum, and particle number in the two bands. The latter can be
expressed in terms of the “charge” and “total quasiparticle” (or imbalance)
numbers similarly to Eq. (22)

nλ =
1

2
(λn+ nI) . (24)

The continuity equation (10b) representing global charge conservation can be
obtained by summing the kinetic equation (20a) over all quasiparticle states.
During this procedure, all three collision integrals in Eq. (20a) vanish [16]

N
∑
λ

∫
d2k

(2π)2
Stee[fλk] = N

∑
λ

∫
d2k

(2π)2
StR[fλk] = N

∑
λ

∫
d2k

(2π)2
Stdis[fλk] = 0.

(25a)



32 Boris N. Narozhny

Moreover, electron-electron and disorder scattering also conserve the number
of particles in each band, such that

N
∑
λ

∫
d2k

(2π)2
λStee[fλk] = N

∑
λ

∫
d2k

(2π)2
λStdis[fλk] = 0, (25b)

whereas supercollisions lead to a decay term in the continuity equation for the
imbalance density

N
∑
λ

∫
d2k

(2π)2
λ StR[fλk] ≈ −µInI,0λQ ≈ −

nI−nI,0
τR

. (25c)

Here nI,0 is the imbalance density at global equilibrium, see Eq. (23), i.e., for
µI = 0 and u = 0. The first equality in Eq. (25c) was suggested in Ref. [89]
and serves as the definition of the dimensionless coefficient λQ, while the sec-
ond (valid to the leading order) was suggested in Refs. [87,120] and offers
the definition of the “recombination time” τR (see also Ref. [198]). The two
expressions are equivalent since nI−nI,0 ∝ µI .

Similarly, both electron-electron and disorder scattering conserve energy,
hence the corresponding collision integrals vanish upon summation over all
quasiparticle states with an extra factor of energy

N
∑
λ

∫
d2k

(2π)2
ελkStee[fλk] = N

∑
λ

∫
d2k

(2π)2
ελkStdis[fλk] = 0. (25d)

Integrating the “recombination” collision integral one finds [201]

N
∑
k

ελkStR[fλk] = −µInE,0λQE ≈ −
nE−nE,0
τRE

. (25e)

The equivalence of the two forms of the decay term stems from nE−nE,0 ∝ µI
assuming the electrons and holes are characterized by the same temperature.

Supercollisions contribute differently to recombination and energy relax-
ation. Recombination typically implies scattering between the quasiparticle
states in different bands only. At the same time, supercollisions may also take
place within a single band [193]. This process does not affect the number of
particles in the band, but is accompanied by the energy loss as the electron
scatters from a higher energy state into a lower energy state (losing its mo-
mentum to the impurity). Consequently, this process provides an additional
contribution to energy relaxation. Thus, the time scales τR and τRE should be
quantitatively different, although of the same order of magnitude (at least at
charge neutrality and in the hydrodynamics regime).

Now, other processes may contribute to τR and τRE , including direct
electron-phonon scattering [86,89,124,192,193,202,203], scattering on optical
phonons [158,204], three-particle collisions [24,204], and Auger processes [23,
24,89,190]. Taking into account these effects does not change the functional
form of the continuity equations leaving the integrated collision integrals (25c)
and (25e) intact, but may affect the theoretical estimates of the values of τR
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and τRE (see Refs. [193,201]). Given the approximate nature of such calcula-
tions, one may treat these parameters as phenomenological taking into account
all relevant scattering processes.

Finally, electron-electron interaction conserves momentum and hence

N
∑
λ

∫
d2k

(2π)2
k Stee[fλk] = 0. (25f)

On the other hand, weak disorder scattering leads to a weak decay term that
should be included in Eq. (10c). Within the simplest τ -approximation [16,120]

N
∑
λ

∫
d2k

(2π)2
k Stdis[fλk] =

nk

τdis
. (25g)

The remaining collision integral StR also does not conserve momentum, but
given the phenomenological nature of τdis [43] (a better version of the disor-
der collision integral in graphene should involve the Dirac factors suppressing
backscattering [205] which would lead to the similar approximation but with
the transport scattering time, which in graphene differs by a factor of 2),
the contribution of the next-order supercollisions (involving both disorder and
phonons) may be considered to be included in τdis (similarly to the above
discussion of τR and τRE).

3.2.2 Continuity equations in graphene

Using the above properties of the collision integrals, one can easily obtain
the continuity equations in graphene [23,24,120] by integrating the kinetic
equation (20a). In comparison to the “phenomenological” continuity equations
(10), the resulting equation will contain extra terms due to the weak decay
processes (discussed in the previous Section) and external electromagnetic
fields. Hence the only true symmetry of the electronic fluid in a solid is gauge
invariance that manifests itself by means of the continuity equation (10b)

∂tn+ ∇·j = 0, (26a)

where the kinetic definitions of the “charge” density and current are [cf.
Eq. (24)]

n = n+ − n−, n+ = N

∫
d2k

(2π)2
f+,k, n− = N

∫
d2k

(2π)2
(1− f−,k) ,

(26b)
and [cf. Eq. (1)]

j = j+ − j− = N

∫
d2k

(2π)2
[v+,kf+,k − v−,k (1−f−,k)] . (26c)
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In the two-band model of graphene, the number of particles in each band
is approximately conserved (see above). Hence, in addition to Eq. (26a), one
finds a continuity equation for the “imbalance density”, see Eq. (24),

∂tnI + ∇·jI = −nI−nI,0
τR

, (26d)

where

nI = n+ − n−, j = j+ + j−, (26e)

and the RHS in Eq. (26d) comes from integrating the collision integral, see
Eq. (25c).

The continuity equation for the energy density is obtained by multiplying
the kinetic equation (20a) by ελk and summing over all quasiparticle states,

∂tnE + ∇·jE = eE ·j − nE−nE,0
τRE

, (26f)

where nE and jE are defined as

nE = N
∑
λ

∫
d2k

(2π)2
ελkfλk (26g)

and

jE = Nv2g
∑
λ

∫
d2k

(2π)2
kfλk = v2gnk. (26h)

The last equality represents the fact that in graphene the momentum density is
proportional to the energy density [due to the properties of the Dirac spectrum
Eq. (19)]. The two terms in the RHS in Eq. (26f) come from the Lorentz
term in the Liouville’s operator (20b) and the integrated collision integral, see
Eq. (25e). The former physically represents Joule’s heat.

Finally, the continuity equation representing momentum conservation is
obtained by multiplying the kinetic equation (20a) by k and summing over
all states. In contrast to the “phenomenological” equation (10c), the resulting
equations contains extra terms stemming from the effect of the electromagnetic
field and weak disorder (25g)

∂tn
α
k + ∇βΠαβ

E − enE
α − e

c
[j×B]

α
= − n

α
k

τdis
. (26i)

Here nk is given by Eq. (26h) and the momentum flux tensor is defined as

Παβ
E = N

∑
λ

∫
d2k

(2π)2
kαvβλkfλk. (26j)
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3.2.3 Constitutive relations

Continuity equations represent the global conservation laws and are valid with-
out any further assumptions. Hydrodynamics, however, assumes that the set of
continuity equations can be closed by expressing the vector and tensor quanti-
ties (i.e., the currents and stress-energy tensor) in terms of the “velocity field”
u(r). Such expressions are known as “constitutive relations”. Phenomenologi-
cally, they can be derived using the Galilean or (in the relativistic case) Lorentz
invariance [13]. However, neither is valid for Dirac fermions in graphene (the
former due to the linear spectrum and the latter due to the classical nature of
the Coulomb interaction, see Sec. 3.1.2). Instead, one can derive the constitu-
tive relations from the kinetic theory under the assumption of local equilibrium
[23,120]. Indeed, substituting the local equilibrium distribution function into
the definitions of the three currents (26c), (26e), and (26h) yields the expected
relations

j = nu, jI = nIu, jE =Wu, (27a)

where W is the enthalpy density. This thermodynamic quantity can also be
evaluated using the local equilibrium distribution function, which yields the
“equation of state”

W = nE + P =
3nE

2+u2/v2g
, (27b)

where P is the thermodynamic pressure. Both of these quantities appear in
the explicit expression of the momentum flux tensor

Παβ
E = Pδαβ +

W
v2g
uαuβ . (27c)

Combining Eqs. (27) with the continuity equation for momentum density
(26i), one may generalize the Euler equation [168] to Dirac quasiparticles in
graphene

W(∂t+u·∇)u+v2g∇P +u∂tP +e(E·j)u = v2g

[
enE +

e

c
j×B

]
−Wu

τdis
. (28)

It is instructive to compare Eq. (28) to the relativistic version of the Euler
equation, Eq. (13a). Formally, the first three terms in the LHS of Eq. (28)
coincide with the three terms of Eq. (13a). The rest of the terms – the Joule’s
heat, Lorentz force, and weak decay due to disorder – have not been considered
in the relativistic theory and are explicitly not Lorentz-invariant. Even though
the first three terms in Eq. (28) have the same form as Eq. (13a), there is a
subtle difference: the pressure p in Eq. (13a) is the thermodynamic pressure
in the local rest frame, while P in Eq. (28) is the pressure in the laboratory
frame. The latter is evaluated with the distribution function (21) and hence
is a function of the velocity u, while p = P (u = 0). This point is the only
difference between the relativistic equation of state (13c) and Eq. (27b) as
well.
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The generalized Euler equation (28) together with the continuity equations
(26a), (26d), and (26f) describe the “ideal” flow of the electronic fluid. In
conventional hydrodynamics “ideal” means “in the absence of dissipation”,
which is not quite the case here, since weak disorder scattering, quasiparticle
recombination, and energy relaxation are already taken into account. However,
none of these processes are due to electron-electron interaction and hence are
absent in the conventional theory [13].

3.2.4 Dissipative corrections

In its simplest form, conventional hydrodynamics [13,16] considers a system of
particles (atoms, molecules, etc.) with the contact (short-range) interaction,
such that individual scattering processes are almost literally “collisions”. These
collisions represent the physical process responsible for equilibration: if the
system is driven out of equilibrium, they tend to restore it. In the process
the system is bound to lose energy, hence the collisions are responsible for
dissipation.

In graphene (and other solids, see below), the situation is slightly more in-
volved, but the main idea remain the same – physical processes responsible for
equilibration lead to dissipation that is described by “kinetic coefficients”. This
can be described as follows [13,16]. Nonequilibrium states are characterized
by nonzero macroscopic current. In the process of equilibration the currents
relax (their values are being reduced towards zero). Hence, the quasiparticle
currents (27a) acquire additional terms – the dissipative corrections [23,24,
120,176]

j = nu + δj, jI = nIu + δjI . (29a)

In the absence of magnetic field, the dissipative corrections are related to
external bias by means of a “conductivity matrix” [120,89,204](

δj
δjI

)
= Σ̂

(
eE − T∇(µ/T )
−T∇(µI/T )

)
. (29b)

At charge neutrality µ = µI = 0 the matrix Σ̂ is diagonal. In the absence
of disorder, the upper diagonal element defines the “quantum” or “intrinsic”
conductivity [23,24,89,120,204]

σQ = e2Σ11(0). (29c)

The third current jE does not acquire a dissipative correction since it is pro-
portional to the momentum density, see Eq. (26h), and electron-electron inter-
action conserves momentum. This point represents the key difference between
electronic hydrodynamics in graphene (or any semimetal with linear spec-
trum) from conventional fluid mechanics of systems with parabolic (Galilean-
invariant) spectrum. In the latter case, it is the particle number (or mass)
current j that is proportional to the momentum density. As a result, the en-
ergy current gets a dissipative correction described by the thermal conductivity
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κ that is determined by interparticle collisions. In the hydrodynamic theory of
graphene, the role that is equivalent to that of κ is played by the elements of
the matrix Σ̂. The matrix nature of Σ̂ reflects the band structure of graphene.
In the case of strong recombination, the imbalance mode becomes irrelevant
and one is left with the single dissipative coefficient σQ, see Ref. [24]. Now, the
thermal conductivity in graphene arises purely due to weak disorder scattering
that is already taken into account in the Euler equation (28). This is the rea-
son for the strong violation of the Wiedemann-Franz law in neutral graphene,
see Sec. 2.5.1.

The kinetic coefficients Σ̂ can be found by solving the kinetic equation
(20a) perturbatively using the standard procedure [16,24,121,147]. In a bulk
system and in the absence of magnetic field, this calculation was performed in
detail in Ref. [120], where a 3×3 matrix was considered [i.e., adding the energy
current and its relaxation due to weak disorder to Eq. (29b)]. The following
2×2 matrix was introduced in Ref. [176]. In both cases, one expresses the

matrix Σ̂ as a linear combination of the interaction and disorder contributions

Σ̂ = M̂ Ŝ
−1
xx M̂, Ŝxx =

α2
gT

2

2T 2
T̂+

π

T τdis
M̂, (30a)

where (following the 2×2 notation)

M̂=

(
1− 2ñ2

3ñE

T
T

xT
T −

2ññI

3ñE

T
T

xT
T −

2ññI

3ñE

T
T 1− 2ñ2

I

3ñE

T
T

)
, (30b)

with dimensionless densities (in self-evident notation; Lin(z) is the polyloga-
rithm)

ñ = Li2
(
−e−x

)
−Li2 (−ex), ñI =

x2

2
+
π2

6
, ñE = −Li3 (−ex)−Li3

(
−e−x

)
,

x = µ/T, T = 2T ln [2 cosh(x/2)] , (30c)

and dimensionless scattering rates

T̂ =

(
t−111 t−112

t−112 t−122

)
, t−1ij =

8πT
α2
gNT

2
τ−1ij . (30d)

Here τ−1ij represent the integrated collision integral appearing while solving
the kinetic equation within the three-mode approximation [121,120,153,174].
The fact that the collision integrals can be represented by the effective scat-
tering rates τ−1ij is not equivalent to the simplest τ approximation that was
employed above for the collision integrals Stdis and StR. Instead, this is sim-
ply a manifestation of the dimensionality of a collision integral (that is inverse
time).

Numerical values of the scattering rates (30d) were discussed in Ref. [206].
In particular, at charge neutrality the off-diagonal elements vanish, t−112 (0) = 0.



38 Boris N. Narozhny

The diagonal element t−111 (0) determines the “intrinsic” or “quantum” conduc-
tivity matrix, σQ. For small x � 1 the dimensionless “scattering rates” tij
have the form [206]

1

t11
=

1

t
(0)
11

+ x2

(
1

t
(2)
11

− 1

8 ln 2

1

t
(0)
11

)
+O(x3), (31a)

1

t12
=

x

t
(1)
12

+O(x3), (31b)

1

t22
=

1

t
(0)
22

+ x2

(
1

t
(2)
22

− 1

8 ln 2

1

t
(0)
22

)
+O(x3). (31c)

For unscreened Coulomb interaction, the dimensionless quantities t
(0,1,2)
ij are

independent on any physical parameter. Numerically, one finds the values [176]
(neglecting the small exchange contribution [191]):(

t
(0)
11

)−1
≈ 34.63,

(
t
(2)
11

)−1
≈ 5.45,(

t
(1)
12

)−1
≈ 5.72,

(
t
(0)
22

)−1
≈ 19.73,

(
t
(2)
22

)−1
≈ 5.65.

In the case of screened interaction, the quantities t
(0,1,2)
ij depend on the screen-

ing length.
The above values for the effective scattering rates yield the following value

for the intrinsic conductivity

σQ = Ae2/α2
g, A ≈ 0.12. (32)

The quantity σQ was studied by multiple authors [24,120,121,122,123,147,
152,153,191] and is a temperature-dependent constant. This temperature de-
pendence appears due to the logarithmic renormalization of the coupling con-
stant αg [179].

The above theoretical values can be related to the experimental data of
Ref. [43]. Using the value of the coupling constant αg ≈ 0.23 that is consistent
with measurements at charge neutrality, the dimensionfull scattering rates at
a typical temperature T = 267 K have the following values

τ−111 ≈ 7.35 THz, τ−122 ≈ 4.17 THz.

The disorder scattering rate at T = 267 K can be estimated as

τ−1dis ≈ 0.8 THz.

In the opposite limit of strongly doped graphene, x � 1, all elements of
the matrix (30d) coincide approaching the value [120,176,206]

t−1ij (µ� T )→ 8π2

3
. (33a)
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The reason for this is the exponentially small contribution of the second band
in which case the two currents j and jI coincide. In this limit, the correspond-
ing dimensionfull rate vanishes

τ−111 ≈
πNα2

gT
2

3µ
, (33b)

leading to the vanishing dissipative corrections to the quasiparticle currents

δj = δjI → 0. (34)

As a result, electric current has the hydrodynamic form (3) leading to the
use of the hydrodynamic approach to electronic transport in doped graphene,
both theoretically [101,95,96,207,100] and experimentally [27,41,42,51]

In the presence of magnetic field or in confined geometries the dissipative
corrections to quasiparticle currents are more complicated. External magnetic
field entangles all three modes and hence the corrections to quasiparticle cur-
rents acquire a dependence on the hydrodynamic velocity u [120]. In confined
geometries, the coordinate dependence of the distribution function becomes
important and as a result the dissipative corrections (29) become non-uniform
[125]. In that case, the usual local conductivity may become poorly defined
[53,125], but the issue remains insufficiently explored.

3.2.5 Electronic viscosity

Dissipative processes also contribute a correction to the momentum flux (or
stress-energy) tensor (26j). In the non-relativistic limit, one writes the dissi-

pative correction to Παβ
E [here Παβ

E,0 denotes the tensor given in Eq. (27c)]

Παβ
E = Παβ

E,0 + δΠαβ
E , (35a)

to the leading order in gradient expansion as

δΠαβ
E = ηαβγδ∇γuδ, (35b)

where ηαβγδ is the rank-four viscosity tensor [13]. In a fully rotationally-
invariant system the explicit form of the viscosity tensor is dictated by sym-
metry and in 2D is given by

ηαβγδ = η
(
δαγδβδ + δαδδβγ

)
+ (ζ − η)δαβδγδ, (35c)

where η and ζ are the shear and bulk viscosity, respectively.
In graphene, the bulk viscosity vanishes, at least to the leading approxima-

tion [23,24,113,121,152], similarly to the situation in ultrarelativistic systems
[16,208] and Fermi liquids [26,209] (although it may appear in disordered sys-
tems in magnetic field [210]). As a result, the leading term of the gradient
expansion of the dissipative stress tensor has the form [13,119,120]

δΠαβ
E = −ηDαβ , (35d)
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where
Dαβ = ∇αuβ +∇βuα − δαβ∇·u. (35e)

In the presence of magnetic field, the shear viscosity acquires a field depen-
dence [109,110,165] and the correction to the stress tensor gains an additional
contribution

δΠαβ
E = −η(B)Dαβ + ηH(B)εαijDiβejB , (35f)

where eB = B/B and ηH(B) is the Hall [109,110,113,120,165,211,212,213,
214] viscosity. While the sign of η is fixed by thermodynamics [13,16], the sign
of ηH is not. Equation (35f) follows Ref. [42]: the Hall viscosity is positive for
electrons [120] (and negative for holes).

Electronic viscosity can be calculated in two different ways. As a linear
response function relating stress to strain [211,215], the viscosity tensor can
be found using a Kubo formula [211,215,216] (that can be related to the usual
Kubo formula for conductivity [211]). Such calculations are mostly perturba-
tive and were used to evaluate viscosity in strongly doped graphene [216] and
in the high-frequency (collisionless) regime [215], as well as in disordered 2D
electron systems beyond the hydrodynamic regime [217]. A further extension
of this approach yields higher order corrections, such as “drag viscosity” [218]
(by analogy to Coulomb drag [219]). Alternatively, one can proceed with the
solution of the kinetic equation (20a) following the standard procedure [16,
120,121]. For arbitrary carrier density this yields a somewhat cumbersome
expression that can only be analyzed numerically [119], but simplifies in the
limiting cases of neutral and strongly doped graphene.

At charge neutrality and in the absence of magnetic field, the only energy
scale in the problem is the temperature T and hence the shear viscosity has
the form [180]

η(µ=0, B=0) = B T 2

α2
gv

2
g

. (36)

The coefficient B has been evaluated in Ref. [180] to have the value B ≈ 0.45.
This result was later confirmed in Ref. [120]. In both cases, the numerical
value was obtained with the simplest model of unscreened Coulomb inter-
action, which is valid for small αg, i.e., in the regime of formal validity of
the kinetic approach (as well as the three-mode approximation allowing for
nonperturbative results). At realistic parameter values one has to supplement
kinetic calculations by the renormalization group (RG) approach treating αg
as a running coupling constant [179,180,181,182,183]. However, the product
αgvg remains constant along the RG flow [180,191], such that Eq. (36) repre-
sents the correct form of shear viscosity in graphene at low temperatures and
B = 0 [179].

Experimentally, a measurement of the shear viscosity is nontrivial [140].
However, nonlocal resistance measurements [27] yield an estimate of a related
quantity, the kinematic viscosity, see Eq. (2). In graphene, the kinematic vis-
cosity is defined as

ν =
v2gη

W
. (37)
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Fig. 18 Kinematic viscosity in monolayer graphene. Left: experimental data of Ref. [27]
obtained by means of vicinity resistance measurements, see Sec. 2.2.2 (From Ref. [27].
Reprinted with permission from AAAS). Right: theoretical result of Ref. [119] obtained
using the kinetic theory and renormalization group techniques (Reprinted with permission
from Ref. [119]. Copyright (2019) by the American Physical Society).

The appearance of the enthalpy density in this definition is a manifestation
of the fact that the hydrodynamic flow in graphene is the energy flow, see
Eq. (26h). At charge neutrality, the kinematic viscosity is determined by the
ratio of the velocity and coupling constant rather than their product [119]

ν(µ=0, B=0) ∝
v2g
α2
gT

, (38)

and hence is renormalized along the RG flow. In doped graphene, the dominant
temperature dependence of the kinematic viscosity can be estimated as [119]

ν(µ� 1, B=0) ∝
v2gµ

α2
gT

2

1

1+T 2/µ2
. (39)

This expression disregards additional temperature dependence arising from
the RG and extra logarithmic factors [24,119,216].

Taking into account renormalization and screening effects, one can reach
a quantitative estimate of the kinematic viscosity that is of the same order of
magnitude as the experimental data reported in Ref. [27], see Fig. 18. Close
to charge neutrality, the theoretical results show excellent agreement with the
data reported in Ref. [50] as shown in Fig. 11 (see, however, Sec. 2.4.2 for the
discussion of the controversial nature of that data).

The field dependence of the shear viscosity was discussed semiclassically
in Refs. [42,109,110,165] in the context of a single-component Fermi liquid
or strongly doped graphene (where only one band contributes to low-energy
physical properties). The resulting behavior is similar to the conventional mag-
netoconductivity [10]

η(B;µ� T ) =
η(B = 0;µ� T )

1 + Γ 2
B

, (40a)

ηH(B;µ� T ) = η(B = 0;µ� T )
ΓB

1 + Γ 2
B

, (40b)
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where

ΓB = 2ωB τ̃11, ωB = |e|v2gB/(µc). (40c)

The kinetic approach [119] allows one to identify the scattering rate τ̃11 appear-
ing in Eqs. (40). Indeed, this rate should be distinguished [121,216] from the
transport scattering rate [122,220] that determines the electrical conductiv-
ity and the “quantum” scattering rate [122] that determines the quasiparticle
lifetime. At the same time, the kinetic theory yields the field dependence of
the shear viscosity at charge neutrality as well [119]

η(B;µ = 0) =
T 2

α2
gv

2
g

B + B1γ2B
1 + B2γ2B

, (41)

where

γB =
|e|v2gB
α2
gcT

2
, (42)

where B1 ≈ 0.0037 and B2 ≈ 0.0274. In contrast to the Fermi liquid results,
the shear viscosity at µ = 0 does not vanish in the limit of classically strong
field.

Frequency-dependent viscosity was analyzed in Refs. [211,216,221]. In par-
ticular, Ref. [221] suggested an existence of a resonance in strong magnetic
fields (as well as the corresponding plasmon damping). Momentum-dependent
viscosity in Fermi liquids (due to head on collisions [222,223]) was suggested
in Ref. [224] (for an alternative approach to viscosity in Fermi liquids see
Ref. [225]).

Beyond graphene, in anisotropic Dirac systems [183,212] one has to con-
sider the full viscosity tensor (these are the systems where two Dirac cones
merge in momentum space [226]; this may be relevant to the organic conduc-
tor α-(BEDT-TTF)2I3 under pressure [227], the heterostructure of the 5/3
TiO2/VO2 supercell [228,229], surface modes of topological crystalline insu-
lators with unpinned surface Dirac cones [230], and quadratic double Weyl
fermions [231]). In the absence of magnetic field, the viscosity matrix contains
six independent components (in accordance with the Onsager reciprocity [13,
16]), which scale differently with temperature [183]. In particular, one of the
six components vanishes at lowest temperatures violating the famous (conjec-
tured) bound for the shear viscosity to entropy density ratio [232]. As a result,
the authors of Ref. [183] proposed a generalization of the bound to anisotropic
2D systems, see Sec. 6. An alternative view on anisotropic Dirac semimetals
taking into account spectrum topology (i.e., the Berry curvature) has been
developed in Ref. [233]. Hall viscosity in the quantum Hall regime in such
systems was discussed in Ref. [234]. More complicated spectra can be encoun-
tered in 3D Luttinger semimetals [235] where the long-screened nature of the
Coulomb interaction leads to a scale-invariant, non-Fermi-liquid ground state
[236]. Hydrodynamic behavior in such systems was considered in Ref. [237].
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3.2.6 Hydrodynamic equations in graphene

Taking into account the dissipative corrections in the continuity equations
(26), one finds the generalization of the Navier-Stokes equation [13,90,91] in
graphene

W(∂t + u·∇)u + v2g∇P + u∂tP + e(E ·j)u = (43a)

= v2g

[
η∆u− ηH∆u×eB + enE +

e

c
j×B

]
− Wu

τdis
.

The full set of the hydrodynamic equations contains also the continuity equa-
tions

∂tn+ ∇·j = 0, (43b)

and

∂tnI + ∇·jI = −nI−nI,0
τR

, (43c)

and the thermal transport equation [201]

T

[
∂s

∂t
+ ∇·

(
su− δj µ

T
− δjI

µI
T

)]
= δj ·

[
eE+

e

c
u×B−T∇µ

T

]
−

−TδjI ·∇
µI
T

+
η

2

(
∇αuβ+∇βuα−δαβ∇·u

)2 −
−nE−nE,0

τRE
+ µI

nI−nI,0
τR

+
Wu2

v2gτdis
, (43d)

where s denotes the entropy density. The equation (43d) replaces the continuity
equation for the energy density (26f) as is common in hydrodynamics [13]. The
hydrodynamic equations are supplemented by the constitutive equations for
the quasiparticle currents (29) and the generalized conductivity matrix Σ̂,
as well as Maxwell’s equations for the electromagnetic field, in other words,
Vlasov self-consistency [16,23,120,121].

3.2.7 Boundary conditions

The state of a conventional fluid is described by the velocity vector and two
thermodynamic quantities, such as density and pressure. The hydrodynamic
equations are differential equations containing spatial and time derivatives of
these variables. Hence, to find a solution to these equations one has to specify
the boundary conditions.

The conventional Navier-Stokes equation [13,90,91] greatly simplifies for
an incompressible fluid. In this case, the fluid density is a constant, while
the pressure gradient can be excluded by applying the curl operation to the
equation. The resulting equation is a differential equation for the velocity only.
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Fig. 19 Channel geometry: the electronic fluid is confined to a channel (along the x-
direction) of the width W ; v is the quasiparticle velocity directed at the angle ϕ to the
channel boundary.

If a viscous fluid is flowing near a solid, stationary boundary, a simple “no-
slip” boundary condition is often assumed [13] (due to the molecular forces
acting between the fluid and the boundary). On the other hand, a boundary
between a fluid and a gas can be characterized by the “no-stress” boundary
condition, where the tangential stress is continuous at the interface. The two
conditions can be “unified” as limiting cases of a more general condition due
to Maxwell [238]

uαt

∣∣∣
S

= `S e
β
n

∂uαt
∂xβ

∣∣∣∣
S

, (44)

where en is the unit vector normal to the surface, ut = u − (u ·n)n is the
tangential velocity, and `S is the so-called “slip length”. The no-slip boundary
condition, u = 0 (the normal component of the velocity has to vanish at any
solid boundary by obvious reasons) corresponds to `S = 0, while the limit
`S →∞ describes the no-stress case.

In electronic systems, the boundary condition (44) was studied in detail in
Ref. [117] based on the kinetic approach. Solving the kinetic equation in the
presence of a boundary requires boundary conditions for the distribution func-
tion. The latter are well studied [239], especially in the context of mesoscopic
physics [11]. Analytic calculations are possible in the two limiting cases of
specular and diffusive scattering at the boundary. Boundary conditions in the
presence of magnetic field were studied in Ref. [240]. Recently, the issue of the
boundary conditions and the slip length in the magnetic field was discussed in
Ref. [241].

Specular scattering refers to ideally smooth boundaries such that the in-
cidence and reflection angles (of the quasiparticle velocity) coincide. In that
case, the distribution function obeys the simple boundary condition

f(ϕ)
∣∣∣
S

= f(−ϕ)
∣∣∣
S
, (45)

where ϕ is the angle between the quasiparticle (microscopic) velocity v and the
boundary. Experimental feasibility of smooth boundaries was recently explored
in Ref. [242].

In the diffusive case, the boundary is assumed to be sufficiently rough, such
that the incoming quasiparticle can scatter off the boundary in any direction
with equal probability (independent of the incidence angle). This can be ex-
pressed by a more complex condition. In a channel geometry (see Fig. 19) the
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corresponding condition has the form [11]

f(W/2,−π<ϕ<0) =
1

2

π∫
0

dϕ′ sinϕ′f(W/2, ϕ′), (46a)

f(−W/2, 0<ϕ<π)|S =
1

2

0∫
−π

dϕ′ sinϕ′f(−W/2, ϕ′). (46b)

The resulting slip length is strongly influenced by the choice of the bound-
ary conditions for the distribution function [117]. The authors of Ref. [117]
express `S in terms of the electron-electron scattering length

`S = g(κ)`ee, κ =
h21h

d−1
2

λd+1
, g(κ)→

{
g0/κ, κ� 1,

g∞, κ→∞,
(47)

where h1 and h2 are the mean height and correlation length describing the
boundary roughness [239], λ is the (temperature dependent) electron wave-
length, and d is the spatial dimensionality. The precise value of g(κ) varies dra-
matically, but at experimentally relevant temperatures one finds `S ≈ 0.5µm,
the value that agrees with experimental observations, see Ref. [51].

Full solution to the hydrodynamic equations in electronic systems requires
also boundary conditions for thermodynamic quantities. In electronic systems,
these are most conveniently expressed in terms of electrochemical potentials.

Traditional transport theory is based on a single-electron approach, where
the main mechanism of electrical resistance – and hence, dissipation – is the
electron-impurity and electron-phonon scattering. In this case, the bulk sys-
tem is characterized by a local conductivity, while contact interfaces – by
the contact resistance. The latter appears due to equilibration of (originally
mismatched) electrochemical potentials in the two interfacing materials [243].
The bulk and contact resistances could be seen as independent parts of the
overall electrical circuit. If the bulk system is diffusive, the contribution of the
contacts is typically negligible. On the contrary, in ballistic systems there is
almost no dissipation in the bulk, such that most of the voltage drop occurring
in the contacts, see Fig. 9.

In the context of ideal (inviscid) hydrodynamics in nearly neutral graphene,
boundary conditions taking into account contact resistance were considered in
Ref. [89]. Assuming the leads are represented by a disordered, particle-hole
symmetric metal, the electron and hole currents are given by the difference
of the electrochemical potentials across the interface divided by the contact
resistance. If no electric current is allowed in the system (as is appropriate
for measurements of thermal conductivity [24,89]), this leads to a boundary
condition relating the imbalance chemical potential µI and current jI .

An alternative situation was considered in Ref. [138]. In this paper the au-
thors have considered an idealized situation where a clean (disorder-free), but
viscous electron fluid is contacted by an ideal conductor with an ideal interface
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characterized by the vanishing reflection coefficient [244]. The absence of disor-
der implies the lack of Ohmic dissipation in the bulk, while the ideal contacts
do not provide any contact resistance. In that case the bulk dissipation due to
viscosity has to be compensated by the work done by current source. If both
the bulk and the contacts are disorder-free, then the electric potential exhibits
a sharp inhomogeneity (on the hydrodynamic scale - a jump) in a narrow
region close to the interface, which translates into a viscosity-dependent con-
tribution to the contact resistance that can be positive or negative depending
on the contact curvature sign.

Real samples are likely to exhibit all of the above effects and moreover
may host additional localized charges at the sample edges leading to classical
(nontopological) edge currents [53], see Sec. 2.4.3. The appropriate boundary
conditions then strongly depend on sample geometry and the specific measure-
ment scheme. For example, the authors of Ref. [140] suggest using the Corbino
disk geometry to measure electronic viscosity. In their setup, the outer edge of
the Corbino disk is isolated, implying the vanishing radial component of the
electric current. In addition, they required the azimuthal momentum compo-
nent to diffuse radially, such that the off-diagonal component of the viscous
stress tensor vanishes at both edges of the disk. Interestingly enough, the
authors of Ref. [140] considered the no-slip boundary conditions as well and
found no qualitative difference with the above approach.

3.3 Hydrodynamic collective modes and plasmons

Hydrodynamic collective modes have been considered by many authors [24,
121,122,169,170,171,172,173,174,175,176,245,246]. The point of consensus
is that the ideal (neglecting dissipative processes) electronic fluid in neutral
graphene is characterized by a sound-like collective mode (sometimes referred
to as the “cosmic sound” [169] or the “second sound” [174]) with the linear
dispersion relation

ω = vgq/
√

2. (48)

In a way, this result justifies the claim that the electronic fluid behave hydro-
dynamically, see Sec. 1.

Dissipative processes damp the sound mode (48). In contrast to tradi-
tional hydrodynamics this happens since dissipation due to “external” scat-
tering (e.g., disorder and electron-phonon scattering) appears already in the
description of an “ideal” (i.e., inviscid) electronic fluid, see Eqs. (26d), (26f),
and (28). Another issue is the regime of applicability of the dispersion relation
(48) or its damped counterparts. The point is that hydrodynamics is based
on the gradient expansion valid at length scales that are much larger than `ee
(representing the energy and momentum conserving interaction responsible
for equilibration). At smaller length scales other, more conventional collective
excitations, such as plasmons [121,170,171,173,174,175,247,248,249,250,251,
252,253,254,255,256,257,258,259,260,261,262], may be identified.
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3.3.1 Electronic “sound” in neutral graphene

Collective excitations in the electronic system in graphene have been recently
studied in detail in Ref. [176]. At charge neutrality and in the absence of
magnetic field, the sound mode (48) damped by the dissipative processes has
the dispersion relation

ω =

√
v2gq

2

2
− 1

4

(
1+q2`2G
τdis

− 1

τRE

)2

− i1+q2`2G
2τdis

− i

2τRE
, (49)

where `G is the Gurzhi length (8). Although Eq. (49) can be straightfor-
wardly derived by linearizing the hydrodynamic equations (43), the damping
in Eq. (49) can be seen as exceeding the accuracy of the hydrodynamic regime.
Indeed, the gradient expansion in neutral graphene is justified for momenta
smaller than a certain scale defined by the electron-electron interaction

q`hydro � 1, `hydro ∼
vg
α2
gT̄

. (50)

Assuming a clean system τdis → ∞ (energy relaxation due to supercollisions
[201] may be also neglected, τRE � τdis), the expression under the square root
in Eq. (49) can be expanded for small q as

v2gq
2

2
−
(
1+q2`2G

)2
4τ2dis

→
v2gq

2

2

[
1−Aq2`2hydro−O(τ−1dis )

]
,

where A is a numerical coefficient. Hence, within the hydrodynamic approach,
the viscous contribution to damping should be neglected, leaving one with the
simpler dispersion [121]

ω =

√
v2gq

2

2
− 1

4τ2dis
− i

2τdis
. (51)

Now, the peculiar nature of the Dirac spectrum in graphene leads to the fact
that the linearized version of the hydrodynamic equations is justified in a
wider parameter region than Eqs. (43) themselves [121,124,192,206] (due to
the “collinear scattering singularity” [23,24,121,153]). In the weak coupling
limit, the linear response theory is valid at much larger momenta

q`coll � 1, `coll ∼
vg

α2
gT̄ | lnαg|

� `hydro, (52)

formally providing one with a justification to extend Eq. (49) beyond the
hydrodynamic regime. However, already at q`hydro ∼ 1 the imaginary part of
the sound dispersion becomes comparable to the real part, at which point the
dispersion is no longer observable.

The nature of the sound mode (48) [or Eq. (49)] becomes clear if one takes
into account the fact that in neutral graphene in the absence of magnetic field
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the electric charge is decoupled from the hydrodynamic energy flow. Indeed, at
charge neutrality n = 0 so that the electric field does not enter the linearized
Navier-Stokes equation (43a), while the “conductivity matrix” in Eqs. (29) is
diagonal. Hence, the energy flow is described by the Navier-Stokes equation
(43a), while charge transport is described by the Ohmic relation (29b), to-
gether with the Vlasov self-consistency. The latter can be expressed using the
Poisson’s equation

EV = −e∇
∫
d2r′

δn(r′)

|r−r′|
. (53a)

In gated structures [87,263], this can be simplified to

EV = − e
C
∇δn(r), (53b)

where C = ε/(4πd) is the gate-to-channel capacitance per unit area, d is the
distance to the gate, and ε is the dielectric constant. This approximation ne-
glects the long-ranged (dipole-type) part of the screened Coulomb interaction
and is justified while the charge density n(r) varies on length scales exceeding
d.

The charge sector of the theory is characterized by an overdamped collec-
tive mode with the dispersion

ω = −iD0q
2

[
1+eVs(q)

∂n

∂µ

]
, D0 =

1

2

v2gτ11τdis

τ11+τdis
. (54)

In a gated structure, the mode is diffusive (with the Vlasov self-consistent
potential Vs = e/C providing a correction to the diffusion coefficient). For
long-range Coulomb interaction (here Vs = 2πe/q), the dispersion remains
purely imaginary with ω ∼ iq at small q.

3.3.2 Electronic “sound” in doped graphene

In doped graphene, the charge and energy modes are coupled by the Vlasov
self-consistency [176]. To the leading order in (weak) energy relaxation this
leads to a sound mode similar to Eq. (49) and a diffusive mode that in a gated
structure has the dispersion

ω = − i

τRE

κv2gq2

(κ+2πC)v2gq
2+4πCτ−1REτ

−1
dis

, (55)

where the Thomas-Fermi screening length is given by

κ = NαgkF = Ne2µ/v2g . (56)

For long-range Coulomb interaction, the factor 2πC should be replaced with
q. Physically, the mode (55) describes energy diffusion appearing due coupling
of the charge and energy fluctuations by Vlasov self-consistency.
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For a gated structure, the sound mode coincides with the “cosmic sound”
(48) at the lowest momenta, albeit with the sound velocity modified by screen-
ing. In the case of long-range Coulomb interaction the dispersion is no longer
sound-like. In the limit q → 0 (and µ� T ), one finds the spectrum similar to
the usual 2D plasmon [12,121]

ω(q � κ) = − i

2τdis
+

√
1

2
v2gqκ −

1

4τ2dis
. (57)

The expression (57) is valid when

q`G � 1, q � κ, v2gκqτ2dis � 1.

These conditions are consistent with the applicability condition of the hydro-
dynamic approach if

vgκτdis � 1 ⇒ Nαgµτdis � 1,

`G � v2gκτ2dis ⇒ N2α4
gµτdis(T̄ τdis)

2 � 1.

The above conditions provide a possibility to observe the dispersion (57) in a
parametrically defined range of wavevectors.

3.3.3 Hydrodynamic modes and plasmons

The above sound-like modes have to be distinguished from plasmonic excita-
tions in electronic systems. The latter are well studied, also in graphene [121,
170,173,174,175,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,
262]. In a degenerate electron gas in 2D, the plasmon dispersion (neglecting
impurity scattering, i.e., τdis →∞) has the form [247]

ω =
√

2e2µq
(

1 + γ
q

κ

)
, (58)

where γ is a numerical coefficient, that can be evaluated either within the ran-
dom phase approximation (i.e., by computing the Lindhard function; this leads
to γ = 3/4 [247]), or using a macroscopic (hydrodynamic-like) theory. The lat-
ter approach yields a different value of γ which is typically attributed to the
fact that hydrodynamics is applicable at small momenta (q`hydro � 1) and fre-
quencies, while plasmons are nonequilibrium excitations that belong to higher
momenta [247]. Based on this argument one might expect that the hydrody-
namic collective modes and plasmons simply have nothing to do with each
other [171]. Yet, given the same leading momentum dependence in Eqs. (57)
and (58), the relation between the two is worth investigating.

In graphene, the possibility of discussing momenta exceeding 1/`hydro is af-
forded by the collinear scattering singularity [23,24,120,121,122,124,152,153,
192] which leads to the existence of two parametrically different length scales,
see Eq. (52), and hence of an intermediate momentum range, `−1hydro � q � `−1coll.
Here a linear response theory of Ref. [124] can be used to find the collective



50 Boris N. Narozhny

modes. Remarkably, macroscopic equations of this theory coincide with the
linearized hydrodynamic equations [176] such that the resulting dispersions
should be valid in the hydrodynamic regime as well and can be compared with
the above results.

In doped graphene, the electron system is degenerate and the linear re-
sponse theory of Ref. [124] can be expressed in terms of a single equation

∂J

∂t
+
v2g
2
∇ρ− ν∆J −

v2g
2

∂n

∂µ
e2E = − J

τdis
, (59)

where J is the electric current, see Eq. (1), and ρ denotes the charge density.
Taking into account the Vlasov field (53) and continuity equation, one finds
the collective mode with the spectrum

ω =

√
2e2µq

(
1+

q

κ

)
−

(1+q2`2G)2

4τ2dis
− i(1+q2`2G)

2τdis
, (60)

where D = v2gτdis/2 and σ = v2g(∂n/∂µ)τdis/2 are the diffusion coefficient and
the Drude conductivity.

The spectrum (60) is exactly the same as the screened sound mode leading
to Eq. (57). In the limit τdis →∞, one may expand Eq. (60) in small q → 0.
This yields Eq. (58) with the “wrong” coefficient, γ = 1/2. At the same time,
the leading term (at q � κ) agrees with the Fermi liquid result in the presence
of disorder [12] (in the absence of viscosity). The dispersion (60) is valid for
q`coll � 1, however, becomes overdamped already at q ∼ `−1hydro. For q � `−1coll,
the quasi-equilibrium description leading to Eq. (59) breaks down and true
plasmons with the dispersion (58) emerge. At these momenta the spectrum
(60) is purely imaginary. Based on this argument, the authors of Ref. [176]
argue that the two modes are not connected. Similar conclusions were reached
in Ref. [173], where it was argued that Coulomb interaction precludes the
appearance of hydrodynamic sound in Fermi liquids.

In graphene at charge neutrality, the “true” plasmon dispersion was estab-
lished in Ref. [122] on the basis of microscopic theory. The leading behavior
of the plasmon dispersion is given by

ω =
√

(4 ln 2)e2Tq. (61)

This expression can be compared to the results of the linear response theory
in graphene [124,176]. The linear response theory of Ref. [124] is based on the
same three-mode approximation as the hydrodynamics discussed in Sec. 3.2.
Similarly to the discussion in Sec. 3.3.1, at charge neutrality the charge sector
decouples from the rest of the theory and can be described by the equation

∂j

∂t
+
v2g
2
∇n− 2 ln 2

π
e2TE = − j

τdis
− j

τ11
, (62)
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where τ11 determines the quantum conductivity (32), see also Eqs. (29) and
(30). Combining Eq. (62) with the continuity equation one finds

ω2 + iω

(
1

τdis
+

1

τ11

)
=
v2g
2
q2 + (4 ln 2)e2Tq, (63a)

leading to a plasmon-like spectrum that can be expressed similarly to Eq. (54)

ω = −i σ(ω)q2

e2∂n/∂µ

[
1 + eVs(q)

∂n

∂µ

]
, (63b)

where σ(ω) is the optical conductivity [206] [in contrast to the static conduc-
tivity (32) in Eq. (54]

σ(ω) =
2e2T ln 2

π

1

−iω + τ−111 + τ−1dis

. (63c)

In the hydrodynamic regime of small frequencies, σ(ω → 0)→ σ0, the mode
(63b) is purely diffusive recovering Eq. (54).

Resolving Eq. (63a) one finds the plasmon dispersion in the form

ω = −i τdis+τ11
2τdisτ11

+

√
(4 ln 2)e2Tq+

v2g
2
q2− (τdis+τ11)2

4τ2disτ
2
11

. (63d)

For ω � τ−111 � τ−1dis and q → 0, the leading behavior in Eq. (63d) coincides
with Eq. (61). At large momenta the first term in the RHS of Eq. (63a) dom-
inates and the dispersion resembles the hydrodynamic sound, Eq. (48). This
contradicts the results of Ref. [122]: although at large q the true dispersion also
becomes linear, the coefficient (analogous to the speed of sound) is different
(there is no factor of

√
2).

To summarize, the plasmon mode (63d) should be contrasted with the
diffusive charge mode (54), and not the sound mode (49). The plasmon and
the sound belong largely to different frequency regimes [171], but most im-
portantly, stem from the two different, decoupled sectors of the theory (the
sound mode can also be obtained from the linear response theory hence one
can extend its region of applicability beyond the hydrodynamic regime). The
latter fact is the reason why the plasmon dispersion is independent of viscos-
ity, while the sound mode (49) is unaffected by screening effects (which are
essentially responsible for plasmon excitations). Formally, the two modes co-
exist but are characterized by different frequencies that are much higher for
the plasmon mode. Approximately at q ∼ `−1coll, i.e., at the applicability limit of
the linear response theory, the sound mode becomes overdamped, which does
not happen to the plasmon. At that point the plasmon dispersion is almost
linear albeit with the coefficient that disagrees with the microscopic theory
[122], as pointed out above.

An alternative approach to plasmons is to consider the electromagnetic
response of the 2D electron fluid to the high-frequency field generated by
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a Hertzian dipole [264]. For small enough frequencies (ωτee � 1) the elec-
tron system responds hydrodynamically. Coupling the hydrodynamic equa-
tions with the 3D Maxwell’s equations one can define a boundary value prob-
lem yielding the full description of the spatial structure of the electromagnetic
field. In particular, the numerical analysis of Ref. [264] suggests co-existence
between the plasmon and diffusive modes in a way that is somewhat differ-
ent from the above solution of the purely hydrodynamic problem (where the
electromagnetic field was assumed to be static). For analytic analysis of edge
magnetoplasmons (using the Wiener-Hopf technique) see Ref. [265].

4 Known solutions to hydrodynamic equations in electronic
systems

Once equipped with the hydrodynamic equations and boundary conditions,
one may embark on finding solutions in an attempt to either explain or pre-
dict experimental observations. Since most transport measurements in solids
are performed within linear response, many authors consider solutions to lin-
earized hydrodynamic equations.

Hydrodynamic charge flow in doped graphene (more generally, in hydro-
dynamic Fermi liquids) was considered analytically in Refs. [101,94,95,96,37,
109,110,207,266] and numerically in Refs. [93,97,98]. Neutral graphene (more
generally, compensated semimetals) was analyzed in Refs. [85,87,114,115,125,
199,267].

Nonlocal transport properties observed in doped graphene [27,41,42] were
studied in Refs. [94,95] focusing on the appearance of vortices (or “whirlpools”)
in viscous flows in confined geometries, the effect that is responsible for the
observed negative nonlocal resistance [27]. A purely analytic approach to that
problem (albeit in an idealized geometry) was offered in Refs. [96,207]. The
authors of Ref. [96] hinted on the possibility to observe multiple vortices, the
effect that was further explored numerically in Ref. [93] (see Fig. 5), where a
sign-alternating nonlocal resistance was suggested as a consequence. The latter
is especially important given that negative nonlocal resistance is not a unique
characteristic of the viscous flow and can be observed in ballistic systems
[41,100]. Interestingly enough, complicated patterns of multiple vortices may
arise also in nearly neutral graphene with long-ranged disorder [267]. Further
complications with the hydrodynamic interpretation of the observed nonlocal
resistance and the associated vorticity were discussed in Ref. [268], where it was
argued that nonlocal (i.e., momentum-dependent) conductivity in disordered
electron systems may mimic the hydrodynamic effects even in the absence
of electron-electron interaction [the idea is to interpret Eq. (2) as the Ohm’s
law with nonlocal conductivity]. However, extracting the viscosity from the
nonlocal conductivity obtained by means of the Kubo formula [211] might
not be straightforward in disordered systems [217]. Moreover, it is unclear
why should one use the hydrodynamic “no-slip” boundary conditions [which



Hydrodynamic approach to two-dimensional electron systems 53

are needed to obtain Poiseuille-like solutions from Eq. (2)] in conventional
disordered systems outside of the hydrodynamic regime.

An alternative measurement providing indirect evidence of hydrodynamic
behavior, namely superballistic transport through a point contact [39] was
discussed theoretically in Refs. [37,101]. Reference [37] provided a detailed
analysis of the hydrodynamic theory in the slit geometry comparing the re-
sults to those of the ballistic and diffusive (Ohmic) behavior. The authors of
Ref. [37] concluded that the hydrodynamic regime represents a relatively nar-
row intermediate parameter region between the two more conventional regimes
(namely, the diffusive and ballistic). Further analysis of a viscous flow through
a constriction and the related enhancement of conductivity was reported in
Ref. [269].

Now, one of the most popular geometries to consider hydrodynamic effects
is the channel (or slab) geometry, see Figs. 9 and 19. The reason for this is
the wide spread of the Hall bar geometry of the experimental samples, see
Figs. 2 and 4, as well as simplicity of theoretical solution, since assuming
a long channel all physical quantities depend only on the coordinate along
the channel (the x-coordinate in the notations adopted in Fig. 19). Assuming
the no-slip boundary conditions, one finds the solution to the Navier-Stokes
equation in the form of the catenary curve, which reduces to the standard
Poiseuille flow [13,116,270] in the limit of the large Gurzhi length, `G � W
(where W is the channel width).

In doped graphene, the electric current is hydrodynamic and is expected
to exhibit this behavior [94], with

Jx = σ0Ex

[
1− cosh y/`G

coshW/[2`G]

]
, (64)

where Jx and Ex are the components of the current density and electric field
along the channel and σ0 is the Drude conductivity (due to, e.g., disorder).
This effect was later observed in the imaging experiment of Ref. [51]. If the
system is subjected to the magnetic field, then increasing the field decreases
the viscosity, see Eqs. (40), and hence the Gurzhi length (8) leading to nega-
tive magnetoresistance (suggested theoretically in Refs. [109,110] and observed
experimentally in Ref. [42]). These effects were also considered within the two-
fluid hydrodynamic model in Ref. [114]. For an alternative theory of the elec-
tronic flows in narrow channels in magnetic fields describing the interplay of
electron-electron interactions, disorder, and boundary conditions that goes be-
yond the hydrodynamic description, see Ref. [240]. For a detailed discussion of
the Hall voltage and more generally the role of Hall viscosity in 2D Fermi liq-
uids see Ref. [271]. The case of long-range disorder (or general inhomogeneity
of the medium) was considered in Refs. [266,272,273], where a positive bulk
magnetoresistance was found due to the absence of the Hall voltage [273]. The
latter point is reminiscent of the situation in graphene at charge neutrality
(other than the boundary effects).

In neutral graphene, the picture is more complicated due to decoupling of
the charge and energy flows in the absence of magnetic field. In that case, the
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Fig. 20 Anti-Poiseuille flow in narrow channels in graphene in perpendicular magnetic field
[125]. The curves represent the inhomogeneous current density in narrow channels of width
W = 0.1, 1, 5µm (blue, green, and red curves, respectively). Calculations wee performed
for typical parameter values τdis ≈ 0.8 THz [43], αg ≈ 0.2 [43,178], ν ≈ 0.4 m2/s [50,119],
B = 0.1 T, T = 250 K (Reprinted with permission from Ref. [125]. Copyright (2021) by the
American Physical Society).

hydrodynamic, Poiseuille-like flow is expected for the energy current [183],
while the charge transport exhibits the usual diffusion with the quantum
conductivity (32) due to electron-electron interaction instead of the standard
Drude conductivity due to disorder. Applying external magnetic field naively
leads to a positive, parabolic magnetoresistance. This is because the bulk elec-
tric current in neutral graphene is accompanied by the lateral quasiparticle
(and energy) current (which in turn leads to the geometric magnetoresistance).
However, due to the compensated Hall effect and quasiparticle recombination,
see Sec. 3.2.1, there is a strong boundary effect changing that behavior and
leading to nonsaturating, linear magnetoresistance (at charge neutrality) [87]
that is somewhat similar to the edge effects considered in Ref. [86,274]. The
key point is that the above bulk effect is incompatible with finite size geom-
etry: assuming that the bulk current is flowing along the channel, the lateral
quasiparticle current must flow across the channel and hence must vanish at
both boundaries. The resulting inhomogeneity of the individual electron and
hole currents is inconsistent with the standard geometric magnetoresistance.
Moreover, this inhomogeneity is only compatible with the continuity equa-
tion for the total quasiparticle density, Eq. (26d), if one takes into account
recombination. The resulting quasiparticle density is practically uniform in
the bulk (characterized by the parabolic geometrical magnetoresistance), but
is strongly inhomogeneous in boundary regions of the width of the recom-
bination length, `R(B) = `R(B = 0)/

√
1+µ2B2 (here µ stands for carrier

mobility). The edge contribution to the overall resistance is linear in magnetic
field [87] and can dominate in classically strong fields. This effect is not spe-
cific to Dirac fermions. Theoretically similar phenomena were considered in
Refs. [114,115,199]. Experimentally, linear magnetoresistance due to recombi-
nation was studied in bilayer graphene in Ref. [88].

Electric current in a neutral graphene channel also becomes inhomoge-
neous in magnetic field (where all three modes in the “three mode approxima-
tion” discussed in Sec. 3 are coupled). However, unlike the situation in doped
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graphene, the current does not exhibit the Poiseuille-like flow (64) [125], see
Fig. 20. One of the reasons for that is the boundary conditions: the Poiseuille
flow is the solution of the hydrodynamic equations with the no-slip boundary
conditions (which can be generalized to the Maxwell’s boundary conditions
with a relatively small slip length). The electric current in neutral graphene is
not related to any solution of the Navier-Stokes equation and, moreover, there
is no reason to assume that the current vanishes at the channel boundaries. In
fact, for specular boundary conditions the opposite happens [125]: quasiparti-
cle recombination leads to a minimum of the current density in the center of
the channel, while the maximum value occurs at the boundaries. More general
boundary conditions (see Sec. 3.2.7) require a numerical solution of the kinetic
equation, which has not yet been carried out in this context.

An alternative geometry to study hydrodynamic flows is offered by the
Corbino disk [139]. Here the electric current is inhomogeneous even in the
simplest case of the Ohmic flow in the absence of magnetic field (j ∝ (1/r)er,
where er is the unit vector in the radial direction). Applying an external
magnetic field that is orthogonal to the disk one can induce an azimuthal,
nondissipative Hall current (that is not compensated by the Hall voltage due
to the absence of boundaries). The resulting inhomogeneous flows represent
an excellent opportunity to study viscous effects [140]. The Corbino disk with
specular boundaries was analyzed in Ref. [214]. Assuming small momentum
relaxation, the authors of Ref. [214] concluded that the Hall angle (that can
be determined by the ratio of the azimuthal and radial components of the
current) is directly related to the ratio of the Hall and shear viscosities such
that the resistive Hall angle approaches the viscous Hall angle. Anomalous
thermoelectric response (i.e., violating the Matthiessen’s rule, Wiedemann-
Franz law, and Mott relation) exhibited by hydrodynamic flows in the absence
of Galilean invariance was reported in Ref. [275].

Recently, the Corbino geometry was used to demonstrate the “superbal-
listic conduction” both experimentally [54] and theoretically [276,277]. Both
theories focused on the boundary effects. Reference [277] analyzed the ra-
dial electric current (in the absence of magnetic field). In the hydrodynamic
regime, the interface between the lead (assumed to be a perfect conductor)
and the Corbino disk is characterized by the finite Knudsen layer [138] with
the boundary conductance that can exceed the Sharvin conductance [104].
Ref. [276] came to similar conclusions arguing that if the number of conduct-
ing channels varies along the current flow (using either a wormhole or Corbino
geometries as examples), the Landauer-Sharvin resistance is detached from the
leads and is spread throughout the bulk of the system. If the length scale char-
acterizing the spread is larger than `ee then the resistance is reduced leading
to superballistic conductance.

More complicated flow patterns can be achieved by considering curved
boundaries or adding artificial obstacles to engineer boundary conditions [97,
98]. In particular, on the basis of numerical analysis it was shown [98] that
additional barriers on the channel walls may lead to the effective “no-slip”
boundary conditions that are commonly assumed in theoretical calculations.
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5 Nonlinear phenomena in electronic hydrodynamics

Nonlinear hydrodynamic effects in electronic systems remain largely unex-
plored both theoretically and experimentally. Early numerical work [278] sug-
gests that electron flows with the high enough Reynolds numbers (for samples
of the size of 5µm and macroscopic speeds u ∼ 105 m/s [279], the authors of
Ref. [278] estimate Re ∼ 100) may exhibit pre-turbulent phenomena such as
vortex shedding.

A representative example of nonlinear phenomena in graphene — hot spot
relaxation — was considered in Ref. [121]. A hot spot is a particular non-
equilibrium state of the system that is characterized by a locally elevated
energy density. This state can be prepared with the help of a local probe or
focused laser radiation [250,251]. As expected [250,251], the hot spot loses
energy by emitting plasmon-like waves. At charge neutrality, these are in fact
acoustic energy waves analogous to the long-wavelength oscillations in inter-
acting systems of relativistic particles [sometimes called the “cosmic sound”,
see Eq. (48)]. However, a nonzero excess energy remains at the hot spot due
to compensation between the thermodynamic pressure and the self-consistent
(Vlasov) electric field. Dissipation tends to destroy the thus achieved quasi-
equilibrium, but the resulting decay is characterized by a longer time scale as
compared to the initial emission of plasmons. At the same time, the plasmons
appear to be damped by viscous effects, see Sec. 3.3.3. The plasmon emission
can also be expected in the in the high-frequency regime, where it has been
linked to the Cherenkov effect [280,281,282,283].

The above quasi-equilibrium solution [121] may be viewed as an example of
a soliton-like stationary nonlinear wave where charge and energy fluctuations
(otherwise distinct at charge neutrality) are coupled by nonlinearity of the
hydrodynamic theory. Away from charge neutrality, solitons were considered
in the inviscid limit in Ref. [284] and more generally in Ref. [285]. In particular,
the authors of Ref. [285] focused on hydrodynamic flows in graphene, where the
decay of solitonic solutions was suggested as a possible experimental measure
of electronic viscosity.

One of the most important consequences of nonlinearity of the hydrody-
namic equations – turbulence [13] – is currently regarded as unlikely to occur
in electronic systems, e.g., in graphene. In conventional fluids, turbulence can
be reached when the Reynolds number characterizing the flow becomes large,
Re & 1000 [13]. In contrast, typical Reynolds numbers characterizing existing
experiments in graphene are rather small. Indeed, assuming one of the high-
est reported values of the drift velocity graphene, u ∼ 105 m/s (based on the
“saturation velocity measurements” [286]), the experimental estimate for the
kinematic viscosity ν ∼ 0.1 m2/s [27], and a typical sample size L ∼ 1µm, one
can estimate the Reynolds number as

Re =
uL

ν
∼

105 m
s × 10−6m

0.1m2

s

= 1.
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Fig. 21 Preturbulent hydrodynamic phenomena [278]. Left: microscale impurities in
graphene can trigger coherent vorticity patterns that closely resemble classical 2D turbu-
lence. The color represents the magnitude of the velocity. Calculations wee performed for
Re = 25. Right: Vortex shedding in graphene at Re = 100 (Reprinted with permission from
Ref. [278]. Copyright (2011) by the American Physical Society).

Fig. 22 Kelvin-Helmholz instability in graphene [288]. The color represents density fluctua-
tions relative to the initial density. The streamlines show the direction of the hydrodynamic
velocity. The gray object is the stationary obstacle. The four images are respective snap-
shots of the fluid motion taken at different times. Calculations wee performed for Re = 53
(Reprinted with permission from Ref. [288]. Copyright (2017) by the American Physical
Society).

At such values of the Reynolds number, one may observe “pre-turbulent” phe-
nomena, such as vortex shedding, as can be seen by solving the hydrodynamic
equations numerically [278] (although at somewhat higher Re, see Fig. 21). For
a possibility to achieve turbulence in electronic systems other than graphene,
see Ref. [287].

Nonlinearity of the Navier-Stokes equation also leads to a number of known
instabilities, arising in particular in systems with nontrivial boundary condi-
tions [13]. One of these instabilities, the Kelvin-Helmholz instability [290,291],
was studied numerically in Ref. [288], see Fig. 22. In conventional fluids this
effect (actually visible in the atmosphere as a specific cloud pattern, the “fluc-
tus”) occurs in the case of velocity shear within a continuous fluid or at the
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Fig. 23 Rayleigh-Bénard instability in graphene [289]. The color represents the temperature
perturbation field with T ∗ = 100 K. The streamlines show the electron velocity. The image
shows the formation of convection cells and the cosine-shaped temperature perturbation
vanishing at the thermal contacts. (Reprinted with permission from Ref. [289]. Copyright
(2015) by the American Physical Society).

interface between two fluids. In an electronic system this can be achieved by
directing a charge flow through a macroscopic obstacle beyond which one ob-
serves vortex formation [288] that is reminiscent of the “whirlpools” that have
been argued to be at the core of the nonlocal resistance experiments [27,93,
94,95,96]. Similarly, numerical simulations demonstrate the Rayleigh-Bénard
instability [292,293], see Ref. [289] and Fig. 23. Note that the simulations of
Ref. [288] were performed using a lattice Boltzmann method for relativistic
gases. For more recent work on that method see Ref. [294].

In addition to the “conventional” instabilities of the hydrodynamic equa-
tions, there is another instability that is predicted to occur in a ballistic field
effect transistor [22] or, in other words, in a gated 2D electron systems. There
are two key observations leading to the appearance of this instability. Firstly,
the carrier density in gated structures is determined by the same electric field
(or voltage), see Eq. (53b), that represents the driving term in the Navier-
Stokes equation (43a). In that case, the simplified Navier-Stokes equation (i.e.,
in the absence of magnetic field, neglecting Joule heating and weak disorder
scattering) together with the continuity equation closely resemble the stan-
dard hydrodynamic equations for “shallow water” [13]. Secondly, one requires
somewhat unusual (but experimentally feasible) boundary conditions: by con-
necting the source and drain of the device to a current source and the gate,
while at the same time connecting the source to a voltage source, one arrives
at the setup with a constant value of the voltage at the source together with
the constant value of the current at the drain. In that case the wave velocities
(shallow water waves in hydrodynamics or plasma waves in the heterostruc-
ture) describing propagation in the opposite directions are different leading to
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Fig. 24 Nonlinear hydrodynamic phenomena suggested in Ref. [300]. Left: the Venturi
geometry and the expected nonlinear I−V characteristic with I ∼

√
V (the gray dashed line

represents and unstable solution, while the gray area corresponds to the parameter regime
of a possible instability towards turbulence). Center: Eckart streaming and the rectification
effect. Right: Rayleigh streaming. (Reprinted with permission from Ref. [300]. Copyright
(2021) by the American Physical Society).

the instability with respect to plasmon generation. Known as the “Dyakonov-
Shur” instability, this effect has attracted considerable attention in literature,
including that on hydrodynamic behavior in graphene [295,296]; however, a
definitive experimental observation of the effect is still lacking. For a detailed
numerical analysis of a similar instability in GaAs MESFETs see Ref. [297].
An alternative suggestion for using viscous electrons as a source of terahertz
radiation was proposed in Ref. [298]. Dyakonov-Shur instability in the Corbino
geometry was discussed in Ref. [299].

Further nonlinear phenomena were discussed in Ref. [300] where three dis-
tinct hydrodynamic effects, namely the Bernoulli effect [301], Eckart streaming
[302], and Rayleigh streaming [303], were suggested as possible experiments re-
vealing nonlinear electron fluid dynamics, see Fig. 24. The suggested electronic
analog of the Bernoulli effect yields a nonlinear term in the I-V characteristic
(V ∝ I2) in the “Venturi geometry” (named after the Venturi tube, the stan-
dard device used for demonstrating the Bernoulli effect), which is essentially a
finite-angle sector of the Corbino disk. The proposed effect is strongly depen-
dent on sample geometry (e.g., it is expected to vanish in rectangular samples)
and hence the boundary conditions. While the stationary Bernoulli effect is
expected to occur in the ideal (inviscid) fluid, the dynamic nonlinear phenom-
ena, such as the Eckart and Rayleigh streaming, are expected to occur in the
presence of dissipation. Applying an oscillatory voltage to one of the sources
while grounding the drain, the authors of Ref. [300] find a dc current (via
the down-conversion). The two effects are distinguished by whether the dom-
inant dissipation occurs in the bulk (Eckart streaming) or at the boundaries
(Rayleigh streaming).
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6 Theoretical conjectures of hydrodynamic behavior in strongly
correlated systems

A (relatively) recent discovery of gauge-gravity duality (or AdS/CFT corre-
spondence) [304,305,306] offers a new alternative theoretical tool to study
strongly correlated systems by relating strongly coupled quantum field theo-
ries to gravity theories in one additional dimension. The best-known result of
this approach is the conjectured lower bound for the shear viscosity to entropy
density ratio [232] that has been found to be satisfied in quark-gluon plasma
[307], cold atoms in the unitary limit [308], and intrinsic graphene [180]. The
same physics can also be expressed in terms of the diffusivity bound [309].
Such bounds reflect not only the interaction strength, but also the symmetry
properties of the system. In particular, in anisotropic systems the proposed
bounds should be modified [183,310].

In the condensed matter context, the duality has also been applied to the by
now perennial issue of the linear resistivity [311] in “strange metals” [312,313]
(cuprates [314,315], iron-based superconductors [316,317,318,319], twisted bi-
layer graphene at magic angles [320,321], etc). The main premise of this ap-
proach is that excitations in strongly correlated systems are predominantly of
the “collective” nature unlike the quasiparticles in conventional metals [306].
In that case, the system is described by “hydrodynamic-like” currents, with
their relation to the external fields provided by the standard linear response
theory. This way one can suggest universal bounds on the diffusion coefficient
and conductivity (related by the Einstein relation) of a strange metal, as well
as their scaling with temperature [310,309]. The concept of diffusion appears
through a particular collective mode (the so-called quasinormal mode [322]).
Such modes essentially replace quasiparticles in the qualitative interpretation
of the resulting theory [306]. Linear response transport properties can then
be obtained by means of either solving the hydrodynamic equations or using
the memory matrix formalism [323]. The latter has the advantage of being
independent of the concept of quasiparticles and extending beyond the hydro-
dynamic regime.

The holographic duality can also be used in the opposite direction, where
solutions of hydrodynamic theories can provide insight into physical properties
of gravitational objects [324].

While they might appear too abstract, the holographic methods can be put
to test by studying the typical condensed matter experiment: optical pump-
probe spectroscopy [325]. The idea is to test one of the characteristic predic-
tions of the bulk (gravity) side of the duality – instantaneous thermalization
[326]. This feature (impossible in the usual semiclassical description of trans-
port) is the natural consequence of causality and is related to the “eigenstate
thermalization hypothesis” [327,328]. As a result, measuring the optical con-
ductivity in a strange metal excited by a short, intense laser pulse that does not
contain a zero-frequency component one should obtain the exact same results
as in the same system at equilibrium (characterized by the final temperature)
at all times after the pulse.
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The linear resistivity has also been interpreted as a signature of “Planckian
dissipation” [329,330] (which is also related to the above proposed bounds).
The idea comes from the fact that the observed optical conductivity in strange
metals often allows for a good fit with the standard Drude expression [311,
315,331,332] which is described by a timescale typically referred to as the
“transport scattering time”, τtr, [10]. The linear temperature dependence of
the resistivity thus translates into the τtr being inverse proportional to tem-
perature or, in other words, proportional to the “Planckian” timescale

τtr ∝ τP =
~

kBT
, (65)

where the Planck’s and Boltzmann’s constants (~ and kB) are restored for
clarity. While completely natural in neutral graphene, see Eqs. (30), where
the temperature dependence (65) follows already from dimensional analysis
(in graphene at charge neutrality, T is the only energy scale), application
of the concept of the scattering time to strongly correlated systems is more
problematic. One possibility is that one can trace the decay of correlation
functions (which can be characterized through a “transport” time scale) to
the decay of local operators, as suggested in Ref. [330].

The hypothesis of the near-hydrodynamic behavior in strange metals (at
least, at low temperatures where the measured optical conductivity has a
Drude form) might sound attractive, but it certainly does not solve all the
problems [329]. At higher temperatures, there appears the state of a “bad
metal”, where the optical conductivity is no longer of the Drude form [333],
while the temperature dependence of the resistivity is still linear. Quantum
Monte Carlo simulations [334] suggest that this state is accompanied by hints
of spin-stripe correlations [335]. While there might be a way to include that
physics into holographic modeling [336], the role of electron-phonon coupling,
quantum criticality, and their relation to the seemingly “universal” linear re-
sistivity across several distinct families of materials remains to be understood.

The above ideas on applying holographic methods to strange metals (in
particular in cuprates) remain controversial. For a recent critique of this ap-
proach, see Ref. [337].

A detailed discussion of relativistic hydrodynamics on the basis of the
AdS/CFT correspondence was offered in Ref. [338]. In the 2D wire (channel)
geometry with no-slip boundary conditions, this theory yields the Poiseuille
behavior (see Sec. 2) for all velocities up to the ultrarelativistic limit u→ vg.
In the latter case, however, the differential resistance of the channel vanishes as
a consequence of the kinematics of special relativity. The theory of Ref. [338]
also offers further insights into the importance of the shear viscosity to en-
tropy density ratio, η/s. Firstly, the channel resistance strongly scales with
η/s, such that “holographic strongly coupled fluids” (either at or near the
proposed bound η/s ' 1/(4π) [232]) are characterized by smaller resistance
in comparison to conventional fluids. Secondly, the boundary relaxation time
(i.e., the timescale describing the rate of the loss of momentum at the channel
boundaries with no-slip boundary conditions) is inverse proportional to η/s.
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7 Open questions and perspectives

The scope of this review was mostly limited to observable effects that can be
interpreted as evidence of electronic hydrodynamics in graphene and other 2D
materials as well as theoretical work exploring hydrodynamic phenomena in
electronic systems. Several important topics were purposefully left out, most
notably the hydrodynamic behavior of non-electronic excitations in solids,
topological hydrodynamics, and generalized hydrodynamics in 1D systems.

The initial argument for electronic hydrodynamics requiring the electron-
electron interaction to be the dominant scattering mechanism implies the ex-
istence of scale separation between electronic thermalization and energy relax-
ation due to, e.g., electron-phonon interaction. The latter typically assumes
that the phonons are in thermal equilibrium. However, the current-carrying
distribution of electrons is generally nonequilibrium and hence electron-phonon
coupling can drive the phonons out of equilibrium as well [339]. The result-
ing phenomenon of phonon drag is well studied [340,341] and in particular
allows for a hydrodynamic description [342]. Recently, evidence of the coupled
electron-phonon fluid was reported in the Dirac semimetal PtSn4 [343] (for
the theory see Ref. [344]), the material characterized by very low resistivity
as well as showing a pronounced phonon drag peak [156] at low temperatures.
Moreover, it was argued [345] that near-hydrodynamic behavior of electronic
transport in the delafossite metals PdCoO2 and PtCoO2 [29,346] should be
understood in the context of phonon drag.

Another aspect of the strong coupling between the electronic system and
the crystal lattice is the interplay between electronic viscosity and elasticity of
the crystal [211,212,215,347,348]. Moreover, static deformations in graphene
are known to lead to the appearance of giant pseudomagnetic fields [349]. From
a general perspective, elasticity and hydrodynamics belong to a broader class
of tensor-field theories that also includes gravitation theories and the theory
of critical phenomena in spaces with nontrivial metrics [350].

Observations of viscous hydrodynamics in electronic transport raised the
question of whether other excitations in solids might behave hydrodynamically
as well. In particular, the classic proposal for the hydrodynamic behavior of
spin waves [19] recently came under intense scrutiny both experimentally [351]
and theoretically [352,353]. Emergent hydrodynamics in a strongly interacting
dipolar spin ensemble (consisting of substitutional nitrogen defects – P1 cen-
ters – and nitrogen-vacancy centers in diamonds) was studied experimentally
in Ref. [354].

Generally speaking, hydrodynamic flows represent a macroscopic, long
wavelength motion governed by global conservation laws [1]. In conventional
fluids, these include the particle number, energy, and momentum conservation
allowing for a statistical description of the system based on traditional Gibbs
approach [16]. In two- (and three-) dimensional electronic systems energy and
momentum are conserved only approximately, which limits the applicability
of the hydrodynamic approach to a relatively narrow temperature interval [23,
24,176] as well as leads to unconventional behavior [87,114,85]. In one spatial
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dimension, in particular in the context of integrable (exactly solvable) models,
the situation is different: here the system is characterized by a large number of
integrals of motion leading to the concept of generalized Gibbs ensembles [355,
356]. Applying the hydrodynamic approach to the generalized Gibbs statistics
yields generalized hydrodynamics offering new possibilities in describing quan-
tum transport in systems with predominantly ballistic behavior (due to the
large number of conservation laws). This approach was introduced in the con-
text of integrable field theories [357] and quantum spin chains [358] and was
successfully applied to a number of other integrable systems [359]. The re-
sulting framework was used to describe one-dimensional cold atomic gases at
large wavelengths [360] and has been observed experimentally [361]. General-
ized hydrodynamics in nonintegrable systems was studied in Ref. [362].

Another topic outside of the scope of this review is topological hydrody-
namics, see Ref. [363] and references therein. Recently, an optical topological
invariant (measurable via the evanescent magneto-optic Kerr effect [364]) was
proposed to describe properties of the viscous Hall fluid [365] suggesting that
graphene with the “repulsive” Hall viscosity (i.e., ωcνH > 0) may be used to
create a topological electromagnetic phase of matter. Especially interesting in
this context is the interplay of topological band structure and electron-electron
interactions (responsible for establishing the local equilibrium underlying the
usual hydrodynamic theory). A related issue is quantum hydrodynamics of
vorticity [366] describing vortex-antivortex dynamics in 2D bosonic lattices
pertaining to the superfluid-insulator transition.

While some experimental work on hydrodynamics in topological materials
was addressed in Sec. 2.5.2, the theoretical discussion of Sec. 3 focused on the
well-studied cases of the 2D Dirac and Fermi liquids. In contrast, a hydrody-
namic theory of topological materials (including Weyl semimetals [59,60] and
conducting surface states of topological insulators) has not been hammered
out yet. For recent literature on this subject see Refs. [66,367,368,369,370,
371]. The effects of band topology on the shear viscosity were considered in
Ref. [372].

Despite the impressive amount of recent work on the subject, electronic hy-
drodynamics remains a young field with many unanswered questions. So far,
the main focus of the community was on Fermi-liquid-type materials (including
doped graphene), where the hydrodynamic equations are basically equivalent
to the standard Navier-Stokes equation and the velocity field completely de-
termines the electric current. Even in this simplest setting, the question of
boundary conditions remains largely unresolved, especially in view of the ex-
periment of Ref. [53]. Furthermore, practical applications of hydrodynamic
equations require reliable tools for their numerical solution. Although there
exists a massive amount of literature devoted to solution of differential equa-
tions (as well as commercial and open source software packages dealing with
their numerical solutions), equations of electronic hydrodynamics have to be
solved together with the equations describing the electrostatic environment of
the system, the electronic circuit into which the system is integrated, and in
the case of spintronics applications – the magnetic environment. Combining all
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these aspects of the problem with the realistic boundary conditions and spe-
cific symmetries represents a formidable computational problem that is rather
difficult to solve using the available “canned” solvers [373,374].

Transport properties addressed with the hydrodynamic approach so far re-
main at the semiclassical “Drude” level (which is not surprising given that the
hydrodynamic equations, see Sec. 3.2.6, were derived from the semiclassical
Boltzmann equation, see Sec. 3. In contrast, the traditional transport theory
considers also “higher order” processes leading to the so-called “quantum cor-
rections” [9,12,375]. While typically discussed using field-theoretic methods,
these results can also be obtained within the kinetic approach (for the cor-
responding “quantum kinetic equation” see Ref. [12]). It remains to be seen,
whether this physics can be included in a macroscopic, hydrodynamic-type
description. Moreover, it is unclear whether one can establish any relation
between the well-known hydrodynamic fluctuations [13] and mesoscopic fluc-
tuations in conventional diffusive conductors [376,377,378].

One of the most intriguing promises of the hydrodynamic approach is its
supposed ability to describe properties of more complicated systems, includ-
ing the “strange metals” [312]. This direction of research is still in its infancy.
Many novel materials (including van der Waals heterostructures [320,379],
conducting surface states of topological insulators, and Weyl semimetals) are
characterized by strong spin-orbit coupling. Up until now, a coherent kinetic
theory for electrons with spin-orbit interaction has not been established, see
Refs. [177,380,381,382]. An advance in this direction could provide a sub-
stantial contribution to the application-oriented field of spintronics [383,384],
which has been under active development in the last two decades.

The conjecture of Planckian dissipation does not explain why does the
observed resistivity remains linear (i.e., does not vanish faster) in different
materials where different scattering mechanisms are presumed to be relevant
in different temperature regimes [311]. This could indicate an existence of a
universal principle limiting the decay rate of the longest lived modes in strongly
correlated systems (similarly to the phase space limitations on the quasipar-
ticle properties in Fermi liquids). Such principle has not been established yet.

Finally, the issues raised in the course of the rapid development of elec-
tronic hydrodynamics are of fundamental importance for the physics of novel
electronic systems necessary for the future development of functional materi-
als. Future advances in this field will have far-reaching implications beyond the
scope of particular systems considered in this review. They will substantially
improve our understanding of interrelation of macroscopic transport properties
(of charge, spin, and heat) and microscopic structure (symmetry properties,
band structure, electronic correlations) of materials allowing for material en-
gineering and functionalization.
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D.L. Maslov, C. Felser, K. Behnia, npj Quant. Mater. 3, 64 (2018).
DOI 10.1038/s41535-018-0136-x

32. G.M. Gusev, A.S. Jaroshevich, A.D. Levin, Z.D. Kvon, A.K. Bakarov, Sci. Rep. 10(1),
7860 (2020).
DOI 10.1038/s41598-020-64807-6

33. G. Varnavides, A.S. Jermyn, P. Anikeeva, C. Felser, P. Narang, Nat. Commun. 11(1),
4710 (2020).
DOI 10.1038/s41467-020-18553-y

34. U. Vool, A. Hamo, G. Varnavides, Y. Wang, T.X. Zhou, N. Kumar, Y. Dovzhenko,
Z. Qiu, C.A.C. Garcia, A.T. Pierce, J. Gooth, P. Anikeeva, C. Felser, P. Narang,
A. Yacoby, Nat. Phys. (2021).
DOI 10.1038/s41567-021-01341-w
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156. J. Gooth, F. Menges, N. Kumar, V. Süβ, C. Shekhar, Y. Sun, U. Drechsler, R. Zierold,
C. Felser, B. Gotsmann, Nat. Commun. 9, 4093 (2018).
DOI 10.1038/s41467-018-06688-y

157. N. Kumar, Y. Sun, M. Nicklas, S.J. Watzman, O. Young, I. Leermakers, J. Hornung,
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307. T. Schäfer, Annu. Rev. Nucl. Part. Sci. 64(1), 125 (2014).
DOI 10.1146/annurev-nucl-102313-025439

308. J.E. Thomas, Nucl. Phys. A 830(1-4), 665c (2009).
DOI 10.1016/j.nuclphysa.2009.09.055

309. S.A. Hartnoll, Nat. Phys. 11(1), 54 (2015).
DOI 10.1038/nphys3174
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333. L. Delacrétaz, B. Goutéraux, S.A. Hartnoll, A. Karlsson, SciPost Phys. 3(3), 025
(2017).
DOI 10.21468/SciPostPhys.3.3.025

334. E.W. Huang, C.B. Mendl, S. Liu, S. Johnston, H.C. Jiang, B. Moritz, T.P. Devereaux,
Science 358(6367), 1161 (2017).
DOI 10.1126/science.aak9546

335. T. Andrade, A. Krikun, K. Schalm, J. Zaanen, Nat. Phys. 14(10), 1049 (2018).
DOI 10.1038/s41567-018-0217-6
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Hydrodynamic flow of charge carriers in graphene is an energy flow unlike the usual mass flow
in conventional fluids. In neutral graphene, the energy flow is decoupled from the electric current,
making it difficult to observe the hydrodynamic effects and measure the viscosity of the electronic
fluid by means of electric current measurements. In particular, we show that the hallmark Poiseuille
flow in a narrow channel cannot be driven by the electric field irrespective of boundary conditions
at the channel edges. Nevertheless one can observe nonuniform current densities similarly to the
case of the well-known ballistic-diffusive crossover. The standard diffusive behavior with the uni-
form current density across the channel is achieved under the assumptions of specular scattering on
the channel boundaries. This flow can also be made nonuniform by applying weak magnetic fields.
In this case, the curvature of the current density profile is determined by the quasiparticle recom-
bination processes dominated by the disorder-assisted electron-phonon scattering – the so-called
supercollisions.

Electronic hydrodynamics has attracted substantial
experimental and theoretical attention in recent years [1–
3]. Hydrodynamic flows in two-dimensional (2D) mate-
rials can now be observed directly using several imaging
techniques [4–14]. Two of these experiments [10, 11] were
focusing on the Poiseuille flow, the simplest manifestation
of viscous hydrodynamics in conventional fluids [15].

The Poiseuille flow [15–17] is a pressure-induced flow in
a pipe or between parallel plates. The latter is equivalent
to a 2D flow in a narrow channel (with the length L much
greater than the width W ). In the middle of the channel
(away from both of its ends) the flow velocity is directed
along the channel and depends only on the transverse
coordinate. In that case, the hydrodynamic equations
admit a simple solution with the parabolic velocity profile
and the flow rate (discharge) that is proportional to the
third power of the channel width (for a three-dimensional
flow through a pipe – the fourth power of the radius,
which is especially important in hematology [18]).

The possibility for an electronic system to exhibit the
Poiseuille flow in a narrow wire was first pointed out by
Gurzhi [19–21]. Recently, similar behavior has been a
subject of intense theoretical [22–33] and experimental
[10–13, 22, 34–44] research in the context of electronic
transport in high-mobility 2D materials. In contrast to
conventional fluids, the electronic flow is affected not only
by viscous effects, but also by weak disorder scattering
and is characterized by a typical length scale known as
the Gurzhi length [26–29, 33]

`G =
√
ντdis. (1)

Here ν is the kinematic viscosity [3, 15, 45–47] and τdis is
the disorder mean free time. The resulting current profile
is given by the catenary curve approaching the parabola
in the limit `G �W .

Nonuniform hydrodynamic flow in a narrow channel

has to be contrasted with a conventional ballistic flow
that in the case of realistic boundary conditions [10, 48]
can also be nonuniform. Assuming rough edges, where
electrons scatter off in all directions with equal probabil-
ity (“diffusive scattering”), bulk impurity scattering com-
petes with boundary effects leading to a ballistic-diffusive
crossover. If the mean free path is much smaller than the
channel width, `dis � W , then the electric current den-
sity is uniform, except for the small regions close to the
edges. Reducing the channel width leads to the appear-
ance of a curved current profile that is visually similar to
the Poiseuille flow (with the maximum curvature corre-
sponding to both length scales being of the same order
of magnitude). In doped graphene this was observed in
the recent imaging experiment [10].

Physics of neutral graphene [11, 49, 50] is more intri-
cate. Here the electronic system is nondegenerate and
both graphene bands contribute to transport on equal
footing. Due to linearity of the Dirac spectrum, the
Auger processes are kinematically suppressed and to the
leading approximation the number of particles in each
band is conserved independently [2, 3, 51, 52]. Another
consequence of the peculiar kinematics of Dirac fermions
in graphene is the so-called “collinear scattering singu-
larity” [52–59] that gives rise to the “three-mode ap-
proximation” allowing one to solve the kinetic equation
and derive the hydrodynamic theory [59–61]. The key
feature of the resulting description is that the hydrody-
namic flow in graphene is the flow of energy rather than
mass in conventional fluids or charge in Ohmic conduc-
tors [2, 3, 60, 61]. Precisely at charge neutrality and in
the absence of external magnetic field, the hydrodynamic
energy flow is completely decoupled from the electric
current. In an infinite system the latter exhibits usual
Ohmic behavior with the dominant contribution to the
mean free path coming from electron-electron interaction
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[50, 54, 55, 60–63]. It is then reasonable to expect that
in a narrow channel this current should exhibit the above
ballistic-diffusive crossover with the only difference being
the microscopic nature of the mean free path.

Hydrodynamic flows in neutral graphene were recently
studied experimentally with the help of nanoscale mag-
netic imaging [11]. The authors reported measurements
of inhomogeneous electric current density interpreting
them in terms of the Poiseuille flow. Assuming that the
curvature of the current density profile was determined
by viscosity, the authors proceeded to extract the shear
viscosity in graphene at and close to charge neutrality.
The resulting values appeared to be in a surprisingly good
agreement with the theoretical calculations of Ref. [47].

What exactly is the Poiseuille flow and can it be used
as a hallmark of hydrodynamic behavior? The Poiseuille
flow is a particular solution to the Navier-Stokes equa-
tion [15] in the case where a viscous, incompressible fluid
is constrained by (straight and infinitely long) station-
ary boundaries. The problem is usually solved under
the assumption of the so-called no-slip boundary con-
ditions, i.e. the vanishing flow velocity at the bound-
aries. Then the Navier-Stokes equation becomes an ordi-
nary second-order differential equation yielding the stan-
dard parabolic velocity profile. The solution can be ex-
tended to the case of more general Maxwell’s bound-
ary conditions [64] with a finite slip length [65]. The
limit of the infinite slip length however (i.e., with no-
stress boundary conditions) does not admit any solutions
for the Poiseuille problem. In other words: a pressure-
induced viscous flow in a pipe cannot be homogeneous.
On the contrary, an inviscid fluid is described by the
Euler equation [15], which is a nonlinear, first-order dif-
ferential equation. As such, it does not require bound-
ary conditions on the longitudinal (along the boundary)
component of the velocity and allows for homogeneous
solutions. Hence, the Poiseuille flow can be used as a
hallmark of viscosity.

Adapting the above arguments to electronic transport
is straightforward for single-band, Fermi-liquid-like sys-
tems, such as doped graphene. Here all physical quanti-
ties are determined by the Fermi energy, all macroscopic
currents are physically equivalent and can be represented
by a single vector quantity, the velocity u. In the “hy-
drodynamic regime”, i.e., if the electron-electron interac-
tion is the dominant scattering mechanism in the prob-
lem, `ee � `dis, `e−ph,W (in the self-evident notation),
u obeys a Navier-Stokes-like equation [2, 3, 61] and may
exhibit a Poiseuille-like behavior in a channel [10].

Electronic hydrodynamics in graphene – In a two-
band system the situation is more involved. An out-of-
equilibrium (current-carrying) state may be character-
ized either by the chemical potentials µ± of each band,
or by their linear combinations [51, 61]

µ = (µ++µ−)/2, µI = (µ+−µ−)/2, (2a)

conjugate to the charge and imbalance densities

n = n+ − n−, nI = n+ + n−. (2b)

In equilibrium µI = 0. Although macroscopic currents
are no longer equivalent [51, 59–61], one can still intro-
duce the hydrodynamic velocity associating it with one
(nearly) conserved current, namely the momentum flux.
In the case of linear spectrum, the momentum flux is
equivalent to the energy current. As a result, the electric
(j), quasiparticle (or “imbalance”, jI), and energy (jE)
currents in graphene can be defined as [2, 3, 61]

j = nu+δj, jI = nIu+δjI , jE =Wu, (3)

where W is the enthalpy density and δj and δjI are
the dissipative corrections, see Eqs. (7) below and the
Appendix. In the degenerate limit µ� T the dissipative
corrections vanish [61, 63] justifying the applicability of
the above single-band picture to doped graphene. At
charge neutrality n = 0, the electric and energy currents
in Eq. (3) appear to be decoupled [61].

The quasiparticle currents j and jI satisfy the conti-
nuity equations [2, 3, 61, 66]

∂tn+ ∇·j = 0, (4a)

∂tnI + ∇·jI = −nI−nI,0
τR

= −12 ln 2

π2

nI,0µI
TτR

, (4b)

where nI,0 = πT 2/(3v2g) is the equilibrium value of the
total quasiparticle density (i.e., at µI = 0) and τR is the
recombination time [66, 67]. The hydrodynamic velocity
u satisfies the generalized Navier-Stokes equation [61]

W(∂t + u·∇)u + v2g∇P + u∂tP + e(E ·j)u = (4c)

= v2g

[
η∆u + enE +

e

c
j×B

]
−Wu/τdis,

where P and η are the thermodynamic pressure and shear
viscosity. The full hydrodynamic equations [51, 68] also
includes the thermal transport equation [66]

T

[
∂s

∂t
+ ∇·

(
su− δj µ

T
− δjI

µI
T

)]
= (4d)

= δj ·
[
eE+

e

c
u×B−T∇µ

T

]
− TδjI ·∇

µI
T

+
η

2
(∇αuβ+∇βuα−δαβ∇·u)

2

−nE−nE,0
τRE

+ µI
nI−nI,0
τR

+
Wu2

v2gτdis
,

which is typically used in hydrodynamics [15] instead of
the continuity equation representing energy conservation.
Here nE,0 denotes the equilibrium value of the energy
density similarly to nI,0 (i.e., at µI = 0) and τRE is the
energy relaxation time (due to, e.g., supercollisions [66]).
The last three terms in Eq. (4d) represent energy relax-
ation, entropy increase due to quasiparticle recombina-
tion, and local heating due to impurity scattering.
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Consider now linear response transport in the channel
geometry (see Refs. [10, 11] for experimental realization)
at charge neutrality (n = 0) in the steady state. Lineariz-
ing the hydrodynamic equations (4), we obtain [66]

∇·δj = 0, (5a)

nI,0∇·u + ∇·δjI = −(12 ln 2/π2)nI,0µI/(TτR), (5b)

∇δP = η∆u + (e/c)δj×B − 3Pu/(v2gτdis), (5c)

3P∇·u = −2δP/τRE , (5d)

where we have used the “equation of state” [61]

W = 3P = 3nE/2.

Here we follow the standard approach [15] where the ther-
modynamic quantities are replaced by the correspond-
ing equilibrium functions of the hydrodynamic variables.
Equations (5) should be solved for the unknowns u, µI ,
and δP keeping the rest of the quantities, e.g., nI,0, P ,
and T , constant (the dissipative corrections δj, δjI are
specified below).

At charge neutrality, the electric field vanishes from the
linearized Navier-Stokes equation (5c) and hence cannot
drive a hydrodynamic flow.

Channel geometry: absence of the Poiseuille flow in
neutral graphene – The channel geometry can be modeled
by an “infinite” strip (i.e., with the length of the sample
much greater than its width). Transport measurements
are assumed to be performed in the two-terminal scheme
[10, 11] with the leads placed at the far away ends of the
channel. In the middle of the sample, the electric current
is flowing along the channel and all physical quantities are
independent of the longitudinal coordinate x (this is not
true in small regions close to the leads at the ends of the
channel). At n = 0, the electric current is given by the
dissipative correction (y is the transverse coordinate)

j = δj = δjx(y)ex, (6a)

automatically satisfying the continuity equation (5a).
The pressure is also a function of y

δP = δP (y) ⇒ ∇δP =
∂δP

∂y
ey, (6b)

and similarly

µI = µI(y) ⇒ ∇µI =
∂µI
∂y

ey. (6c)

Projecting the Navier-Stokes equation (5c) onto the lon-
gitudinal direction, we find

η
∂2ux
∂y2

=
3Pux
v2gτdis

⇒ ux = 0. (6d)

This is a homogeneous equation that yields the trivial so-
lution ux = 0 for either the no-slip or no-stress boundary
conditions. As a result,

u = uy(y)ey ⇒ ∇·u =
∂uy
∂y

. (6e)

Equations (6) represent the key difference between the
usual hydrodynamic flow and electronic transport in neu-
tral graphene. The standard Poiseuille flow is driven
by the pressure gradient. In contrast, charge carriers in
graphene may be driven by the electric field. At charge
neutrality, the field term vanishes from the Navier-Stokes
equation leading to the homogeneous equation (6d) for
the longitudinal component of the velocity. In other
words, in neutral graphene the Poiseuille flow cannot be
driven by the electric field. Instead, one should apply a
temperature gradient along the channel [in this case, the
pressure gradient in Eq. (6b) will acquire an x-component
contributing a driving term to Eq. (6d)], see also Ref. [69].
We emphasize that this result does not depend on micro-
scopic details of carrier scattering off the channel edges.

What does this mean for the electric current? To clar-
ify this question, we have to specify the dissipative cor-
rections δj and δjI . Their general form was derived in
bulk graphene in Refs. [61, 63], see also Appendix. This
derivation relied on the specific form of the nonequilib-
rium correction to the distribution function [see Eq. (A.2)
in the Appendix] representing a natural generalization of
the usual solution to the kinetic equation in metals [70]
to the two-band Dirac system in graphene. In a narrow
channel, solutions to the kinetic equation should be sub-
jected to boundary conditions [48] reflecting the nature
of the electron scattering off the channel edges. Specifi-
cally at charge neutrality, the typical wavelength of Dirac
quasiparticles is determined by temperature and thus is
much larger than the length scale of the edge roughness
that may lead to diffusive boundary scattering [48]. As a
result, specular boundary conditions can be expected to
adequately describe neutral graphene samples.

In the limit of specular scattering, the distribution
function Eq. (A.2) satisfies the boundary conditions and
the form of the dissipative corrections remains the same
as in the bulk system. At charge neutrality, the correc-
tions are given by

δj =
1

e2R̃

[
eE + ωBeB×

(
α1δI∇µI

τ−1dis +δ−1I τ−122

− 2T ln 2

v2g
u

)]
,

(7a)

δjI = − δI

τ−1dis +δ−1I τ−122

1

e2R̃
× (7b)

×
[
α1ωBeB×E+

2T ln 2

π
e2R0∇µI+α1ω

2
B

2T ln 2

v2g
u

]
,

R̃ = R0+α2
1δIR̃B . (7c)

Here R0 [see Eq. (A.14)] is the zero-field bulk resistivity

in neutral graphene [56, 59, 61], R̃B ∝ ω2
Bτdis is defined in
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Eq. (A.15), ωB = eBv2g/(2cT ln 2) is the generalized cy-
clotron frequency (at µ = 0), α1 ≈ 2.08 and δI ≈ 0.28 are
detailed in Appendix (vg is the band velocity in graphene,
c is the speed of light, and e is the electron charge). The
parameter τ22 describes the integrated collision integral,
see Eqs. (A.10). Both τdis and τ22 are functions of the
chemical potential and temperature [61, 63, 71].

At B = 0, the corrections (7) simplify. The electric
current (eδj = E/R0) is governed by Ohmic dissipative
processes and is independent of the hydrodynamic veloc-
ity. Thus, we immediately arrive at the conclusion that in
the absence of magnetic field the resulting current density
in neutral graphene with specular boundaries is uniform
[61, 63] (in contrast to conventional hydrodynamics that
does not allow for a stationary pressure-induced flow in
a channel without boundary friction [15]).

Nonuniform flows in magnetic field – Now we show
that even in the case of specular scattering on the chan-
nel boundaries the electric current density can be made
nonuniform by applying weak external magnetic field. In
the presence of the field all three macroscopic currents are
entangled [59] and one may expect a nontrivial solution.
The electric current is still flowing along the channel,
but is accompanied by the lateral flow of quasiparticles
[67, 72]. Since the latter cannot leave the sample, this
flow has to vanish at both edges and (nontrivial) homo-
geneous solutions are no longer allowed. In the two-fluid
model of compensated semimetals [28, 72–74] the non-
trivial inhomogeneous solution becomes possible due to
quasiparticle recombination.

Quasiparticle recombination refers to any scattering
process that violates the “approximate” conservation of
the number of particles in each individual band includ-
ing the kinematically suppressed Auger processes, three-
particle collisions, scattering by optical phonons [68, 75],
and the disorder-assisted electron-phonon coupling (or
“supercollisions”) [66, 76–80]. The resulting quasiparti-
cle recombination is manifested by an additional term in
the continuity equation (4b) for the total quasiparticle
(“imbalance”) density, first established in Ref. [51] in the
context of thermoelectric phenomena. Recently, recom-
bination effects were shown to lead to linear magnetore-
sistance in compensated semimetals [28, 72, 73, 81], giant
magnetodrag [67, 82], and giant nonlocality [74, 83].

Supercollisions involve electron-phonon scattering in a
close proximity to an impurity. This is a second-order
process where an electron in the upper graphene band
may scatter into an empty state in the lower band while
emitting a phonon and losing its momentum to the impu-
rity. In the reverse process, the phonon can be absorbed
by an electron in the lower band scattering into the upper
band (while the impurity compensates the momentum
mismatch). Unlike the Auger or three-particle processes,
supercollisions also lead to energy relaxation [66]. Tak-
ing into account recombination without energy relaxation
leads to a problem: the continuity equations for energy
and imbalance densities allow only homogeneous solu-
tions, which are incompatible with the boundary condi-

tions at the channel edges. Here we show that energy re-
laxation due to supercollisions provides the missing piece
of the puzzle allowing one to solve the hydrodynamic
equations in graphene at charge neutrality. The solu-
tion exhibits the inhomogeneous electric current profile in
neutral graphene samples with specular reflective bound-
aries subjected to weak magnetic field. We find that the
curvature of the current profile is determined by supercol-
lisions (by means of energy relaxation and quasiparticle
recombination) rather than viscosity. A case of rough
edges and the corresponding ballistic-diffusive crossover
will be discussed elsewhere.

Substituting Eqs. (6) into Eqs. (7) and (5) we find
five equations for five unknowns. Excluding δP , µI , and
δjx, we are left with two equations for uy and δjI,y. For
further analysis it is convenient to express them in terms
of dimensionless quantities

q =
nI,0uy
q0

, p =
δjI,y
q0

, q0 =
ωBτdisE

eR̃
, (8)

in the matrix form

L̂

(
q′′

p′′

)
= M̂

(
q
p

)
+

(
α3

p0

)
. (9)

The matrix L̂ comprises squares of the recombination-
related length scales

L̂ =

(
`2RG − `2R1 −`2R1

`2R2 `2R2

)
, (10a)

`2RG =
1

2
`2RE +

2π

9ζ(3)

ηv4gτdis

T 3
, `2RE = v2gτREτdis, (10b)

`2R1 = α1α3δI
R̃B

2R̃
`2R, `2R = v2gτRτdis, (10c)

`2R2 = δI
R0

2R̃

`2R
1+τdis/(δIτ22)

, (10d)

while the remaining quantities are dimensionless

α3 =
2π2 ln 2

27ζ(3)
≈ 0.42, p0 =

α1δI
1+τdis/(δIτ22)

, (10e)

M̂ =

(
C1 0
C2 1

)
, (10f)

C1 =
R0+δR(B)

R̃
, C2 =

12α1δIR̃B ln2 2

π2R̃
. (10g)

The correction δR(B) ∝ ω2
Bτdis is defined in Eq. (A.20).

Once Eqs. (9) are solved, we can find the electric cur-
rent (6a) by substituting the solutions q(y) and p(y) into
Eq. (7a) using Eqs. (8) and (5b). As a result, we find

δjx(y) =
E

eR0

[
1 +

ω2
Bτdis

e2R̃ T

(
πα1

2 ln 2
p+

6 ln 2

π
q

)]
. (11)
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We reiterate, that Eq. (11) describes viscous electronic
fluid in neutral graphene (in contrast to the inviscid sys-
tem of carriers considered in Ref. [59]).

Anti-Poiseuille flow – Equations similar to Eq. (9) have
been solved in Refs. [28, 29, 59, 72, 73] focusing on the
resulting magnetoresistance. In this paper, we are inter-
ested in the spatial profile of the quasiparticle currents.
Requiring the “hard-wall” boundary conditions

uy(±W/2) = δjI,y(±W/2) = 0, (12)

we find the solution to Eq. (9) in the form of the catenary
curve (

q
p

)
=

[
cosh(K̂y)

cosh(K̂W/2)
− 1

]
M̂−1

(
α3

p0

)
, (13)

where

K̂2 = L̂−1M̂.

Substituting the result (13) into Eq. (11) we find the elec-
tric current profile. The analytical expression for δjx(y)
contains a y-independent contribution inherited from the
first term in Eq. (11) and the second term in Eq. (13) as
well as the catenary terms describing the y dependence of
q and p from Eq. (13). Following Ref. [11], we normalize
the current by its average value

j̄x =
1

W

W/2∫
−W/2

dy δjx(y), (14)

which can be obtained by averaging the solution (13)
and substituting the result into Eq. (11). Averaging of
Eq. (13) can be performed in the matrix form yielding(

q̄
p̄

)
=

[
tanh(K̂W/2)

K̂W/2
− 1

]
M̂−1

(
α3

p0

)
. (15)

The resulting inhomogeneous current density is illus-
trated in Fig. 1. In some sense, the profile in Fig. 1 can be
regarded as “anti-Poiseuille”: unlike the true Poiseuille
flow, this current density exhibits a minimum in the cen-
ter of the channel and is finite at the edges (in fact, there
it reaches its maximum). The numerical values of the cur-
rent density were obtained by using a typical experimen-
tal value τdis ≈ 0.8 THz [50], and assuming the effective
coupling constant αg ≈ 0.2 following Refs. [50, 84], tem-
perature T = 250 K, magnetic field B = 0.1 T, and chan-
nel width W = 1µm. The viscosity affects the current
only through the length scale `RG, see Eq. (10b). This
effect is rather weak: varying the kinematic viscosity in
the range ν ≈ 0.2− 0.4 m2/s [47] does not significantly
change the results. The recombination length `R ≈ 2µm
and the energy relaxation length `RE ≈ 5µm were cho-
sen phenomenologically, using the data of Ref. [67] as a
guide (see also Ref. [66] for theoretical estimates).

FIG. 1. Catenary curves of the current density in the narrow
channel Eq. (11) normalized by the averaged current den-
sity Eq. (14). The numerical results were obtained for typ-
ical parameter values (τdis ≈ 0.8 THz [50], αg ≈ 0.2 [50, 84],
ν ≈ 0.4 m2/s [11, 47], B = 0.1 T, T = 250 K) and correspond
to three values of the channel width, W = 0.1, 1, 5µm (blue,
green, and red curves, respectively).

FIG. 2. Magnetoresistance in the narrow channel following
from Eqs. (11) and (14) normalized by the zero field resistance
R0. The numerical results were obtained for typical parame-
ter values (τdis ≈ 0.8 THz [50], αg ≈ 0.2 [50, 84], ν ≈ 0.4 m2/s
[11, 47], B = 0.1 T, T = 250 K) and correspond to three val-
ues of the channel width, W = 0.1, 1, 5µm (blue, green, and
red curves, respectively).

Discussion – The results presented in this paper have
to be contrasted with recent developments in the field.
Most theoretical work on hydrodynamic behavior in neu-
tral (or compensated) materials has been devoted to infi-
nite (or bulk) systems [2, 3, 55, 56, 59, 61]. A bulk system
is translationally invariant and hence the current den-
sity is uniform with the corresponding sheet resistance
given by R0. In confined geometries the resulting flow
profiles are determined by the interplay of sample geom-
etry, boundary conditions, and bulk interaction effects
[85]. With respect to electron-electron interaction, three
types of theories have been proposed: (i) macroscopic lin-
ear response theory of the inviscid electronic fluid [59],
(ii) two-fluid hydrodynamics [28, 72–74], and (iii) vis-
cous electronic hydrodynamics that is the subject of the



6

present paper. The difference between the three theories
can be summarized as follows. (i) Ref. [59] generalized
the standard transport theory (basically the Ohm’s law)
to graphene close to charge neutrality, where electron-
electron interaction contributes to resistivity directly due
to lack of Galilean invariance. The resulting theory com-
prises three (algebraic) equations for three macroscopic
currents and does not take into account any possible vis-
cous effects. (ii) The two-fluid model of Ref. [28] assumes
that the electron and hole subsystems (i.e. quasiparticles
in two different bands) are independently equilibrated
and form two separate fluids, while the electron-hole scat-
tering leads to a (weak) friction between the two resem-
bling the drag effect [86]. The theory is described by two
sets of hydrodynamic equations, including two Navier-
Stokes-like equations. In contrast, (iii) the present hy-
drodynamic theory [2, 3, 60, 61] assumes that the whole
system of charge carriers is equilibrated and is described
by a single local equilibrium distribution function leading
to the generalized Navier-Stokes equation (4c).

The only theory (out of the above three) yielding the
Poiseuille-like flow for the electric current in the channel
geometry in the absence of magnetic field is the two-fluid
model of Ref. [28], which assumes no-slip boundary con-
ditions for each fluid. Neither the linear response the-
ory of Ref. [59], nor the theory presented in this paper
allow for this behavior. The fact that both approaches
yield qualitatively similar results (e.g., the absence of the
Poiseuille flow and linear magnetoresistance) is quite re-
markable since these are two very different theories de-
scribing two different systems, one being a (nearly rela-
tivistic) viscous fluid and the other being a standard, in-
viscid (two-band) system of charge carriers. Even though
in the latter approach viscosity as a stress-stress correla-
tor [69, 87, 88] might not not necessarily vanish, none of
the macroscopic currents satisfy a second-order differen-
tial equation of the Navier-Stokes type. It is then rather
natural that this approach does not allow for a Poiseuille-
like flow. In contrast, the present theory is fully hydro-
dynamic and hence does in principle yield Poiseuille-like
solutions [89]. What we have shown here is that such
flows cannot be driven by the electric field leaving the
temperature gradient [89] as the only possibility to in-
duce the Poiseuille flow in neutral graphene.

All of the above references agree that in the absence of
magnetic field the electric current density is uniform not
only in the bulk (infinite) systems, but also in the chan-
nel geometry. Based on the arguments presented in this
paper, we believe that this intuitively expected conclu-
sion follows from implicit assumptions of either specular
boundary conditions or diffusive bulk transport (where
one typically neglects narrow regions of inhomogeneity at
the sample edges). Here we considered a narrow channel,
which is no longer translationally invariant in the lateral
direction. In the special case of specular scattering off the
boundaries, we find basically the same results: the cur-
rent density (11) is uniform with R0 being the resistance.
Note, that similarly to the bulk case, R0 remains finite

even in the limit of a completely clean system, τdis →∞.
Once magnetic field is applied, the bulk system exhibits
[56, 59] positive, parabolic magnetoresistance δR(B), see
Eq. (A.20). In contrast, the electronic flow constrained
to the narrow channel exhibits linear magnetoresistance
[59] in classically strong magnetic fields, see Fig. 2.

Linear magnetoresistance was also discussed in the
context of the two-fluid hydrodynamics in Refs. [28, 72–
74]. These papers considered a phenomenological model
of compensated semimetals where elementary excitations
of the conductance and valence bands, i.e. electrons and
holes, independently formed hydrodynamic flows, which
were only weakly coupled by a mutual friction term. In
the language of scattering rates, this model assumed that
intraband scattering (characterized by τee and τhh in self-
evident notation) was much more effective that interband
scattering, such that τeh � τee, τhh. The zero-field resis-
tance of this model is provided by disorder and intraband
scattering, such that even in a clean system (τdis → ∞)
the resistance is finite (and is determined by τeh in a way
that is reminiscent of Coulomb drag [67, 86, 90, 91]).

We also stress the importance of boundary conditions
on the distribution function. In particular, Ref. [59] con-
sidered linear magnetoresistance in a narrow channel, but
avoided the issue of the boundary conditions altogether
(moreover, energy relaxation was considered purely phe-
nomenologically). Based on the present results, we con-
clude that the theory presented in Ref. [59] is valid for
specular scattering off the channel boundaries. The two-
fluid model of Refs. [28, 29, 72, 73] assumed hydrody-
namic no-slip boundary conditions for each of the fluids,
such that the resulting electric current would vanish at
the boundaries. This approach is justified in a different
parameter regime from that of the hydrodynamic the-
ory of electronic transport in graphene [2, 3, 61] with
a single hydrodynamic flow. Here the electric current
comprises both the hydrodynamic and dissipative con-
tributions [63], see Eq. (3). At charge neutrality, the
current is decoupled from the hydrodynamic flow and
hence the hydrodynamic boundary conditions [65]. In-
stead, one should consider the kinetics of scattering off
the boundaries [48]. In the special case of specular scat-
tering considered in this paper, the nonequilibrium dis-
tribution function retains the form (A.2). In the case
of diffusive scattering the distribution function is more
complicated; in both cases the boundary condition on
the distribution function does not easily translate into
a boundary condition for electric current: in particular,
the electric current is not expected to vanish at the chan-
nel boundaries [10]. The alternative no-stress boundary
condition [24, 65], that could have been chosen in the two-
fluid model of Refs. [28, 29, 72, 73], would not yield the
results shown in Fig. 1 as well: then the current density
profile would have been flat at the channel boundaries.

Finally, our conclusions should be contrasted with the
results of the recent imaging experiment of Ref. [11]. In
particular, the vanishing current density at the channel
boundaries reported in Ref. [11] are consistent with the



7

hydrodynamic no-slip boundary condition that within
our theory is incompatible with the charge flow in neu-
tral graphene. Based on the arguments presented in this
paper, as well as our preliminary results for the case of
diffusive scattering of the channel boundaries, we expect
that bulk recombination processes (most notably, super-
collisions) are responsible for the small dip in the cur-
rent density seen in Ref. [11] in the center of the chan-
nel. The overall shape of the current density profile re-
ported in Ref. [11] is consistent with the charge flow un-
der assumptions of the diffusive boundary conditions (to
be discussed in a subsequent publication). However, at
this time we are not aware of any theoretical argument
that would predict precise vanishing of electric current
at the channel boundaries (in particular, a recent study
of hydrodynamic boundary conditions in graphene [65]
reported a nonvanishing slip length). This point appears
even more intriguing in view of the recent experiment
demonstrating current-carrying edge states in graphene
[14], possibly a manifestation of the edge charge accu-
mulation. The latter physics (in particular, the role of
such “edge reconstruction” in the hydrodynamic regime)
is yet to be addressed in a consistent theoretical fashion.
Combining the observations of Ref. [11] and Ref. [14] with
the peculiarities of the hydrodynamic approach for neu-
tral graphene remains an important open question.

To conclude, we have discussed electronic transport in
graphene at charge neutrality exhibiting a behavior that
is strikingly different from any single-component fluid in-
cluding that in strongly doped graphene. For weak dop-
ing (µ� T ), the hydrodynamic contribution to the elec-
tric current Eq. (3) yields a small correction to the results
presented in this paper (e.g, the hydrodynamic contribu-
tion to optical conductivity in weakly doped graphene
was shown [63] to be proportional to µ2/T 2). For µ ∼ T ,
both the hydrodynamic and dissipative (“kinetic”) con-
tributions are of the same order. Now there is no small
parameter in the theory and the full system of linearized
hydrodynamic equations can be represented by a 6 × 6
matrix [92]. In the strongly doped regime (µ � T ), the
hydrodynamic contribution dominates and in addition
the boundary scattering becomes diffusive. As a result,
the electronic flow in a channel exhibits the Poiseuille
profile in agreement with the experimental observations
in Ref. [10]. Thus we expect the crossover from the anti-
Poiseuille to Poiseuille flow to take place at µ ∼ T .

Summary – In this paper we have shown that elec-
tronic flow in neutral graphene is qualitatively different
from that in a conventional viscous fluid. Our main re-
sults can be summarized as follows: (i) in response to
external electric field, channel-shaped samples of neutral
graphene do not exhibit Poiseuille-like flows, while the
resulting electric current is independent of viscosity re-
gardless of the choice of the boundary conditions; (ii)
for specular boundaries, the electric current density is
spatially homogeneous; but (iii) it can be made inhomo-
geneous by applying the external magnetic field. In the
latter case the current profile is anti-Poiseuille, see Fig. 1.
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Appendix: Dissipative corrections to macroscopic
currents

Within the three-mode approximation [61], the hydro-
dynamic theory in graphene is formulated in terms of
three macroscopic currents (3). In local equilibrium, all
three currents are proportional to the hydrodynamic ve-
locity u. The effect of electron-electron interaction be-
yond local equilibrium is captured by the dissipative cor-
rections that can be found following the standard pertur-
bative approach [15]. In the context of electronic hydro-
dynamics in graphene, the dissipative corrections were
derived in Refs. [60, 61, 63]. Here we present a slightly
modified approach better suited for the problem at hand.

Let us highlight the main differences between the elec-
tronic hydrodynamics in graphene and the conventional
hydrodynamics of Galilean-invariant fluids: (i) the band
structure of graphene contains two bands touching at the
Dirac points leading to the presence of two types of carri-
ers characterized by two quasiparticle currents, j and jI ;
(ii) neither of the two currents represent the flow of mo-
mentum described by the energy current jE ; (iii) charge
carriers in graphene may scatter off lattice imperfections
(impurities), lattice vibrations (phonons), and experience
other scattering processes leading to violation of conser-
vation laws including momentum conservation.

Due to the latter issue, the hydrodynamic approach
to electronic transport in graphene (as well as any other
solid) may be justified only in an intermediate tempera-
ture regime, where the electron-electron interaction is the
dominant scattering process characterized by the largest
relaxation rate or the smallest timescale [2, 3]

τee � τdis, τR, etc.

Local equilibrium is formed at the shortest timescales
of the order of τee. As pointed out in Ref. [59], in
graphene this local equilibrium is not equivalent to a
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steady state since the electron-electron interactions do
not relax momentum and hence the hydrodynamic en-
ergy flow. To overcome this difficulty one has to take
into account weak disorder scattering leading, e.g., to
parabolic magnetoresistance [56, 59]. We emphasize that
disorder scattering contributes to the hydrodynamic the-
ory already at local equilibrium [61]. Technically this
can be understood from the fact that the local equilib-
rium distribution function does not nullify the disorder
collision integral. Similarly, local equilibrium in graphene
is affected by electron-phonon scattering [51, 59, 61, 66–
68, 75]. Since the lowest-order electron-phonon scatter-
ing is kinematically suppressed (within the same valley),
the dominant process appears to be the disorder-assisted
electron-phonon scattering (or supercollisions) [66, 76].
As compared to the direct impurity scattering, these pro-
cesses are second-order. Nevertheless, we assume that
the mean free time τdis includes the (small) contribu-
tion of supercollisions as well. The more important ef-
fect of supercollisions are the weak decay terms in the
continuity equations for the energy and imbalance den-
sities, Eqs. (4d) and (4b) that are characterized by the
timescales τRE and τR [66]. Again, these effects appear
already at local equilibrium.

Within linear response, the local equilibrium state we
have described so far is fully equivalent [61] to the stan-
dard transport theory yielding the Ohm’s law, classi-
cal Hall effect, and – at charge neutrality – positive,
parabolic magnetoresistance. As such, the hydrodynamic
theory already includes the dissipative processes related
to the weak disorder and electron-phonon coupling. This
point represents the most important difference between
electronic hydrodynamics and conventional fluids, where
the ideal flow is always isentropic [15]. In the latter case,
dissipative processes (viscosity and thermal conductivity)
are attributed to the same interparticle collisions that are
responsible for equilibration. By analogy, the effect of
electron-electron interaction in electronic hydrodynam-
ics beyond local equilibrium is also described in terms of
the “dissipative corrections” to quasiparticle currents (as
well as viscosity), the term that might cause confusion
(since some dissipation is already taken into account).
Moreover, electron-electron interaction does not lead to
any further correction to the energy current (since it con-
serves momentum). It is therefore logical to consider two
corrections δj and δjI due to electron-electron interac-
tion instead of three introduced in Ref. [61].

To describe the dissipative processes beyond local equi-
librium one introduces a nonequilibrium correction to the

local equilibrium distribution function f
(0)
λk [93]

δfλk = fλk−f (0)λk = −T
∂f

(0)
λk

∂ελk
hλk = f

(0)
λk

(
1−f (0)λk

)
hλk,

(A.1)
where the single-particle states are labeled by the band
index λ = ± and the momentum k. Taking advantage of
the so-called collinear scattering singularity in graphene
[52–61], we adopt the “three-mode approximation” [59–

61] and write the correction h in the form

hλk =
vλk
vg

3∑
1

φih
(i) +

vαλkv
β
λk

v2g

3∑
1

φih
(i)
αβ + . . . , (A.2a)

where . . . stands for higher-order tensors and the “three
modes” are expressed by means of (ελk denotes the quasi-
particle spectrum)

φ1 = 1, φ2 = λ, φ3 = ελk/T. (A.2b)

The first term in h is responsible for dissipative correc-
tions to the currents, the second term – for viscosity [61].

The coefficients h(i) and h
(i)
αβ in Eq. (A.2a) satisfy gen-

eral constraints [93] reflecting the postulate that electron-
electron collisions should not alter conserved thermody-
namic quantities. To maintain conservation of the num-
ber of particles and energy one sets [60, 61]

Trh
(i)
αβ = 0. (A.2c)

To maintain momentum conservation, we require that
any correction to the energy current due to the nonequi-
librium correction (A.1) should vanish leading to

h(3) = − 2T

3nE

(
nh(1) + nIh

(2)
)
, (A.2d)

following from the linear correspondence between the co-

efficients h(i) and the corrections to the currents [60, 61] δj
δjI

δjE/T

 =
vgT

2
M̂h

h(1)

h(2)

h(3)

 , (A.3)

where

M̂h =

 ∂n
∂µ

∂nI

∂µ
2n
T

∂nI

∂µ
∂n
∂µ

2nI

T
2n
T

2nI

T
3nE

T 2

 . (A.4)

Enforcing the constraint (A.2d) we find δjE = 0, while
for the remaining two dissipative corrections we obtain

δj=
vgT

2

[(
∂n

∂µ
− 4n2

3nE

)
h(1)+

(
∂nI
∂µ
− 4nnI

3nE

)
h(2)

]
,

(A.5a)

δjI =
vgT

2

[(
∂nI
∂µ
− 4nnI

3nE

)
h(1)+

(
∂n

∂µ
− 4n2I

3nE

)
h(2)

]
,

(A.5b)
At charge neutrality these expressions simplify to

δj =
vgT

2

∂n

∂µ
h(1), (A.6a)

δjI =
vgT

2

∂n

∂µ
δIh

(2), (A.6b)
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where

δI = 1− π4

162ζ(3) ln 2
≈ 0.28, (A.6c)

and ζ(z) is the Riemann’s zeta function.
The approach described so far is fully justified in bulk

(or infinite) systems where one may assume rotational
invariance. In contrast, if the electronic system is con-
fined to a narrow channel, then the specific form of the
nonequilibrium distribution function (A.2) cannot be as-
sumed on symmetry grounds. Instead, one should solve
the kinetic equation in the presence of the boundaries
imposing proper boundary conditions on the distribution
function reflecting physical assumptions of the nature of
electron scattering off the channel boundaries [48]. In
the case of specular scattering, the distribution function
satisfies

f(±W/2, ϕ) = f(±W/2,−ϕ), (A.7)

where ϕ is the angle between the velocity vλk and the
boundary (i.e., the direction along the channel). One can
easy convince oneself that the first term in Eq. (A.2a) sat-

isfies this condition. Indeed, the vectors h(1,2) are linear
combinations of the currents δj and δjI , see Eqs. (A.5).
The electric current δj has only a component along the
channel, see Eq. (6a), while the lateral component of the
imbalance current vanishes at the boundary, see Eq. (12).
Precisely at the boundary, the angular dependence of the
first term in Eq. (A.2a) is therefore

h ∝ cosϕ.

Similarly, the lateral component of the hydrodynamic ve-
locity u vanishes at the boundary, see Eq. (12), such that
the product u·k has the same angular dependence (recall
that both velocity and momentum have the same direc-
tion). As a result, at the boundary the full distribution
function depends on cosϕ only, thus satisfying Eq. (A.7).

The nonequilibrium correction to the distribution func-
tion can be found using the standard iterative solution
of the kinetic equation [93]. In the context of the three-
mode approximation in graphene, we may solve the ki-
netic equation directly in terms of the dissipative correc-
tions (A.5) by integrating the kinetic equation to obtain
the macroscopic equations for the quasiparticle currents.
The iterative procedure is implemented by using the lo-
cal equilibrium distribution function in the left-hand side
of the kinetic equation, while retaining the nonequilib-
rium correction in the right-hand side to the linear order
[60, 61]. At charge neutrality, the resulting equations
have the form [61]

−
v2g
2

∂n

∂µ
eE + ωBeB×K = I1, (A.8a)

v2g
2
∇nI−

v2gnI

3nE
∇nE+

2ev2gnI

3cnE
δj×B+ωBeB×KI =I2,

(A.8b)

where the Lorentz terms are given by [61]

K(µ = 0) = (T ln 2)
∂n

∂µ
u + α1δjI , (A.9a)

α1 =
1−α3

δI
≈2.08, α3 =

4nIT ln 2

3nE
=

2π2 ln 2

27ζ(3)
, (A.9b)

KI(µ=0) = δj. (A.9c)

The integrated collision integrals due to electron-electron
interaction Ii were discussed in detail in Refs. [61, 63].
At charge neutrality

I1(µ=0) = −
(

1

τ11
+

1

τdis

)
δj, (A.10a)

I2(µ=0) = −
(

1

δIτ22
+

1

τdis

)
δjI , (A.10b)

where the corresponding timescales are determined only
by temperature and to the leading order have the form

τ−111(22)(µ=0) =
α2
gTt
−1
11(22)

4π ln 2
, (A.10c)

t−111 ≈ 33.13, t−122 ≈ 5.45, (A.10d)

while the integrated collision integral due to impurity
scattering is characterized by the timescale [τtr(ε) is the
transport scattering time]

τ−1dis = −
∫
dε
∂f (0)

∂ε
τ−1tr (ε). (A.10e)

In this paper we choose the imbalance chemical potential
as a hydrodynamic variable using the relation (at charge
neutrality [61])

1

2
∇nI−

nI
3nE

∇nE = (A.11)

=
1

2

∂n

∂µ

[
1− 4n2I

3nE

1

∂n/∂µ

]
∇µI =

δI
2

∂n

∂µ
∇µI .

Resolving the equation for the imbalance current, we find

δjI = −
δI
v2g
2
∂n
∂µ∇µI + ωB(1−α3)eB×δj

τ−1dis +δ−1I τ−122

. (A.12)

Substituting this expression into Eq. (A.8a), we find the
dissipative correction to the electric current

δj =
1

e2(R0+α2
1δIR̃B)

[
eE + (A.13)

+
α1δIωB

τ−1dis +δ−1I τ−122

eB×∇µI − ωB
2T ln 2

v2g
eB×u

]
,
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where R0 denotes the intrinsic resistivity [3, 55] at B = 0

R0 =
π

2 ln 2

1

e2T

(
1

τ11
+

1

τdis

)
, (A.14)

and

R̃B =
π

2e2T ln 2

ω2
B

τ−1dis +δ−1I τ−122

. (A.15)

Substituting this result into Eq. (A.12), we find the dis-
sipative correction to the imbalance current

δjI = − δI

τ−1dis +δ−1I τ−122

1

e2(R0+α2
1δIR̃B)

× (A.16)

×
[
α1ωBeB×E+

2T ln 2

π
e2R0∇µI+α1ω

2
B

2T ln 2

v2g
u

]
.

To recover the positive magnetoresistance [56, 59, 61]
in bulk graphene, we recall that in an infinite system
all currents and densities are uniform. In this case, the
generalized Navier-Stokes equation (4c) reduces to

0 = v2g
e

c
δj×B − 3nEu

2τdis
, (A.17)

which yields the hydrodynamics velocity

u = −ωBτdis
4T ln 2

3nE
eB×δj. (A.18)

Substituting this expression into Eq. (A.13), we find

δj =
E

eR0 + eδR(B)
, (A.19)

where

δR(B) = α2
1δIR̃B +

8 ln3 2

9ζ(3)

π

2e2T ln 2
ω2
Bτdis

=
ω2
Bτdis

2e2T ln 2

π

9ζ(3)

[
1+

9ζ(3)

π

α2
1δI

τ−1dis +δ−1I τ−122

]

= C
v4gB

2τdis

c2T 3
, (A.20)

with

C ≈
1.71+1.04 τdisτ22

1+3.59 τdisτ22

−→
τdis→∞

π

9ζ(3)
≈ 0.29.

The positive, parabolic magnetoresistance (A.20) in bulk
graphene was previously found in this form in Refs. [59,
61] and in Ref. [56] (where the limiting value of C was
first obtained in the two-mode limit, τdis/τ22 →∞).
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A. D. Mirlin, Phys. Rev. B 91, 035414 (2015).
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We explore hydrodynamics of Dirac fermions in neutral graphene in the Corbino geometry. In
the absence of magnetic field, the bulk Ohmic charge flow and the hydrodynamic energy flow are
decoupled. However, the energy flow does affect the overall resistance of the system through viscous
dissipation and energy relaxation that has to be compensated by the work done by the current
source. Solving the hydrodynamic equations, we find that local temperature and electric potential
are discontinuous at the interfaces with the leads as well as the device resistance and argue that
this makes Corbino geometry a feasible choice for an experimental observation of the Dirac fluid.

Quantum dynamics of charge carriers is one of the
most important research directions in condensed mat-
ter physics. In many materials transport properties can
be successfully described under the assumption of weak
electron-electron interaction allowing for free-electron
theories [1]. An extension of this approach to strongly-
correlated systems remains a major unsolved problem.
The advent of “ultra-clean” materials poses new chal-
lenges, especially if the electronic system is nondegen-
erate. At high temperatures such systems may exhibit
signatures of a collective motion of charge carriers re-
sembling the hydrodynamic flow of a viscous fluid [2–14].

Electronic viscosity has been discussed theoretically for
a long time [15–20], but became the subject of dedicated
experiments [2, 9] only recently, after ultra-clean mate-
rials became available. Up until now, most experimental
efforts were focusing on graphene [2–11] where the hydro-
dynamic regime is apparently easier to achieve [21, 22].
Viscous effects manifest themselves in nonuniform flows.
In the common “linear” geometry (channels, wires, Hall
bars, etc.) this occurs in “narrow” samples where the
typical length scale associated with viscosity is of the
same order as the channel width [23–27]. In contrast, in
the “circular” Corbino geometry, see Fig. 1, the electric
current is nonuniform even in the simplest Drude pic-
ture (in the absence of magnetic field, j ∝ er/|r|, where
er = r/|r|) making it an excellent platform to measure
electronic viscosity [28–31]. In the last year, electronic
hydrodynamics in the Corbino geometry has been stud-
ied both experimentally [32] and theoretically [33–36].

In this paper we address the “Dirac fluid” [3, 9] (the hy-
drodynamic flow of charge carriers in neutral graphene)
in the Corbino geometry. Unlike doped graphene where
degenerate, Fermi-liquid-like electrons may be described
by the Navier-Stokes equation with a weak damping term
due to disorder [16, 21, 23], the two-band physics of
neutral graphene leads to unconventional hydrodynamics
[22, 37]. In the hydrodynamic approach any macroscopic
current can be expressed as a product of the correspond-
ing density and hydrodynamic velocity u (up to dissi-

FIG. 1. Corbino geometry: the annulus-shaped sample of
neutral graphene (µ = 0) is placed between the the two leads:
the inner circle of the radius r1 and the outer shell with the
inner radius r2. A current I is injected through at the center
point and a voltage U is measured between electrodes placed
at the inner and outer radius rin and rout.

pative corrections), e.g., the electric and energy current
densities are j = nu and jE = nEu, respectively. In the
degenerate regime the charge and energy densities are
proportional to each other (to the leading approximation
in thermal equilibrium nE = 2µn/3, where µ is the chem-
ical potential) and the two currents are equivalent [38].
In contrast, the equilibrium charge density vanishes at
charge neutrality, n(µ = 0) = 0, while the energy density
remains finite. The two currents “decouple”: the energy
current remains “hydrodynamic”, the charge current is
completely determined by the dissipative correction δj.

Electronic transport at charge neutrality has been a
subject of intensive research [9, 24–27, 38–46] leading to
general consensus on the basic result: in the absence of
magnetic field, B = 0, resistivity of neutral graphene is
determined by the electron-electron interaction

R0 =
π

2e2T ln 2

(
1

τ11
+

1

τdis

)
−→

τdis→∞

1

σQ
. (1)

Here τ11 ∝ α−2g T−1 describes the appropriate electron-
electron collision integral and σQ is the “intrinsic” or
“quantum” conductivity of graphene. Disorder scatter-
ing is characterized by the mean free time τdis, which is
large under the assumptions of the hydrodynamic regime,
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FIG. 2. Radial component of the hydrodynamic velocity ur.

Black lines show the drift velocity in the leads, u
in(out)
r ∝ 1/r.

Colored curves correspond to the solution Eq. (4) for the two
indicated values of `GE . The results are plotted for the two
cases of a large (main panel) and small (inset) device.

τdis � τ11 and yields a negligible contribution to Eq. (1).
Equation (1) describes the uniform bulk current and is in-
dependent of viscosity (i.e., in a channel [21, 24, 44, 46]).
In contrast, in the Corbino geometry the current flow is
necessarily inhomogeneous and hence viscous dissipation
must be taken into account.

We envision the following experiment: a graphene sam-
ple (at charge neutrality) in the shape of an annulus is
placed between the inner (a disk of radius r1) and outer
(a ring with the inner radius r2) metallic contacts (leads).
For simplicity, we assume both leads to be of the same
material, e.g., highly doped graphene with the same dop-
ing level. The electric current I is injected into the cen-
ter of the inner lead preserving the rotational invariance
(e.g., through a thin vertical wire attached to the center
point) and spreads towards the outer lead, which for con-
creteness we assume to be grounded. The overall voltage
drop U is measured between two points in the two leads
(at the radii rin < r1 and rout > r2) yielding the device
resistance, R = U/I. In most traditional measurements,
the leads’ resistance is minimal, while the contact re-
sistance is important only in ballistic systems, see e.g.,
Ref. [10]. Hence, one may interpret the measured voltage
drop in terms of resistivity of the sample material. Here
we focus on the device resistance and show that in the
hydrodynamic regime there is an additional contribution
due to electronic viscosity and energy relaxation.

Charge flow through the Corbino disk can be described
as follows. The injected current spreads through the in-
ner lead according to the Ohm’s law and continuity equa-
tion. In the stationary case, the latter determines the
radial component of the current density, jinr = I/(2πer).
This defines the drift velocity uin = jin/nin (nin is the
carrier density in the inner lead) and the energy current
jinE = ninEu

in. Reaching the interface, both currents con-
tinue to flow into the graphene sample. Here (at n = 0
and B = 0) the energy current jE = nEu is decoupled
from the electric current j = δj. Charge conservation

requires the radial component of the electric current to
be continuous at the interface, δj(r1) = jin(r1). Due to
the continuity equation, the current density in graphene
has the same functional form, δjr = I/(2πer). Does this
mean that the device resistance trivially follows if one
knows the resistivity of graphene? The answer is “no”,
since the electrochemical potential is discontinuous at the
interface! There are two mechanisms for the “jump” of
the potential: (i) the usual Schottky contact resistance
[42, 47], and (ii) dissipation due to viscosity [31] and en-
ergy relaxation [48]. Since the lost energy must come
from the current source, both contribute to R.

The energy flow in neutral graphene is described by the
set of hydrodynamic equations developed in Refs. [37, 44,
48] and most recently solved in Ref. [46] in the channel
geometry. Within linear response, the equations are

∇·δj = 0, (2a)

nI∇·u + ∇·δjI = −(12 ln 2/π2)nIµI/(TτR), (2b)

∇δP = η∆u− 3Pu/(v2gτdis), (2c)

3P∇·u = −2δP/τRE . (2d)

Here Eq. (2a) is the continuity equation; Eq. (2b) is the
“imbalance” continuity equation [37, 42] (µI is the im-
balance chemical potential, nI = πT 2/(3v2g) is the equi-
librium imbalance density, vg is the band velocity in
graphene, and τR is the recombination time); Eq. (2c)
is the linearized Navier-Stokes equation [37, 46, 49, 50];
and Eq. (2d) is the linearized “thermal transport” equa-
tion (τRE is the energy relaxation time [48]). Equi-
librium thermodynamic quantities (the pressure P =
3ζ(3)T 3/(πv2g), enthalpy density W, and energy density
are related by the “equation of state”,W = 3P = 3nE/2.
The dissipative corrections to the macroscopic currents
are given by

δj = E/(eR0), (3a)

δjI = −2γ ln 2

π
Tτdis∇µI , γ =

δI
1+τdis/(δIτ22)

, (3b)

where τ22 ∝ α−2g T−1 describes a component of the col-
lision integral that is qualitatively similar, but quantita-
tively distinct from τ11 and δI ≈ 0.28. The equations (2)
and (3) should be solved for u, δj, δjI , E, µI , and δP .

Excluding δP from Eqs. (2c) and (2d) we find a second-
order differential equation for u

η′∆u = 3Pu/(v2gτdis), η′ = η + 3PτRE/2. (4a)

In the Corbino disk, the general solution for the radial
component of the velocity has the form

ur = a1I1

(
r

`GE

)
+ a2K1

(
r

`GE

)
, `2GE =

v2gη
′τdis

3P
,

(4b)
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FIG. 3. Temperature distribution in the device. Colored
curves correspond to the solution of the hydrodynamic equa-
tions for the indicated values of `GE and `R. The results are
plotted for the two cases of a large (main panel) and small
(inset) device. In the leads δT = 0, shown by black lines.

where I1(z) and K1(z) are the Bessel functions. The
coefficients a1 and a2 can be found using the continu-
ity of the entropy current at the two interfaces (within
linear response). The resulting behavior in shown in
Fig. 2 (here we choose to show our results in graphical
form since the analytic expressions are somewhat cum-
bersome [51]; quantitative calculations were performed
for T = 100 K and experimentally relevant values of the
parameters taken from Refs. [8–10, 48]).

In the hydrodynamic regime, the electron-electron
scattering time is the shortest scale in the problem, hence
the spatial variation of u is determined by energy relax-
ation. If `GE � rout − rin, then the energy current in-
jected from the leads decays in a (relatively small) bound-
ary region while in the bulk of the sample u → 0. On
the other hand, if `GE is of the same order as (or larger
than) the system size, then ur does not vanish and ap-
proaches the standard Corbino profile, ur ∝ 1/r. At each
interface, ur exhibits a jump due to the mismatch of the
entropy densities in the sample and leads.

The nonequilibrium quantities δP and µI can now
be found straightforwardly. The former follows directly
from Eq. (2d) using the solution (4), while the differen-
tial equation for the latter can be found by substituting
Eq. (3b) into Eq. (2b) and using the solution (4). The
boundary conditions for δP and µI follow from the con-
tinuity equations for the charge and imbalance. The two
quantities can be combined to determine the nonequilib-
rium temperature variation, δT , shown in Fig. 3. For a
large sample (`GE , `R � rout − rin, `2R = γv2gτdisτR/2),
δT exhibits fast decay and vanishes in the bulk of the
sample. For larger values of `GE , `R energy relaxation is
less effective and the system exhibits an inhomogeneous
temperature profile.

The obtained solutions completely describe the hydro-
dynamic energy flow in neutral graphene. Our remaining
task is to find the behavior of the electrochemical poten-
tial at the two interfaces enabling us to determine R.

FIG. 4. Electrochemical potential (voltage drop) throughout
the device. The black line shows the Ohmic behavior in the
outer lead relative to the ground. The jumps at the interfaces
are due to dissipative effects (viscosity and energy relaxation)
in the bulk of the sample.

The standard description of interfaces between met-
als or semiconductors [47] can be carried over to neutral
graphene [42] in terms of the contact resistance. Typ-
ically, this is a manifestation of the difference of work
functions of the two materials across the interface. In
graphene, the contact resistance was recently measured
in Ref. [10], see also Refs. [32, 52, 53]. In the standard
diffusive (or Ohmic) case, the contact resistance leads to
a voltage drop that is small compared to the voltage drop
in the bulk of the sample and can be ignored. In contrast,
in the ballistic case there is almost no voltage drop in the
bulk, such that most energy is dissipated at the contacts.
Both scenarios neglect electron-electron interactions.

In the diffusive case interactions lead to corrections to
the bulk resistivity [54, 55] and the contact resistance can
still be ignored. In the ballistic case electron-electron
interaction may give rise to a “Knudsen-Poiseuille”
crossover [16] and drive the electronic system to the hy-
drodynamic regime. While the Ohmic resistivity of the
electronic fluid may remain small, the hydrodynamic flow
possesses another channel for dissipation through viscos-
ity [31]. At charge neutrality, this effect is subtle, since
the electric current is decoupled from the hydrodynamic
energy flow, see Eq. (3a). At the same time, both are
induced by the current source providing the energy dis-
sipated not only by Ohmic effects, but also by viscosity
[31] and energy relaxation processes [48] that should be
taken into account in the form of an additional voltage
drop. Since the voltage drop in the bulk of the sample is
completely determined by Eq. (3a), the additional con-
tribution takes the form of a jump in φ at the interface
corresponding to an excess electric field induced in the
thin Knudsen layer around the interface [31].

The magnitude of the jump in φ can be established by
considering the flow of energy through the interface. Fol-
lowing the standard route [31, 56], we consider the time
derivative of the kinetic energy, A = Ė , where E is ob-
tained by integrating the energy density nE(u)−nE(0)
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FIG. 5. Total resistance of the Corbino device for different
values of `GE (here r1 = 0.5µm). Inset: additional contribu-
tion to the resistance due to viscous dissipation.

over the volume. Working within linear response, we ex-
pand the latter to the leading order in the hydrodynamic
velocity. Finding time derivatives from the equations of
motion and using the continuity equation and partial in-
tegration, we then separate the “bulk” and “boundary”
contributions, A = Abulk +Aedge. We interpret the for-
mer as the bulk dissipation, while Aedge includes the en-
ergy brought in (carried away) through the boundary by
the incoming (outgoing) flow. In the stationary state
Ė = 0, dissipation is balanced by the work done by the
source. Assuming that no energy is accumulated at the
interface, we find the corresponding boundary condition.

The specific form of the equations of motion depends
on the choice of the material. Assuming the leads’ mate-
rial is highly doped graphene, the equation of motion is
the usual Ohm’s law with the diffusion term [57] coming
from the gradient of the stress-energy tensor [38], here
we include a viscous contribution due to disorder [58]
and find [31] (omitting the continuous entropy flux)

Alead
edge =

∫
dSβ

(
uLασ

′
L;αβ − uLβ δPL − ej

L
βφ
)
, (5a)

where jL = nLu
L is the current density, uL is the drift

velocity, δPL is the nonequilibrium pressure, and σ′L is
the viscous stress tensor in the lead. The first two terms
are the usual dissipative contributions to the energy flow
across the boundary [56], the last term is the Joule heat.

In neutral graphene, we obtain similar results from the
Navier-Stokes equation, except that the Joule heat is now
determined by δj

Asample
edge =

∫
dSβ

(
uασ

′
αβ − uβδP − eδjβφ

)
. (5b)

Equating the two contributions (5) and using the above
solutions for the velocity and pressure, we find the jumps
of the potential φ at the two interfaces. This allows us to
determine φ everywhere in the device, see Fig. 4, as well
as the device resistance.

The total resistance of the Corbino device is shown
in Fig. 5. Neglecting hydrodynamic effects, we find the

usual logarithmic dependence of R on the system size.
Viscosity and energy relaxation provide an additional dis-
sipation channel and hence increase R. Energy relaxation
contributes to this increase since it dominates the hydro-
dynamic energy flow, see Eq. (4). At the same time, the
boundary condition for the electric potential, Eqs. (5), is
determined by viscosity.

In this paper we have solved the hydrodynamic equa-
tions in neutral graphene. We have shown, that despite
the known decoupling of the Ohmic charge flow and hy-
drodynamic energy flow, in Corbino geometry the latter
does affect the observable behavior leading to jumps in
temperature (shown in Fig. 3) and the electric poten-
tial, see Fig. 4. The potential jump is distinct from the
usual contact resistance insofar it is a function of the sys-
tem size. Both effects are observable using the modern
imaging techniques (the local temperature variation can
be measured using the approach of Refs. [59–61], while
measurements of the local potential are at the heart of
the technique proposed in Refs. [10, 62]). Hydrodynam-
ics also affects the more conventional transport measure-
ments through the size-dependent contribution to the de-
vice resistance, see Fig. 5.

Our results highlight several particular features of the
Dirac fluid in neutral graphene. Firstly, the “linear re-
sponse” currents (3) are independent of the temperature
gradient due to exact particle-hole symmetry [42]. Sec-
ondly, in contrast to the case of doped graphene [31] the
Dirac fluid is compressible even within linear response
(due to energy relaxation, see Eq. (2d). Finally, the hy-
drodynamic flow in neutral graphene is the energy flow.
Hence, energy relaxation effectively dominates over vis-
cous effects, see Eqs. (4), complicating experimental de-
termination of η.

External magnetic field is also known to couple the
charge and energy flows in neutral graphene [37]. We
expect that our theory will yield interesting results on
Corbino magnetoresistance [52]. Another extension of
our theory is the study of thermoelectric phenomena,
which is more interesting if one moves away from the
neutrality point [34] (where the thermopower must van-
ish due to the exact particle-hole symmetry). Our results
on both issues will be reported elsewhere.
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Supplemental material

Starting with the general form of the hydrodynamic equations in graphene, we obtain the analytical results presented
graphically in the main text. In Sec. we summarize the hydrodynamic equations for graphene. In Sec. we specify
these equations within linear response in polar coordinates at charge neutrality and B = 0. In Sec. we formulate a
description of the leads followed by the relevant boundary conditions at the lead-graphene interfaces in Sec. . Next,
in Sec. we present the full analytical solution for the hydrodynamic equations in the Corbino geometry with the
above boundary conditions. In Sec. we discuss the dissipation in the system and corroborate the argument used in
the main text to obtain the device resistance. Finally, we conclude with a brief analysis in Sec. .

Electronic hydrodynamics in graphene

Following Ref. [63] we combine the chemical potentials of the two bands in graphene µ± into

µ = (µ+ + µ−)/2, µI = (µ+ − µ−)/2 (6)

and introduce their conjugate charge and imbalance densities

n = n+ − n−, nI = n+ + n−. (7)

Taking into account dissipative corrections due to electron-electron collisions we then obtain the electric (~j) and
imbalance (~jI) currents as

~j = n~u+ δ~j, ~jI = nI~u+ δ~jI , (8)

where ~u is the drift velocity. The energy current ~jE = nE~u is proportional to the momentum density and is not
relaxed by electron-electron collisions. The currents ~j and ~jI satisfy the continuity equations

∂tn+ ~∇·~j = 0, (9a)

which describes the exact conservation of charge and

∂tnI + ~∇·~jI = −nI−nI,0
τR

= −12 ln 2

π2

nI,0µI
TτR

, (9b)

where nI,0 = πT 2/(3v2g) is the equilibrium value of the total quasiparticle density (at µI = 0) and τR is the recombi-
nation time.

A similar equation can be formulated for the energy density

∂tnE + ~∇·~jE = e~j ~E − nE − nE,0
τRE

, (9c)

where τRE is the energy relaxation time. Typically this is replaced by the thermal transport equation

T

[
∂s

∂t
+ ~∇~r ·

(
s~u− δ~j µ

T
− δ~jI

µI
T

)]
= δ~j ·

[
e ~E+

e

c
~u× ~B−T ~∇µ

T

]
− Tδ~jI ·~∇

µI
T

+
η

2

(
∇αuβ+∇βuα−δαβ ~∇·~u

)2
− nE−nE,0

τRE
+ µI

nI−nI,0
τR

+
W~u2

v2gτdis
. (9d)

Within linear response the two equations coincide. Finally, the generalized Navier-Stokes equation is given by

W(∂t + ~u · ~∇)~u+ v2g ~∇P + ~u∂tP + e( ~E ·~j)~u = v2g

[
η∆~u− ηH∆~u× ~eB + en~E +

e

c
~j × ~B

]
−
~jE
τdis

. (9e)

Here η and ηH are the shear and Hall viscosity coefficients, respectively.
The expressions for the dissipative corrections can be found in the Appendix of Ref. [63].
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Charge neutral Corbino disk at B = 0

Taking into account the rotational symmetry of the Corbino disk, we express the hydrodynamic theory in polar
coordinates (r, ϑ). All quantities can only depend on the radial component r. Within linear response and at B = 0,
the hydrodynamic equations (9) can be transformed to

1

r

∂(rδjr)

∂r
= 0, (10a)

nI,0
1

r

∂(rur)

∂r
+

1

r

∂(rδjIr)

∂r
= −12 ln 2

π2

nI,0µI(r)

TτR
, (10b)

uϑ = 0, (10c)

∂δP

∂r
= η∂r

(
1

r

∂(rur)

∂r

)
− 3Pur
v2gτdis

, (10d)

3P
1

r

∂(rur)

∂r
= −2δP (r)

τRE
. (10e)

The electric field ~E does not appear in Eqs. (10) due to charge neutrality. It does however determine the dissipative
correction δ~j which at charge neutrality is the whole current. In the absence of the magnetic field, all currents are
radial. In polar coordinates, the dissipative corrections take the form

δjr =
Er(r)

eR0
, (11a)

δjϑ = 0, (11b)

δjIr = − δI

τ−1dis +δ−1I τ−122

2T ln 2

π

∂µI
∂r

, (11c)

δjIϑ = 0. (11d)

Equations (10) and (11) have to be solved together taking into account the corresponding boundary conditions see
below.

For the purposes of establishing the boundary conditions we also need to specify the stress tensor. At B = 0 (and
within linear response, meaning neglecting terms that are higher than the leading order in velocity or its derivatives),
the stress tensor is

Παβ
E = Pδαβ − σαβ . (12)

Since the Hall viscosity vanishes at charge neutrality (as well as at B = 0), the viscous stress tensor in Cartesian
coordinates is given by

σαβ = η
(
∇αuβ +∇βuα − δαβ ~∇·~u

)
, (13)

which in polar coordinates becomes

σrr = −σϑϑ = η

(
∂r −

1

r

)
ur, σrϑ = σϑr = η

(
∂r −

1

r

)
uϑ. (14)
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Description of leads

The leads, which are attached at the inner and outer radius of the Corbino disk, are assumed to be a normal
metal in the degenerate regime (µL � T ), where transport is dominated by disorder scattering characterized by the
relaxation time τL. In this case we may restrict ourselves to a single band, such that there is a single macroscopic
current satisfying the continuity equation

∂tnL + ~∇~j = 0. (15)

Within linear response, one can obtain the macroscopic equation of motion (or generalized Ohm’s law) integrating
the kinetic equation [64]. This way one finds

m∂t~j + ~∇Π̌E − enL ~E −
e

c
~j × ~B = −m

τL
~j, (16)

where the stress tensor may me expressed in terms of thermodynamic pressure and disorder-induced viscosity

Παβ
E = Pδαβ − σαβ , ηL =

µ3τL
4πv2g~2

. (17)

To be concrete, we assume that the leads’ material is doped graphene. In that case we may introduce the “effective
mass” m = µL/v

2
g and the drift velocity ~uL, such that ~j = nL~uL. Expressing the carrier density in terms of pressure,

we find

m~j =
3PL
v2g

~uL, (18)

where to lowest order in temperature we find PL = µ3/(3πv2g~2). In the stationary state and at B = 0, the equations
of motion become

~∇~uL = 0, (19)

~∇Π̌E + enL~∇φ = − 3PL
v2gτL

~uL. (20)

Experimentally, the density nL and the chemical potential µ are fixed by the gate voltage. Moreover, under the
common assumption of fast equilibration in the leads, we may assume a uniform temperature T as well. The general
variation of PL is found to be

δPL =

(
2πµTδT

3v2g
+
πT 2δµ

3v2g
+
µ2δµ

πv2g

)
(21)

and thus vanishes under the condition we consider. Since the leads are highly doped, we find nL = n+ = nI , such
that the imbalance chemical potential µI vanishes.

Boundary conditions

The differential equations (10) and (11) should be supplemented by a suitable set of boundary conditions. The
only boundaries present in the Corbino are boundaries between the sample and the leads. Since charge conservation
is exact and also holds in the leads, we find

jr(r1 − ε) = δjr(r1 + ε), δjr(r2 − ε) = jr(r2 + ε). (22)

Fixing the total current I in a radially symmetric system completely determines the current density

I = e

∫
d ~A ·~j = 2πerjr. (23)

In contrast, the total quasiparticle number (imbalance) and entropy are not conserved due to recombination and
energy relaxation processes. However, assuming that the corresponding relaxation rates are not singular at the
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interface, the continuity equations (9b) and (9d) yield the following boundary conditions for the radial components
of the current densities.

The resulting boundary conditions at the two interfaces can be summarized as follows

jr(r1 − ε) = nLur(r1 − ε) = δjr(r1 + ε), (24)

jI,r(r1 − ε) = nLuL,r(r1 − ε) = nI,0ur(r1 + ε) + δjI,r(r1 + ε) = δjr(r1 + ε), (25)

sLuL,r(r1 − ε) = sBur(r1 + ε) (26)

jr(r2 + ε) = nLuL,r(r2 + ε) = δjr(r2 − ε), (27)

jI,r(r2 + ε) = nLuL,r(r2 + ε) = nI,0ur(r2 − ε) + δjI,r(r2 − ε) = δjr(r2 − ε), (28)

sLuL,r(r2 + ε) = sBur(r2 − ε). (29)

Full solution

Solving the equations of motion in the leads, we find

uL,r =
I

2πenLr
, uL,ϑ = 0, (30)

σrr =
−IηL
πenLr2

, σrϑ = 0, (31)

Er =
2PL

enLv2gτL

I

2πenLr
, (32)

φ(r) = − I

2π

2PL
e2n2Lv

2
gτL

log

(
r

r0

)
. (33)

Here the drift velocity follows from the continuity equation and the relation to the current which in turn is given
by Eq. (23). After that, the assumption δP = 0 leads to the simple 1/r behavior for the electrical field Er as well.
Consequently, the charge density (from the Poisson equation) is indeed constant. On the other hand, the constant
r0 in the potential is not fixed by the boundary conditions we have imposed so far. Finally, neither the electric field
nor the current depend on the disorder dominated viscosity ηL. However, the viscous stress tensor itself is not zero,
which will be used below later.

The above expressions can be re-written in terms of the temperature T and the chemical potential µL in the leads.
Under our assumptions, the leads’ material is graphene, where the entropy density is defined as

Ts = 3P − µn− µInI . (34)

For µ� T in the leads we then find

PL =
πT 2µ

3v2g
+

µ3

3πv2g
= PTL + PT=0

L , (35)

nL =
πT 2

3v2g
+

µ2

πv2g
(36)

sLT = 3PL − nLµ =
πT 2µ

v2g
+

µ3

πv2g
− πT 2µ

3v2g
− µ3

πv2g
=

2

3

πT 2µ

v2g
= 2PTL , (37)

so we need to keep finite temperature corrections in the leads as well.
In our sample, the situation is more involved since in neutral graphene the electric current is not related to the

hydrodynamic velocity. As a manifestation of this fact, the differential equations (10) and (11) decouple into two
disjunct sets. The first one consists of equations (10a) and(11a) with the solution

δjr =
I

2πer
, (38)

Er =
IR0

2πr
, φ = −IR0

2π
log

(
r

r0

)
. (39)
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The constant r0 (not necessarily the same as in the corresponding solution for the leads) is not fixed by the boundary
conditions we have imposed so far.

The second set of equations consists of (10b), (10d), (10e) and (11c). Expressing δP through ur, we find

0 = ∂r

(
1

r

∂(rur)

∂r

)
− ur
`2GE

(40)

1

`2GE

=

(
η +

3PτRE
2

)−1
3P

v2gτdis
, (41)

where the Gurzhi length is renormalized by energy relaxation through the combination η′ = η+ 3PτRE/2. The other
two equations can be combined to form

∂r

(
1

r

∂(rur)

∂r

)
−M∂r

(
1

r

∂(r ∂µI

∂r )

∂r

)
= −M

`2R

∂µI(r)

∂r
(42)

M =
2T ln 2

nI,0π

δI

τ−1dis +δ−1I τ−122

, `2R =
δI

τ−1dis +δ−1I τ−122

πT 2τR
6nI,0

. (43)

The two coupled Bessel differential equations for ur and ∂rµI can be expressed using the differential operator D =
∂r(1/r)∂rr. This way we can write the system of equations in the matrix form

D

(
1 0
1 −M

)(
ur
∂µI

∂r

)
=

(
1
`2GE

0

0 −M
`2R

)(
ur
∂µI

∂r

)
⇔ D

(
ur
∂µI

∂r

)
=

(
1
`2GE

0
1

M`2GE

1
`2R

)(
ur
∂µI

∂r

)
. (44)

This can be formally solved by diagonalizing the matrix(
1
`2GE

0
1

M`2GE

1
`2R

)
= Û−1D̂Û , (45)

where D̂ is a diagonal matrix with the eigenvalues d1 and d2 (in units of inverse length squared) and then transforming
back to the ur and ∂rµI basis. Then this coupled Bessel differential equation has the general solution

ur = M

(
1− `2GE

`2R

)[
f1I1

(
r

`GE

)
+ f2K1

(
r

`GE

)]
(46)

∂µI
∂r

= f1I1

(
r

`GE

)
+ f2K1

(
r

`GE

)
+ g1I1

(
r

`R

)
+ g2K1

(
r

`R

)
, (47)

where the coefficients f1, f2, g1 and g2 should be determined from the boundary conditions. These involve the entropy
density

TsB = 3P = 3
3T 3ζ(3)

πv2g
. (48)

From the conservation of entropy current Eqs. (26) and (29) we find f1 and f2 so that

ur =
IsL

2πenLsB

I1
(

r
`GE

) [
r1K1

(
r1
`GE

)
− r2K1

(
r2
`GE

)]
−K1

(
r
`GE

) [
r1I1

(
r1
`GE

)
− r2I1

(
r2
`GE

)]
r1r2K1

(
r1
`GE

)
I1

(
r2
`GE

)
− r1r2I1

(
r1
`GE

)
K1

(
r2
`GE

)
 . (49)

This leads to the stress tensor elements

σrr =
ηIsL

2πe`GEnLsB

I2

(
r
`GE

) [
r1K1

(
r1
`GE

)
− r2K1

(
r2
`GE

)]
+K2

(
r
`GE

) [
r1I1

(
r1
`GE

)
− r2I1

(
r2
`GE

)]
r1r2

[
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

)] , (50)

σrϑ = 0 (51)
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and

δP = −3PτRE

2

1

r

∂(rur)

∂r
= (52)

= −3PτRE

2

IsL
2πe`GEnLsB

K0

(
r
`GE

) [
r1I1

(
r1
`GE

)
− r2I1

(
r2
`GE

)]
+ I0

(
r
`GE

) [
r1K1

(
r1
`GE

)
− r2K1

(
r2
`GE

)]
r1r2K1

(
r1
`GE

)
I1

(
r2
`GE

)
− r1r2I1

(
r1
`GE

)
K1

(
r2
`GE

)
 ,

Using the conservation of the imbalance current Eqs. (25) and (28) we find the imbalance chemical potential

µI(r) =
IsL`R

2πeMnLr1r2sB(`2GE − `2R)

K0

(
r
`R

) [
r1I1

(
r1
`R

)
− r2I1

(
r2
`R

)] [
`2GE +

(
`2R − `2GE

)
nL

nI,0

sB
sL

]
K1

(
r1
`R

)
I1

(
r2
`R

)
− I1

(
r1
`R

)
K1

(
r2
`R

)
+
I0

(
r
`R

) [
r1K1

(
r1
`R

)
− r2K1

(
r2
`R

)] [
`2GE +

(
`2R − `2GE

)
nL

nI,0

sB
sL

]
K1

(
r1
`R

)
I1

(
r2
`R

)
− I1

(
r1
`R

)
K1

(
r2
`R

) (53)

+
`GE`RK0

(
r
`GE

) [
r2I1

(
r2
`GE

)
− r1I1

(
r1
`GE

)]
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

) +
`GE`RI0

(
r
`GE

) [
r2K1

(
r2
`GE

)
− r1K1

(
r1
`GE

)]
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

)


and the dissipative correction to the imbalance current

δjIr(r) =
InI,0sL

2πenLr1r2sB (`2GE − `2R)

K1

(
r
`R

) [
r1I1

(
r1
`R

)
− r2I1

(
r2
`R

)] [
`2GE +

(
`2R − `2GE

)
nL

nI,0

sB
sL

]
K1

(
r1
`R

)
I1

(
r2
`R

)
− I1

(
r1
`R

)
K1

(
r2
`R

)
−
I1

(
r
`R

) [
r1K1

(
r1
`R

)
− r2K1

(
r2
`R

)] [
`2GE +

(
`2R − `2GE

)
nL

nI,0

sB
sL

]
K1

(
r1
`R

)
I1

(
r2
`R

)
− I1

(
r1
`R

)
K1

(
r2
`R

) (54)

+
`2RK1

(
r
`GE

) [
r1I1

(
r1
`GE

)
− r2I1

(
r2
`GE

)]
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

) +
`2RI1

(
r
`GE

) [
r2K1

(
r2
`GE

)
− r1K1

(
r1
`GE

)]
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

)
 .

From δP and µI we find δT according to

δT =
πv2g

9T 2ζ(3)
δP − π2

27ζ(3)
µI . (55)

Our hydrodynamic system is not characterized by a local thermal conductivity κ. In other words, the heat current

~jQ(r) = 3P~u− µ~j − µI~jI (56)

is related to the temperature gradient ∇δT (r) at the same point r non locally. The non-local (integral) relation
between ~jQ(r) and ∇δT (r′) characterized by a non-local kernel κ(r, r′) follows from the fact that the equation for ~u(r)
is now a second-order differential equation with a non-local Green’s function. Expressing δP (r) there in terms of δT (r)
and µI(r), we have a non-local relation between ~u(r), δT (r′) and ∇µI(r′). Substituting this ~u(r) into the definition
of ~jQ(r), we obtain a non-local thermal conductivity. As a result one can only introduce the thermal conductance for
the device, relating the temperature difference between the contacts with the total heat current through the system.
This will be done in a subsequent publication.

Dissipation and total resistance

The above solution is not sufficient to determine the drop in electrochemical potential between the points rin and rout
(in the inner and outer lead, respectively) since it contains the undefined constant r0 that has to be determined from
a boundary condition for the electric potential. Although microscopically the potential has to be continuous, several
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effects might contribute to an apparent discontinuity on the hydrodynamic scale. The most obvious contribution is
the contact resistance that is a manifestation of the different work functions in the two materials across the interface
as well as the mismatch in their chemical potentials [65]. A more subtle effect due to electron-electron interaction
giving rise to viscosity and hence an additional dissipation channel [66]. At charge neutrality, this effect is subtle,
since the electric current is decoupled from the hydrodynamic energy flow. However, both flows are induced by the
same current source providing the energy dissipated by means of both the Ohmic and viscous effects [66] as well as
energy relaxation [48]. The latter processes should be taken into account in the form of an additional voltage drop at
the interface.

Under the assumption that energy is not being accumulated at the interface, we generalize the idea proposed in
Ref. [66] and consider viscous dissipation in the sample. Since the electric field in bulk of the sample is completely
determined by the Ohmic resistance R0, additional dissipation due to viscosity and energy relaxation corresponds to
a jump in the electric potential (on the hydrodynamic scale) at the interface. Microscopically, the voltage jump is
due to an excess electric field in the Knudsen layer around the sample-lead boundary.

Consider the kinetic energy associated with the hydrodynamic flow that can be found from the energy density

E =

∫
dV (nE − nE(~u = 0)) ≈

∫
dV

6P

v2g
~u2. (57)

Working within linear response, here we only keep terms up to the second order in ~u (and thus the drive I). Dissipation
is then describe by

A = Ė = 2
6P

v2g

∫
dV~u∂t~u = 0, (58)

vanishing in the steady state. This expression can now be simplified using the generalized Navier-Stokes equation.
In the leads (still assuming graphene at finite carrier density) we find

3PL
v2g

~uL∂t~uL = ~uL

(
−3PL
v2g

~uL
τL
− ~∇Π̌E + nLe ~E

)
=− 3PL

v2g

~u2L
τL
− ~∇δP~uL + ~uL~∇σ̌ − e~j ~∇φ.

= −3PL
v2g

~u2L
τL
− ∂uL,i

∂xj
σij + ~∇

(
~uLσ̌ − e~jφ− ~uLδP

)
. (59)

The term enL~uL ~E = e~j ~E is the Joule heating. Using the divergence theorem we can divide this into a boundary and
a bulk term

0 = A = Aboundary −Abulk, (60)

Aboundary = 4

∫
d ~A
(
~uLσ̌ − ~uLδP − e~jφ

)
, (61)

Abulk = 4

∫
dV

(
3PL
v2g

~u2L
τL

+
∂uL,i
∂xj

σij

)
. (62)

The boundary term includes the energy transmitted through the interface.
Since the current density is conserved at the interface, we can immediately write down the corresponding equation

in the neutral graphene sample, where the Joule heating is given by eδ~j ~E. Then we find

0 = A = Aboundary −Abulk, (63)

Aboundary = 4

∫
d ~A
(
~uσ − ~uδP − eδ~jφ

)
, (64)

Abulk = 4

∫
dV

(
3P

v2g

~u2

τdis
+
∂ui
∂xj

σij − δP (~∇ · ~u)

)
. (65)

As stated above, under realistic experimental conditions the non-equilibrium part of the pressure at u = 0 on the lead
side vanishes

δP = 0. (66)



12

At the same time, in neutral graphene sample we find

δP =

(
9T 2δTζ(3)

πv2g
+
πµIT

2

3v2g

)
=
T 2

v2g

(
9δTζ(3)

π
+
πµI

3

)
. (67)

Using the hydrodynamic equations, one may replace δP by [−3PBτRE/(2r)]∂(rur)/∂r, thus determining δP for finite
τRE without any additional boundary conditions. The same goes for µI . Thus we may use the viscous part of the
dissipation to find the difference in the electrochemical potential across the interface.

In addition, we may include the contact resistance described by

I2Rc = ~IT Ř~I, (68)

where ~I includes charge and entropy current and Ř includes the thermoelectric coefficients of the interface.
In the absence of magnetic field, both uϑ and σrϑ vanish. In the leads δP = 0 and hence we find the condition

4π [r (urσrr)]r1−ε − 2Iφ(r1 − ε) = 4π [r (urσrr − urδP )]r1+ε − 2Iφ(r1 + ε)− 2~IT Ř~I

⇔ φ(r1 − ε)− φ(r1 + ε) =
2π

I

{
[r (urσrr)]r1−ε − [r (urσrr − urδP )]r1+ε

}
+ IRc (69)

at the first interface and similarly for the second interface

4π [r (urσrr − δPur)]r2−ε − 2Iφ(r2 − ε) = 4π [r (urσrr)]r2+ε − 2Iφ(r2 + ε)− 2~IT Ř~I

⇔ φ(r2 − ε)− φ(r2 + ε) = −2π

I

{
[r (urσrr)]r2+ε − [r (urσrr − urδP )]r2−ε

}
+ IRc. (70)

Combining the above general solution with these conditions, we find at r1

rur(σrr − δP ) =
I2s2Lη`GE

4π2e2n2Ls
2
B`

2
G

`GE − r2K0

(
r1
`GE

)
I1

(
r2
`GE

)
− r2I0

(
r1
`GE

)
K1

(
r2
`GE

)
r1r2

[
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

)] − ηI2s2L
2π2e2n2Lr

2
1s

2
B

and at r2

rur(σrr − δP ) = − I2s2Lη`GE

4π2e2`2Gn
2
Ls

2
B

`GE − r1I1
(
r1
`GE

)
K0

(
r2
`GE

)
− r1K1

(
r1
`GE

)
I0

(
r2
`GE

)
r1r2

[
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

)] − ηI2s2L
2π2e2n2Lr

2
2s

2
B

.

As a result, we find the total resistance R of the system in the form

IR = φ(rin)− φ(rout) = I(RL +RB + 2RC +Rdiss
L +Rdiss

B ), (71)

RL =
3PL

2πe2n2Lv
2
gτL

log

(
r1rout
rinr2

)
, RB =

R0

2π
log

(
r2
r1

)
, (72)

RC =
~IT Ř~I

I2
, (73)

Rdiss
L =

ηL
πe2n2L

(
1

r22
− 1

r21

)
(74)

Rdiss
B =

ηs2L
πe2n2Ls

2
B

{
1

r21
− 1

r22
+
`GE

2`2G
(75)

×
r2

[
K0

(
r1
`GE

)
I1

(
r2
`GE

)
+I0

(
r1
`GE

)
K1

(
r2
`GE

)]
+r1

[
I1

(
r1
`GE

)
K0

(
r2
`GE

)
+K1

(
r1
`GE

)
I0

(
r2
`GE

)]
−2`GE

r1r2

(
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

))
 .

Analysis of results

The behavior of the obtained resistance depends on the hierarchy of length scales r1, r2, r2 − r1, `GE and `R. In
this Section, we specify the quantitative values of the parameters used to produce the plots shown in the main text.
For clarity, here we restore the constants ~ and kB .
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We perform our quantitative analysis assuming the carrier density in the leads to be nL = 5 × 1014 m−2. The
equilibrium temperature in the device (including both leads and the sample) is fixed to T = 100 K. The current, that
is supplied by the source is I = 1 µA and we assume that the effective interaction constant is screened to α = 0.2.
We further use τdis = 1.25 × 10−12 s and τL = 0.189 × 10−12 s [65], since the density is higher in the leads. This
determines all other parameters, except for τRE and τR (or alternatively `GE and `R). Since these quantities are
difficult to extract from the available experimental data, we show results for several different regimes.

The time scales related to electron-electron interaction are given by [63]

τii = ~
4πtii log 2

α2kBT
, t11 =

1

33.13
, t22 =

1

5.45
. (76)

For the above parameter values, we find τ11 = 0.5× 10−12 s and τ22 = 3× 10−12 s. The viscosity can be estimated as

η =
0.446k2BT

2

α2v2g~
(77)

and amounts to ν = v2gη/(3P ) = 0.25 m2/s. In addition

R0 =
π

2 log 2

~2

e2kBT

(
1

τ11
+

1

τdis

)
= 1985.33Ω (78)

When describing the hydrodynamic velocity ur and the pressure δP one can consider three different limits. If
`GE � r1, r2, which is achieved for very small τdis, one finds

ur ≈
IsL

(√
rr2 sinh

(
r−r2
`GE

)
−√rr1 sinh

(
r−r1
`GE

))
2πenLrsB

√
r1r2sinh

(
r1−r2
`GE

) (79)

which means, that the velocity vanishes exponentially close to the interface and is very small in the bulk of the
sample. In the opposite limit `GE � r1, r2 ur shows a behavior similar to the drift velocity in the leads with
logarithmic corrections

ur ≈
IsL

2πenLrsB
+

IsLr
2
1r

2
2 log

(
r1
r2

)
4πe`2GEnLrsB(r21 − r22)

+
IrsL

[
r21 log

(
r
r1

)
− r22 log

(
r
r2

)]
4πe`2GEnLsB (r21 − r22)

. (80)

Finally, if r2 − r1 � r1, r2, `GE we find the same 1/r behavior as in the leads

ur ≈
IsL

2πenLrsB
(81)

The resulting velocity ur is shown in Fig. 2 of the main text. In the leads, the drift velocity shows a simple 1/r
behavior, while one finds a jump due to the mismatch of entropy directly at the interface. Inside the sample, the
situation depends on the relative size of `GE. If `GE � r1, r2 we indeed observe, that the velocity decreases rapidly
close to the interface and exactly vanishes in the bulk of the sample. This behavior is generally only observable in
rather large samples, since the quantity τdis cannot be arbitrarily small while still staying in the hydrodynamic regime.
In all other cases, ur resembles a 1/r behavior, that is slightly modified by logarithmic corrections.

The plot of δT are shown in Fig. 3 of the main text. In the limit of `GE � r1, r2 the non-equilibrium part of the
temperature δT vanishes in the bulk of the sample. In this limit energy relaxation processes transfer any heating,
that may develop in the sample to the substrate and out of the device. There is only a small finite effect very close to
the interface. Since this is an effect of τR it is in principle independent of `GE and τRE, however we need `R < `GE to
remain in the hydrodynamic regime. In all other scenarios, there is a finite temperature profile, which may amount
to 0.5% of the equilibrium temperature.

Finally we take a look at the total resistance R of the system. In general one might place the measuring points
rin and rout very close to the interface, in which case the bulk resistance of the leads RL would not contribute to the
total resistance R. We will further disregard the influence of the phenomenological contact resistance RC , which only
depends on the used materials and their relative chemical potential. Then one can consider again three limiting cases
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of the hydrodynamic, dissipative contribution to the resistance Rdiss
B . The first limit is `GE � r1, r2 in which case we

find

Rdiss
B ≈ ηs2L

πe2n2Ls
2
B

(
1

r21
− 1

r22

)

−
s2L(A+ η)

(
(r1 + r2) cosh

(
r1−r2
`GE

)
− 2
√
r1r2

)
csch

(
r1−r2
`GE

)
2πe2`GEn2Lr1r2s

2
B

(82)

≈ ηs2L
πe2n2Ls

2
B

 1

r21
− 1

r22
−

√
`2G +

v2gτdisτRE

2

2`2G

(
1

r1
+

1

r2

) (83)

where the second approximation requires r1 − r2 � `GE. The result of Ref. [66] corresponds to neglecting the term
proportional to `GE. The second limit is the case `GE � r1, r2 and we find

Rdiss
B ≈ ηs2L

πe2n2Ls
2
B

(
1

r21
− 1

r22
+

1

2`2G
log

(
r2
r1

))
, (84)

which introduces a logarithmic correction of exactly the same form as the bulk resistance RB of the sample. The final
limit is r2 − r1 � r1, r2, `GE where we find the result

Rdiss
B =

s2Lη(r22 − r21)

4πe2n2Lr1r2s
2
B`

2
G

. (85)

If one instead directly takes the limit τRE → 0, and additionally `G � r1, r2, r2 − r1 one would obtain

Rdiss
B ≈ ηs2L

πe2n2Ls
2
B

[
1

r21
− 1

r22
− 1

2`G

(
1

r1
+

1

r2

)]
. (86)

This is the result for the viscous correction to the resistance at charge neutrality in the setup of Ref. [67].
The plots for φ(r) and R = RB +Rdiss

B +Rdiss
L are shown in Fig. 4 and 5 of the main text respectively. In the case

of the potential φ we find a logarithmic dependence on the radial position r in both the leads and the sample, where
the overall prefactor is however different. In all considered cases, the jump at the interface is in the same direction,
which for the second interface is opposite to what Ref. [66] obtains. This is due to the fact, that in our case the
contribution of δP is larger than the contributions due to η and ηL alone. The jump is larger, for larger `GE. As seen
in Fig. 5 of the main text, the total measured resistance is only slightly changed. The correction shown in the inset
of Fig. 5 of the main text is nearly logarithmic for the larger `GE, while is saturates for the smaller `GE.
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We explore the magnetohydrodynamics of Dirac fermions in neutral graphene in the Corbino ge-
ometry. Based on the fully consistent hydrodynamic description derived from a microscopic frame-
work and taking into account all peculiarities of graphene-specific hydrodynamics, we report the
results of a comprehensive study of the interplay of viscosity, disorder-induced scattering, recombi-
nation, energy relaxation, and interface-induced dissipation. In the clean limit, magnetoresistance of
a Corbino sample is determined by viscosity. Hence the Corbino geometry could be used to measure
the viscosity coefficient in neutral graphene.

Transport measurements remain one of the most com-
mon experimental tools in condensed matter physics.
Having dramatically evolved past the original task of es-
tablishing bulk material characteristics such as electrical
and thermal conductivities, modern experiments often
involve samples that are tailor-made to target particular
properties or behavior.

In recent years considerable efforts have been devoted
to uncovering the collective or hydrodynamic flows of
charge carriers in ultraclean materials as predicted theo-
retically [1–4]. Several dedicated experiments focused on
answering two major questions: is the observed electronic
flow really hydrodynamic and how to measure electronic
viscosity [5–10], the quantity that fascinates physicists
beyond the traditional condensed matter physics [11–
18]. The hydrodynamic regime is apparently easiest to
achieve in graphene [2–4]. This material is especially in-
teresting since it can host two drastically different types
of hydrodynamic behavior: (i) “conventional” at rela-
tively high carrier densities [3, 19, 20] and (ii) “uncon-
ventional” at charge neutrality [21, 22].

Linearity of the excitation spectrum in graphene leads
to the fact that electronic momentum density defines the
energy current, jE . In the intermediate temperature win-
dow where electron-electron interaction is the dominant
scattering process in the system (ℓee ≪ ℓdis, ℓe−ph,W , in
the self-evident notation) the energy flow becomes hydro-
dynamic. At high carrier densities (in “doped graphene”)
the energy current is essentially equivalent to the electric
current, j, allowing one to formulate a Navier-Stokes-like
equation for j [20] as pioneered by Gurzhi [19].

At charge neutrality and in the absence of the exter-
nal magnetic field (B = 0) the energy and electric cur-
rents decouple [23]. In the hydrodynamic regime the elec-
tric current remains Ohmic [22] (with the “internal” or
“quantum” conductivity σQ due to electron-electron in-
teraction [24–27]), while the Navier-Stokes-like equation
describes the energy current [22, 28, 29]. If external mag-
netic field is applied, the energy and charge flows become
entangled [21–23] allowing for a possibility to detect the
hydrodynamic flow in electronic transport experiments.
In particular, a bulk (infinite) system is characterized

FIG. 1. Hydrodynamic velocity u and temperature δT dis-
tribution in the device obtained by solving the hydrodynamic
equations at relatively high temperatures where energy relax-
ation is dominated by supercollisions. Arrows indicate u and
the color map shows δT . The quantitative results were com-
puted using the following values of the average temperature
T = 150K, disorder scattering time τdis = 1.5 ps (correspond-
ing to the scattering rate τ−1

dis ≈ 0.67THz≈ 5.1K), recombi-
nation time τR = 15ps, energy relaxation time τRE = 5ps,
dimensionless coupling constant in graphene α = 0.5, carrier
density in the leads nL = 5×1012 cm−2, and the current pass-
ing through the device I = 1µA. The four panels correspond
to the indicated values of magnetic field.

by positive, parabolic magnetoresistance [23, 30] propor-
tional to the disorder mean free time τdis (disorder scat-
tering is the only mechanism of momentum relaxation).

The outcome of a given measurement is strongly in-
fluenced by the sample size and geometry. Early experi-
ments focused on either the “strip” (or Hall bar) [5–8] or
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the point contact geometry [9, 10], while more recently
data on Corbino disks became available [31].

The simplest viscous phenomenon one can look for in a
long (striplike) sample [7–10, 12, 32–52] is the Poiseuille
flow [53–55]. This flow is characterized by a parabolic
velocity profile with the curvature determined by viscos-
ity. In doped graphene the Poiseuille flow of charge can
be detected by imaging the electric current density [8].
In contrast, neutral graphene exhibits the Poiseuille flow
of the energy current [56]. Moreover, at relatively high
temperatures where hydrodynamic behavior in graphene
is observed the electron-phonon interaction (either direct
[23, 57, 58] or via “supercollisions” [59–64]) cannot be ne-
glected and hence electronic energy is not conserved. The
resulting energy relaxation dwarfs the viscous contribu-
tion to the Navier-Stokes [65] equation.

Applying a perpendicular magnetic field to a neutral
graphene strip leads to a coupled charge and energy flow
with the two currents being orthogonal [23]. The elec-
tric current flowing along the strip is accompanied by a
neutral quasiparticle flow in the lateral direction result-
ing in energy and quasiparticle accumulation near the
strip boundaries [66, 67]. The accumulation is limited by
quasiparticle recombination [67] and energy relaxation
processes [59]. As a result, the boundary region’s contri-
bution to the resistance is linear in the applied magnetic
field [23, 48, 67, 68], in contrast to the standard quadratic
magnetoresistance of the bulk system [23, 30]. In classi-
cally strong fields the boundary contribution dominates
making the linear magnetoresistance directly observable.
This effect is not specific to Dirac fermions as shown by
experiments in bilayer graphene [69].

The Corbino geometry presents an interesting alterna-
tive to the Hall bar experiments [31, 65, 70–78]. In a typ-
ical measurement the electric current is passed from the
inner to the outer boundary of a Corbino disk. The spe-
cific feature of the stationary flow in this geometry is that
the magnitude of the radial component of the current is
determined by the continuity equation alone. In the ab-
sence of the magnetic field the whole current flows radi-
ally. Combining the solution of the continuity equation
with the hydrodynamic Gurzhi equation (e.g., in doped
graphene) leads to an apparent paradox [73]: the current
flow appears unaffected by viscosity. However, the dis-
sipated energy is still determined by viscosity leading to
the jumps of electric potential at the contacts thus re-
solving the paradox. In a perpendicular magnetic field
the system exhibits parabolic magnetoresistance inverse
proportional to the viscosity and independent of the dis-
order scattering. Applied phenomenologically to neutral
graphene (neglecting contact effects) [78] this conclusion
stands in sharp contrast to the standard result [23, 30]
raising the question of the fate of the disorder-limited
bulk magnetoresistance in the Corbino geometry.

In this paper we investigate hydrodynamic flows in
neutral graphene in the Corbino disk subjected to the
perpendicular magnetic field based on the graphene-
specific hydrodynamic theory [2, 22, 59] reporting the

results of a careful study of the interplay of viscosity,
disorder-induced scattering, recombination, energy relax-
ation, and interface-induced dissipation. Solving the hy-
drodynamic equations we find the spatial distribution of
the hydrodynamic velocity u, temperature (see Fig. 1),
electric current, and potential φ (see Fig. 2). Further-
more, we calculate the field-dependent resistance of the
whole Corbino sample including the leads. Keeping in
mind recent and ongoing experiments, it appears logical
to include the effect of the lead resistance in order to
achieve a more realistic description of the Corbino de-
vice. However, the theoretical limit of “ideal” leads can
be considered without any complications.
The main results of this paper are as follows. We

show that magnetoresistance of the Corbino device ex-
hibits a crossover from the “hydrodynamic” (viscosity-
dominated) to the “bulk” (disorder-limited) behavior
with the increasing system size as compared to the
Gurzhi length ℓG =

√
ντdis [46–49, 52] (ν is the kinematic

viscosity [3, 5, 6, 55, 79] and τdis is the disorder mean
free time). In the clean limit (τdis → ∞) magnetoresis-
tance remains finite and is determined by viscosity offer-
ing a way to measure the viscosity coefficient in neutral
graphene. In classically strong fields magnetoresistance
remain parabolic (in contrast to the linear magnetoresis-
tance in the strip geometry). The “contact magnetoresis-
tance” induced through the dissipation jump is present,
but is typically weaker than the bulk contribution.

I. MAGNETOHYDRODYNAMICS IN
GRAPHENE

Our arguments are based on the hydrodynamic theory
of electronic transport in neutral graphene derived from
the kinetic (Boltzmann) equation [21, 22, 59] or from the
microscopic Keldysh technique [80]. At charge neutral-
ity both bands contribute to transport on equal footing.
A current-carrying state is characterized by the chemical
potentials µ± of each band or by their linear combina-
tions [22, 81]

µ =
µ++µ−

2
, µI =

µ+−µ−

2
, (1a)

conjugate to the “charge” and “imbalance” (or “total
quasiparticle”) densities

n = n+ − n−, nI = n+ + n−. (1b)

In equilibrium µI = 0. Any macroscopic current can be
expressed as a product of the corresponding density and
hydrodynamic velocity u (up to dissipative corrections).
Due to the kinematic peculiarity of the Dirac fermions
in graphene known as the “collinear scattering singular-
ity” [21, 25] one has to consider the electric, energy, and
imbalance, jI currents defined as

j = nu+δj, jI = nIu+δjI , jE = Wu, (2)
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where W is the enthalpy density and δj and δjI are
the dissipative corrections. In the degenerate limit
µ ≫ T the dissipative corrections vanish [22, 28] justify-
ing the applicability of the single-band picture to doped
graphene. At charge neutrality n = 0, the electric and
energy currents in Eq. (2) appear to be decoupled [22].

Within linear response, steady-state macroscopic cur-
rents obey the linearized hydrodynamic equations [82].
Assuming that the dominant mechanism of energy relax-
ation is supercollisions [59], the equations have the form

∇·δj = 0, (3a)

nI∇·u+∇·δjI = −12 ln 2

π2

nIµI

TτR
, (3b)

∇δP = η∆u+
e

c
δj×B − 3Pu

v2gτdis
, (3c)

3P∇·u = −2δP

τRE
. (3d)

Here Eq. (3a) is the continuity equation; Eq. (3b) is the
“imbalance” continuity equation [22, 81] (where vg is the
band velocity in graphene, c is the speed of light, e is the
unit charge, and τR is the recombination time); Eq. (3c)
is the linearized Navier-Stokes equation [22, 29, 82, 83]
(with η being the shear viscosity); and Eq. (3d) is the
linearized “thermal transport” equation (τRE is the en-
ergy relaxation time [59]). We follow the standard ap-
proach [55] where the thermodynamic quantities are re-
placed by the corresponding equilibrium functions of the
hydrodynamic variables. Equilibrium thermodynamic
quantities, i.e., the pressure P = 3ζ(3)T 3/(πv2g), en-

thalpy density W, imbalance density, nI = πT 2/(3v2g),
and energy density are related by the “equation of state”,
W = 3P = 3nE/2. Equations (3) should be solved for
the unknowns u, µI , and δP keeping the remaining (ther-
modynamic) quantities, e.g., nI , P , and T , constant.

The dissipative corrections to the macroscopic currents
can be determined from the underlying microscopic the-
ory [22, 29, 82] and are expressed in terms of the same
variables closing the set of hydrodynamic equations (3)

δj =
1

e2R̃

[
eE + ωBeB×

(
α1δI∇µI

τ−1
dis +δ−1

I τ−1
22

− 2T ln 2

v2g
u

)]
,

(4a)

δjI = − δI

τ−1
dis +δ−1

I τ−1
22

1

e2R̃
× (4b)

×
[
α1ωBeB×E+

2T ln 2

π
e2R0∇µI+α1ω

2
B

2T ln 2

v2g
u

]
,

R̃ = R0+α2
1δIR̃B . (4c)

In Eqs. (4) the following notations are introduced. R0 is
the zero-field bulk resistivity in neutral graphene [23, 30]

R0 =
π

2e2T ln 2

(
1

τ11
+

1

τdis

)
−→

τdis→∞

1

σQ
, (5)

where τ11 ∝ α−2
g T−1 describes the appropriate electron-

electron collision integral. R̃B denotes [65, 82]

R̃B =
π

2e2T ln 2

ω2
B

τ−1
dis +δ−1

I τ−1
22

, (6)

where τ22 ∝ α−2
g T−1 describes a component of the col-

lision integral that is qualitatively similar, but quantita-
tively distinct from τ11 and δI ≈ 0.28. Another numerical
factor in Eqs. (4) is α1 ≈ 2.08 and ωB = eBv2g/(2cT ln 2)
is the generalized cyclotron frequency at µ = 0.
The shear viscosity at charge neutrality and in the ab-

sence of magnetic field was evaluated in Refs. [22, 79, 83]
and has the form

η(µ = 0, B = 0) = B T 2

α2
gv

2
g

, B ≈ 0.45. (7)

Within the renormalization group (RG) approach, αg

is a running coupling constant [56, 83–86]. However,
the product αgvg remains constant along the RG flow
[24, 83]. Hence Eq. (7) gives the correct form of shear
viscosity in neutral graphene [84]. Within the kinetic
theory approach, the coefficient B can be expressed in
terms of time scales characterizing the collision integral
[22, 79]. At neutrality these time scales are qualitatively
similar to, but quantitatively distinct from τ11 and τ22.
The similarity follows from the fact that in general all
time scales are functions of the chemical potential and
temperature [22, 28, 87]. At neutrality µ = 0 and hence
all time scales are inverse proportional to temperature.
As a function of the magnetic field, the viscosity co-

efficient in neutral graphene exhibit a weak decay until
eventually saturating in classically strong fields [79]

η(µ = 0, B) =
B+B1γ

2
B

1+B2γ2
B

T 2

α2
gv

2
g

, γB =
|e|v2gB
α2
gcT

2
, (8)

where

B1 ≈ 0.0037, B2 ≈ 0.0274.

This behavior should be contrasted with the more con-
ventional Lorentzian decay of field-dependent shear vis-
cosity in doped graphene [6, 45, 46, 79, 88]. However, in
weak fields where most present-day experiments are per-
formed this distinction is negligible. Moreover, due to
the smallness of the coefficient B1 and B2 we disregard
the field dependence of η in what follows.
Under the assumptions of the hydrodynamic regime,

disorder scattering is characterized by the large mean free
time, τdis ≫ τ11, τ22, yielding a negligible contribution to
Eqs. (5) and (6). Equation (5) describes the uniform bulk
current (at B = 0) and is independent of viscosity (i.e.,
in a channel [3, 21, 67, 82]). In contrast, in the Corbino
geometry the current flow is necessarily inhomogeneous
and hence viscous dissipation must be taken into account.
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II. BOUNDARY CONDITIONS

Differential equations (3) should be supplemented by
boundary conditions, which should be expressed in terms
of the hydrodynamic velocity and macroscopic currents.
The statement of the boundary conditions does not im-
ply the validity of the hydrodynamic approximation at
the sample edges and generally have to be derived from
the underlying microscopic theory. However some of the
boundary conditions can be derived based on the con-
servation laws alone. In the circular Corbino geometry
conservation laws can be used to establish boundary con-
ditions for radial components of the currents [65].

A. Radial components of macroscopic currents

A typical experimental setup involves a graphene sam-
ple (in our case, at charge neutrality) in the shape of an
annulus placed between the inner (a disk of radius r1) and
outer (a ring with the inner radius r2) metallic contacts
(leads). The electric current I is injected into the cen-
ter of the inner lead preserving the rotational invariance
(e.g., through a thin vertical wire attached to the center
point) and spreads towards the outer lead, which for con-
creteness we assume to be grounded. The overall voltage
drop U is measured between two points in the two leads
(at the radii rin < r1 and rout > r2) yielding the device
resistance, R = U/I. The only boundaries in the system
are between the sample and the external leads.

For simplicity, we assume both leads to be of the same
material with a single-band electronic system, e.g., highly
doped graphene with the same doping level. In that
case, all macroscopic currents in the leads are propor-
tional to the drift velocity and hence are determined by
the injected current. In the stationary case, the conti-
nuity equation (3a) determines the radial component of
the electric current density. In the inner lead this yields
jinr = I/(2πer), defining the radial component of the drift
velocity, uin

r = jinr /nL (nL is the carrier density in the in-
ner lead). Assuming charge conservation is not violated
at the interface, we find the boundary condition between
the inner lead and the sample

jr(r1−ϵ) = nLur(r1−ϵ) = δjr(r1+ϵ), (9a)

where ϵ > 0 is infinitesimal and we took into account
that in neutral (n = 0) graphene j = δj.

The second hydrodynamic equation, Eq. (3b), is the
continuity equation for the imbalance density. Although
the total quasiparticle number is not conserved, integrat-
ing this equation over an infinitesimally thin region en-
compassing the boundary yields a similar boundary con-
dition for the imbalance current assuming that the re-
laxation rate due to quasiparticle recombination is not
singular at the boundary

jI,r(r1−ϵ) = nLur(r1−ϵ) = nIur(r1 + ϵ) + δjI,r(r1 + ϵ).
(9b)

Here we took into account the fact that in a single-band
system jI is identical with j.
Finally, Eq. (3d) is the linearized continuity equation

for the entropy density (here we follow the standard prac-
tice [55] of replacing the continuity equation for the en-
ergy density by the entropy flow equation, also known
as the thermal transport equation). Again, assuming the
energy relaxation rate is not singular at the interface (i.e.,
the current flow is not accompanied by energy or excess
heat accumulation at the boundary between the sample
and the contact) we integrate Eq. (3d) over an infinitesi-
mally thin region encompassing the boundary and arrive
at the boundary condition for the entropy current

sinur(r1−ϵ) = sur(r1 + ϵ), (9c)

where s and sin are the entropy densities in the sample
and inner lead, respectively.

B. Tangential flows in external magnetic field

The above boundary conditions (and the correspond-
ing conditions on the outer lead) are sufficient to solve the
hydrodynamic equations in the absence of magnetic field
where all currents are radial [65]. An external magnetic
field induces the tangential components of the currents
due to the classical Hall effect. The continuity equations
do not determine the tangential components and hence
the boundary conditions have to be derived from a mi-
croscopic theory. Generally speaking, the boundary con-
ditions depend on the presence of tangential forces at the
interface, usually associated with edge roughness. Typi-
cally [2–4, 55, 73], one considers the two limiting cases of
either the “no-slip” or “no-stress” boundary conditions
corresponding to either the presence or the absence of
the drag-like friction across the interface.
For contact interfaces in the Corbino geometry, the

boundary conditions corresponding to the above limiting
cases differ from the well-known expression of conven-
tional hydrodynamics. The no-slip boundary condition
now means that the tangential component of the hydro-
dynamic velocity is continuous across the interface (writ-
ten as above for the inner interface)

uLϑ(r1 − ϵ) = uϑ(r1 + ϵ), (10a)

in contrast to the common condition of vanishing velocity
at the channel boundary (the two are consistent, since in
the latter case there is no flow beyond the edge).
The no-stress boundary condition means the absence of

any forces along the interface in which case the tangential
component of the stress tensor Πij is continuous. In polar
coordinates appropriate for the Corbino geometry one
finds

Πϑr
L,E(r1 − ϵ) = Πϑr

E (r1 + ϵ), (10b)

The no-stress boundary condition is easy to derive start-
ing from the kinetic equation. Multiplying the kinetic
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equation by the momentum and summing over all quasi-
particle states, one finds an equation featuring the gradi-
ent of the stress tensor [22] as well as macroscopic forces
in the system. Now the boundary condition can be ob-
tained by integrating that equation over the small volume
around the interface. Unless there is a force localized at
the interface (with a δ-function-like coordinate depen-
dence on the hydrodynamic scale), this procedure would
yield Eq. (10b). Usually, the interfaces are microscop-
ically rough with the roughness providing such a force.
As a result, the no-slip boundary condition is more com-
monly used. In neutral graphene, however, the quasipar-
ticle wavelength typically exceeds any length scale asso-
ciated with edge roughness leading to specular scattering
[82] and Eq. (10b).

In the case of the hard wall edges, the boundary con-
ditions were previously studied theoretically in Ref. [89]
and confirmed experimentally in Ref. [8] where a nonzero
slip length was proposed indicating a more general
Maxwell’s boundary condition. However, the specific
choice of the boudnary conditions does not lead to qual-
itatively different results [73]. Here we follow the hy-
drodynamic tradition and consider both the no-slip and
no-stress boundary conditions.

C. Interface-induced dissipation and jumps of the
electric potential

The hydrodynamic theory discussed so far completely
describes the energy flow in neutral graphene. In order to
establish the device resistance R we have to find the be-
havior of the electrochemical potential at the interfaces.

The standard description of interfaces between metals
or semiconductors in terms of the contact resistance [90]
can be carried over to neutral graphene [81]. In graphene,
the contact resistance was recently measured in Ref. [8]
(see also Refs. [31, 91, 92]). In the diffusive (or Ohmic)
case, the contact resistance leads to a voltage drop that is
small compared to that in the bulk of the sample and can
be neglected. In contrast, in the ballistic case with almost
no voltage drop in the bulk, most energy is dissipated at
the contacts. Both scenarios neglect interactions.

In the diffusive regime interactions give rise to per-
turbative corrections to the bulk resistivity [93, 94] and
the contact resistance can still be neglected. In ballis-
tic samples electron-electron interaction may lead to the
“Knudsen-Poiseuille” crossover [19] and drive the system
to the hydrodynamic regime. In this case the Ohmic
resistivity of the electronic fluid may remain small, but
there exist other channels for dissipation due to viscos-
ity [73] and energy relaxation processes [59]. In neutral
graphene the effect is subtle [65], since the electric current
is decoupled from the hydrodynamic energy flow. How-
ever, both are induced by the current source that pro-
vides the energy dissipated through all the above chan-
nels. The energy dissipated in the system corresponds to
the overall voltage drop. In the bulk of the sample the

FIG. 2. Electric current density j and potential φ in the
device obtained by solving the hydrodynamic equations at
relatively high temperatures where energy relaxation is domi-
nated by supercollisions. Arrows indicate j and the color map
shows φ. The outer lead is chosen to be grounded. The four
panels correspond to the indicated values of magnetic field.
For the values of other parameters, see Fig 1.

voltage drop is Ohmic as determined by Eq. (4a), while
the additional contribution takes the form of a potential
jump at the interface between the sample and leads. At
the same time, an excess electric field is induced in a thin
Knudsen layer around the interface [73].
The magnitude of the jump in ϕ can be established by

considering the flow of energy through the interface as
suggested in Ref. [73] and detailed in neutral graphene
atB = 0 in Ref. [65]. Consider the kinetic energy defined
by integrating the energy density nE(u)−nE(0) over the
volume

E =

∫
dV [nE(u)−nE(0)] ≈

∫
dV

6P

v2g
u2, (11)

which we have expanded to the leading order in u (and
hence in I). In the stationary state, dissipation is bal-
anced by the work done by the source, such that the time
derivative of the kinetic energy vanishes, A = Ė = 0. Us-
ing the equations of motion and continuity equations to
find time derivatives, one may split A into the “bulk”
and “boundary” contributions, A = Abulk +Aedge. The
former may be interpreted as the bulk dissipation, while
Aedge must include the energy brought in (carried away)
through the boundary by the incoming (outgoing) flow.
The boundary condition is then found under the assump-
tion that energy is not accumulated at the interface.
Assuming the leads’ material is highly doped graphene,

the equation of motion is the usual Ohm’s law where we
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may combine the diffusion term [95] with a contribution
of viscosity ηL due to disorder [96] into the gradient of
the stress-energy tensor [23] and hence

3PL

v2g
uL∂tuL =

= ui
L

(
−3PL

v2g

ui
L

τL
−∇jΠij

L,E+nLeE
i+

e

c
ϵijkjjBk

)

= −3PL

v2g

u2
L

τL
+
∂uL,i

∂xj
Πij

L,E+
e

c
uL ·(j×B)+eφ∇·j

−∇i
(
uj
LΠ

ij
L,E + ejiφ

)
.

The last term in this expression determines the bound-
ary contribution. Given that the Lorentz force does not
explicitly contribute, the only difference from the expres-
sion derived in Ref. [65] at B = 0 is the nonzero tangen-
tial components of the hydrodynamic velocity and the
stress tensor (vanishing in the absence of magnetic field).
In neutral graphene, we obtain a similar expression from
the Navier-Stokes equation, while the Joule heat is de-
termined by δj. Equating the two contributions we find
the jump of the potential in the form

φ(r1 − ε)− φ(r1 + ε) = IRc + (12)

+
2πr1
I

[(
urΠ

rr
E + uϑΠ

ϑr
E

) ∣∣∣
r1+ε

−
(
urΠ

rr
L,E + uϑΠ

ϑr
L,E

) ∣∣∣
r1−ε

]
,

where Rc is the usual contact resistance [81]. A similar
condition holds at the boundary with the outer lead.

III. HYDRODYNAMIC FLOWS IN THE
CORBINO GEOMETRY

In polar coordinates and taking into account radial
symmetry, the hydrodynamic equations (3) and (4) form
two disjoint sets of differential equations. The first one
determines the tangential component of the velocity uϑ:

1

r

∂(rδjr)

∂r
= 0, (13a)

η∂r

(
1

r

∂(ruϑ)

∂r

)
− eB

c
δjr −

3Puϑ

v2gτdis
= 0, (13b)

δjr =
1

e2R̃

[
eEr(r) + ωB

2T ln 2

v2g
uϑ

]
, (13c)

δjIϑ = − α1δIωB

τ−1
dis +δ−1

I τ−1
22

δjr, (13d)

while the second one involves the radial component ur:

nI

r

∂(rur)

∂r
+

1

r

∂(rδjIr)

∂r
= −12 ln 2

π2

nIµI(r)

TτR
, (14a)

∂δP

∂r
= η∂r

(
1

r

∂(rur)

∂r

)
+

eB

c
δjϑ − 3Pur

v2gτdis
, (14b)

3P

r

∂(rur)

∂r
= −2δP (r)

τRE
. (14c)

δjϑ =
ωB

e2R̃

(
α1δI

τ−1
dis +δ−1

I τ−1
22

∂µI

∂r
− 2T ln 2

v2g
ur

)
, (14d)

δjIr = − 2δIT ln 2

τ−1
dis +δ−1

I τ−1
22

[
R0

πR̃

∂µI

∂r
+
α1ω

2
B

e2R̃

ur

v2g

]
. (14e)

A. Tangential component of the velocity and bulk
voltage drop

The bulk magnetoresistance can be found by solv-
ing Eqs. (13) with the appropriate boundary conditions.
Combining Eqs. (13a) and (13b) we find an inhomoge-
neous Bessel equation for the tangential component of
the velocity uϑ with the characteristic length scale be-
ing the Gurzhi length ℓ2G = ηv2gτdis/(3P ). The boundary
condition for uϑ is determined by microscopic details of
viscous drag at the interface and hence is not universal.
Here we follow the hydrodynamic tradition and consider
both the no-slip and the no-stress boundary conditions,
see Sec. II B. Moreover, one can distinguish two different
setups where the external magnetic field is applied either
to the sample only or to the whole device including the
leads. In all these cases we can find an analytic expression
for uϑ, which can be substituted into of Eq. (13c) to find
the electric field in the sample, Er (the radial component
of the current is determined by the continuity equation
alone). Similarly, Eq. (13d) determines δjIϑ. Using the
obtained electric field we can determine the voltage drop
through the bulk of the sample as

U =

r2∫
r1

Erdr =

r2∫
r1

dr

(
R̃I

2πr
− B

c
uϑ

)
. (15)

For the no-slip boundary condition for uϑ and allowing
the external magnetic field to penetrate the leads, the
tangential component of the velocity is given by

uϑ = −BIℓ2G
2πcηr

+
BI
(
ηℓ2L − ηLℓ

2
G

)
2πcηηLr1r2

× (16)

×

K1

(
r

ℓG

) r1I1

(
r1
ℓG

)
−r2I1

(
r2
ℓG

)
K1

(
r1
ℓG

)
I1

(
r2
ℓG

)
−I1

(
r1
ℓG

)
K1

(
r2
ℓG

)

+ I1

(
r

ℓG

) r2K1

(
r2
ℓG

)
−r1K1

(
r1
ℓG

)
K1

(
r1
ℓG

)
I1

(
r2
ℓG

)
−I1

(
r1
ℓG

)
K1

(
r2
ℓG

)
,
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where ηL is the disorder-induced viscosity [96] and ℓ2L =
v2gηLτL/(2PL) is the Gurzhi length in the leads.

In the limit ℓG ≫ r1, r2 (i.e., “clean system” with long
mean free time τdis → ∞) this simplifies to (p = r2/r1)

uϑ ≈ − BIℓ2L
4πcrηL

[
2 +

(
1

ℓ2G
− ηL
ηℓ2L

)
× (17)

×
r2 ln

(
r
r1

)
+r2p2 ln

(
r2
r

)
−r22 ln p

1−p2

.
The corresponding voltage drop remains finite

U ≈
(
1− ηℓ2L

ηLℓ2G

)
B2Ir22
4πc2η

(p2−1)2−4p2 ln2 p

4p2(p2−1)
(18a)

+
I ln p

2π

(
B2

c2
v2gτL

3PL
+ R̃

)
,

yielding the field-dependent bulk resistance (R = U/I)

R(B) ≈ ln p

2π
R0 +

B2r22
4πc2η

(p2−1)2−4p2 ln2 p

4p2(p2−1)
(18b)

+
B2v4g ln p

2c2T 3

[
α2
1δI

8 ln3 2

1

τ−1
dis +δ−1

I τ−1
22

+
T 3

µ3
τL

]
,

assuming ηℓ2L/(ηLℓ
2
G) = 3PτL/(2PLτdis) ≪ 1 with PL =

µ3
L/(3πv

2
g). The two field-dependent terms differ in their

dependence on temperature, sample size, and coupling
constant [35] opening a possibility to separate the two
contributions from the experimental data and thus to
measure the viscosity coefficient.

If the magnetic field is applied to the sample only (and
not to the leads) uϑ vanishes in the leads and hence the
terms with ℓL do not appear in the voltage drop (18). In
that case, the field-dependent contribution to U does not
contain τdis in contrast to the known result in the strip
geometry [23, 30].

A similar result can be obtained in the case of no-stress
boundary conditions, where the tangential component of
the velocity uϑ is still expressed in terms of the Bessel
functions. In the clean limit (ℓG ≫ r1, r2) the voltage
drop also remains finite

U ≈ I

2π

(
R̃+

B2ℓ2L
c2η

− BηH
ecηnL

)
ln p (19)

+
r22B

2I

4πc2η

[(
p2−1

) (
p4+10p2+1

)
12p2 (p2+1)

2 − ln p

1+p2

]

+
I

2π

[
B2

c2

(
ℓ2G−ℓ2L

)
η

+
BηH
ecηnL

]
p2−1

p2+1
,

where ηH is the Hall viscosity in the leads, which vanishes
if the magnetic field is not allowed in the leads. In that
case, the last term in the voltage drop (19) is proportional

FIG. 3. Radial (top panel) and tangential (bottom panel)
components of the hydrodynamic velocity u computed within
the “supercollisions model” of energy relaxation. Black lines
in the shaded regions show the drift velocity in the leads.
Color curves correspond to different values of the external
magnetic field according to the shown color coding. The top
curve shows values at B = 0 and is identical with the results
of Ref. [65]. For the parameter values, see Fig 1.

to τdis and independent of viscosity. The second term
in Eq. (19) remains similar to Eq. (18) and is inverse
proportional to η. This term’s dependence on the ratio
p is distinct from both Eq. (18) and the third term in
Eq. (19) and could be extracted by analyzing the data in
a set of Corbino disks with different p.
In the opposite limit ℓG ≪ r1, r2, the leading contri-

bution to the bulk voltage drop is independent of η. For
no-slip boundary conditions and in the simplified case
where the field is not allowed to penetrate the leads we
find for the field-dependent part of U

R(B)−R(0) ≈
B2v2gτdis ln p

6πc2P
+

ln p

2π
δIα

2
1R̃B ∝ τdisB

2.

(20)
The voltage drop (20) is proportional to τdis similarly
to the result in the strip geometry (see Refs. [23, 30]).
Of course, in the limit ℓG ≪ r1, r2 the mean free time
τdis cannot be arbitrarily large, hence the voltage drop
(20) does not diverge. In the limit τdis → ∞ the voltage
drop crosses over to the above “clean” limit and is given
by Eq. (18). However, the limiting expression (20) is
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independent of viscosity, and hence qualitatively similar
to the usual result.

To summarize the results of this section, we have
shown that bulk magnetoresistance in neutral graphene
in the Corbino geometry exhibits a crossover between the
“clean” limit of the large (compared to the disk radius)
Gurzhi length to the limit of small Gurzhi length. In the
former case, the field-dependent part of the bulk voltage
drop is determined by viscosity, while in the latter limit
it is proportional to the disorder mean free time similarly
to the known result in the strip geometry.

B. Radial component of the velocity and the
device resistance

The five equations (14) can be reduced to two cou-
pled differential equations (for similar calculations in the
strip geometry see Refs. [23, 48, 68, 82]). To simplify the
arguments, we introduce the following notations

q = nIur, p = δjI,r, x =
2nI

3P
δP, y =

12 ln 2

π2

nI

T
µI .

(21)
In terms of the new variables, Eqs. (14a) and (14c) can
be written as

1

r

∂(rq)

∂r
+

1

r

∂(rp)

∂r
= − y

τR
, (22a)

1

r

∂(rq)

∂r
= − x

τRE
. (22b)

Equation (14e) can be rewritten as

∂y

∂r
= − 6

π

R̃nI

R0T 2τ̃
p− 12 ln 2

π

α1ω
2
B

e2v2gR0T
q, (23a)

where τ̃ = δI/(τ
−1
dis +δ−1

I τ−1
22 ). Finally, Eqs. (14b) and

(14d) can be combined into

∂x

∂r
=

2η

3P

∂

∂r

1

r

∂(rq)

∂r
− 2

v2g

[
τ−1
dis +

ω2
B

e2R̃

4T 2 ln2 2

3Pv2g

]
q

+α1τ̃
π2T 2

9Pv2g

ω2
B

e2R̃

∂y

∂r
. (23b)

Introducing the differential operator

D̂q =
∂

∂r

1

r

∂(rq)

∂r
, (24)

we rewrite Eqs. (22) in the matrix form

D̂

(
q
p

)
= T̂S

(
∂x/∂r
∂y/∂r

)
, T̂S =

( 1
τRE

0

− 1
τRE

1
τR

)
. (25a)

Similarly, Eqs. (23) can be written in the matrix form(
∂x/∂r
∂y/∂r

)
= −M̂

(
q
p

)
+ V̂ D̂

(
q
p

)
, (25b)

FIG. 4. Local variations of temperature (top panel) and pres-
sure (bottom panel) in the Corbino device computed within
the “supercollisions model” of energy relaxation. Black lines
in the shaded regions indicate that the leads are at equilib-
rium. Color curves correspond to different values of the exter-
nal magnetic field according to the shown color coding. Zero
field values are identical with the results of Ref. [65]. For the
parameter values, see Fig 1.

where

V̂ =

(
2η
3P 0
0 0

)
,

and

M̂ =

 16 ln3 2
3π

δIR̃BT 3

v4
gPR0τ̃

+ 2
v2
gτdis

4 ln 2
3

α1δInIR̃BT
v2
gPR0τ̃

24 ln2 2
π2

α1δIR̃B

v2
gR0τ̃

6
π

nIR̃
R0T 2τ̃

 .

Finally, combining Eqs. (25) we find the equation for
the variables p and q

D̂

(
q
p

)
= K̂

(
q
p

)
, K̂ =

[
1− T̂S V̂

]−1

T̂SM̂. (26)

The obtained equation should be solved with the bound-
ary conditions (9). The solution is straightforward albeit
tedious. The results can be expressed in terms of linear
combinations of the Bessel functions. Thus obtained so-
lutions are not particularly instructive, hence we present
the results of the calculation in graphical form.
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FIG. 5. Magnetoresistance of a small (top panel) and large
(bottom panel) Corbino device computed within the “su-
percollisions model” of energy relaxation. The radii of the
Corbino disks are shown above the plots. The black dotted
line shows the quantity R̃, which is of the same order of magni-
tude as the magnetoresistance in the infinite system [23, 82].
Color curves correspond to three different sets of values of
the relaxation times. For other parameter values (yielding
ℓG = 0.2µm), see Fig 1. The insets show the contact resis-
tance due to viscous dissipation.

The radial component of the hydrodynamic velocity is
shown in the top panel of Fig. 3. The drift velocity in the
leads shows the standard Corbino profile, ur ∝ 1/r. At
each interface, ur exhibits a jump due to the mismatch of
the entropy densities in the sample and leads. For high
enough magnetic field, ur has a sign change close to the
interface. However, the corresponding change of direc-
tion is hardly seen in the overall flow diagram shown in
Fig. 1, since the numerical value of the tangential compo-
nent uϑ is much larger (see the bottom panel of Fig. 3).

The hydrodynamic velocity determines the energy cur-
rent in the system. The nonuniform energy current re-
sults in local variations of the electronic temperature
from its equilibrium value (see Fig. 4). The inhomoge-

neous temperature profile suggests that energy relaxation
is less effective in strong magnetic fields. Fig. 1 shows the
same data as Fig. 4 but in the form of the color map.
Finally we use the boundary conditions (12) to find the

interface jumps of the electric potential which allows us
to determine the device resistance. The procedure is the
same as in the case of B = 0 discussed in Ref. [65]. The
results are shown in Fig. 5. For small enough samples (see
the top panel in Fig. 5) the device resistance deviates only

slightly from R̃ which is of the same order of magnitude
as the magnetoresistance in the infinite system [23, 82].
In large samples the deviation is more pronounced and
depends on the actual radius of the disk rather than on
the ratio p (which is the same in both plots).
The quantitative results shown in this section were

computed for a particular choice of the relaxation times.
These values are largely phenomenological; however, the
magnetoresistance shown in Fig. 5 hardly depends on
them, while for larger samples (the bottom panel) the
three curves are indistinguishable. However, the values of
the relaxation times cannot be completely arbitrary. The

point is that the matrix K̂ in Eq. (26) is not guaranteed to
have real, positive eigenvalues (although its determinant
is positive). In particular, the recombination time τR
and energy relaxation time τRE cannot be very different.
Within the physical model of supercollisions [59] these
time-scales are of the same order of magnitude. Quasi-
particle recombination involves supercollision scattering
between the bands, while energy relaxation includes an
additional contribution of intraband scattering. As a re-
sult, the energy relaxation time is shorter than τR, but
not much shorter since the model does not involve any
additional parameter. For such physical values of the re-

laxation times the eigenvalues of the matrix K̂ are real
positive and the resulting magnetoresistance is well ac-
counted for by the curves shown in Fig. 5 where, again,
the particular values of τR and τRE do not have a strong
quantitative impact on the overall resistance magnitude.

C. Energy relaxation due to electron-phonon
interaction

Supercollisions are scattering events involving electron
scattering off a phonon and an impurity. As such, this is
a next-order process as compared to the direct electron-
phonon scattering. The reason supercollisions might be
important is that the speed of sound is much smaller than
vg. At high enough temperatures [59, 60] supercollisions
indeed dominate, but at lower temperatures the direct
electron-phonon scattering cannot be neglected.
Energy relaxation and quasiparticle recombination due

to electron-phonon scattering was considered in Ref. [23]
within the linear response theory. Since the macroscopic
equations of the linear response theory coincide with
the linearized hydrodynamic equations [22], we can di-
rectly incorporate the corresponding decay terms into
our hydrodynamic theory. These decay terms appear in
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FIG. 6. Magnetoresistance in small (top) and large (bot-
tom) Corbino devices computed within the “electron-phonon
model” of energy relaxation (cf. Fig. 5).

Eq. (25a) through the matrix T̂S . The model of electron-
phonon interaction introduced in Ref. [23] corresponds to
the following choice of this matrix

T̂ep = − 1

|∆|

(
γ

τEc
+ 1

τEb
− γ2

N2τEb
− γ

τEc

−γ2N2

γτEc
− N2

τIc
− 1

τEb

2γ
τEc

+ γ2

N2τEb
+ N2

τIc

)
,

(27)
where

γ=
π2

12 ln2 2
, N2 =

9ζ(3)

8 ln3 2
, ∆ = γ2 −N2,

and τEb ≪ τEc ≤ τIc describe the three independent
components of the electron-phonon collision integral [23].

Repeating the above calculation with T̂ep instead of

T̂S , we arrive at the results that are largely similar to
those obtained within the supercollision model, but with
a few notable differences (see Figs. 6-11). Unless specified
in the figure captions, the parameter values used for the
quantitative computation are the same as in the case of
supercollisions (see the caption to Fig. 1).

FIG. 7. Electric current density j and potential φ within the
electron-phonon model of energy relaxation (cf. Fig. 2).

Magnetoresistance of the device is still positive and
parabolic (see Fig. 6). In small devices, it is still largely

determined by the quantity R̃ (shown by the black dot-
ted line in Fig. 6 similarly to Fig. 5). In this case, varia-
tions of the electron-phonon relaxation rates still do not
affect the result in any noticeable way. The results for
large devices are also similar to the case of supercollisions:
calculated magnetoresistance clearly exceeds R̃ and thus
shows a strong dependence on the size of the device (but
not on the ratio p).

The electric current density and potential in the device
are seen largely the same as in the case of supercollisions,
although the deviation of the current from the radial di-
rection (i.e., its tangential component δjϑ) is somewhat
smaller (see Fig. 7, cf. Fig. 2). This result seems to be
consistent with the similarities in the magnetoresistance
in the two cases.

The hydrodynamic velocity u is still dominated by its
tangential component (see Figs. 8 and 9). The latter
shows the behavior that is largely similar to that shown
in the bottom panel of Fig. 3, although the magnitude of
uϑ shows stronger growth with increasing magnetic field.
In contrast, the temperature variation is “reversed”: now
the electronic temperature is increased around the inner
contact and decreased close to the outer one (the opposite
behavior to that seen in Figs. 1 and 4) (see Fig. 10).

The reversed behavior of the temperature variation
corresponds to the change in the radial component of
the hydrodynamic velocity ur. While the jumps at the
interfaces with the leads remain the same (insofar ur on
the sample side of the interface is larger than the drift
velocity in the leads), the initial slope of ur as a function
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FIG. 8. Hydrodynamic velocity u and temperature δT dis-
tribution in the device obtained by solving the hydrodynamic
equations at relatively low temperatures where energy relax-
ation is dominated by direct electron-phonon scattering (cf.
Fig. 1).

FIG. 9. Tangential component of the hydrodynamic velocity
uϑ computed within the “electron-phonon model” of energy
relaxation (cf. Fig. 3).

of the radial coordinate has the opposite sign, which does
not change with the increase in the magnetic field.

Overall, it is rather natural that the choice of the en-
ergy relaxation model mostly affects the energy flow in
the device rather than the charge flow. This is a clear
consequence of the decoupling of the energy and electric
currents in neutral graphene. Although the two currents
are being coupled by the magnetic field, the effect ap-
pears to be subleading. It is not surprising that the effect
of this coupling is most pronounced in strong magnetic
fields and large Corbino disks.

Contact resistance induced by viscous dissipation (see

FIG. 10. Local temperature variation computed within the
“electron-phonon model” of energy relaxation (cf. Fig. 3).

FIG. 11. Radial component of the hydrodynamic velocity
ur computed within the “electron-phonon model” of energy
relaxation (cf. Fig. 3).

insets in Figs. 5 and 6) is also affected by the choice of the
energy relaxation model. In the case of supercollisions
its qualitative behavior exhibits a strong dependence on
the size of the disk (see Fig. 5), while in the model of
electron-phonon scattering this dependence is reduced to
the magnitude only. The contact resistance is signifi-
cantly stronger in small devices for both choices of the
energy relaxation model as expected on general grounds.
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IV. SUMMARY

In this paper we considered hydrodynamic flows of
charge and energy in neutral graphene Corbino disks. We
have shown that the Corbino geometry offers a (in princi-
ple realizable) possibility to measure electronic viscosity
in neutral graphene, a task that so far has appeared elu-
sive. The viscosity coefficient could be extracted from the
magnetoresistance data in the ultra-clean limit where the
bulk contribution to the device resistance is independent
of the electron-impurity scattering time. The bulk re-
sistance dominates over the contact resistance for larger
sized disks and hence can in principle be measured in
laboratory experiments.

Corbino magnetoresistance in graphene is illustrated
in Figs. 5 and 6, where the calculated magnetoresistance
is shown for two models of energy relaxation. In both
cases, the dependence R(B) is parabolic, similarly to the
known result in the strip geometry. The viscosity co-
efficient can be in principle determined experimentally
by analyzing the data in a set of different Corbino disks
(see Sec. IIIA). This is not a straightforward task since
the magnetoresistance is given by a sum of viscosity-
dependent and viscosity-independent terms. In the clean
limit ℓG ≪ r1, r2 [see Eq. (18)], these terms exhibit
distinct dependence on the sample size r2, the ratio of
the radii p = r2/r1, and temperature, making it possi-
ble to extract the viscosity coefficient from the experi-
mental data. In the opposite limit [see Eq. (19)], the
dominant contribution to magnetoresistance is indepen-
dent of viscosity. Existing experiments appear to be in
the crossover between these two limits. In this paper
we have used parameter values yielding ℓG ≈ 0.2µm.
The size of the Corbino disk used in a recent experiment
[31] was r1 = 2µm, r2 = 9µm, which is closer to the
“large Corbino disk” illustrated in panels (b) in Figs. 5
and 6 than to the clean limit. It is fair to say that at
present extracting viscosity from Corbino magnetoresis-
tance measurements would be extremely difficult. At the
same time, we are not aware of any other way to measure

the viscosity coefficient in neutral graphene. We believe
that viscosity measurements and more generally exper-
imental observation of purely viscous effects in neutral
graphene will be more accessible in the near future with
even cleaner samples (increasing τdis by an order of mag-
nitude).
The regime of linear magnetoresistance as seen in the

strip geometry or infinitely sized models does not exist
in the Corbino geometry. This can be easily understood
by noting that the origin of linear magnetoresistance is
in the accumulation of energy and quasiparticle density
in the boundary region of a long strip where the sam-
ple edges provide a natural barrier for the lateral neutral
flow of quasiparticles induced by the magnetic field. In
a Corbino disk there is no such edge. The lateral cur-
rents (energy and imbalance) flow freely around the disk
without accumulating quasiparticles at any point.
Unlike the case of a single-band conductor (e.g., doped

graphene), at charge neutrality the electric field is not
expelled from the bulk of the sample. Nevertheless bulk
viscous dissipation does lead to a discontinuity of the
electric potential at the sample-lead interfaces inducing
an additional contact resistance. This resistance however
is rather small as compared to the resistance of the whole
device and should not have a strong effect on the viscosity
measurements.
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Electrical resistance usually originates from lattice imperfections. However, 

even a perfect lattice has a fundamental resistance limit, given by the Landauer1 

conductance caused by a finite number of propagating electron modes. This 

resistance, shown by Sharvin2 to appear at the contacts of electronic devices, sets the 

ultimate conduction limit of non-interacting electrons. Recent years have seen 

growing evidence of hydrodynamic electronic phenomena3–18, prompting recent 

theories19,20 to ask whether an electronic fluid can radically break the fundamental 

Landauer-Sharvin limit. Here, we use single-electron-transistor imaging of electronic 

flow in high-mobility graphene Corbino disk devices to answer this question. First, 

by imaging ballistic flows at liquid-helium temperatures, we observe a Landauer-

Sharvin resistance that does not appear at the contacts but is instead distributed 

throughout the bulk. This underpins the phase-space origin of this resistance - as 

emerging from spatial gradients in the number of conduction modes. At elevated 

temperatures, by identifying and accounting for electron-phonon scattering, we 

reveal the details of the purely hydrodynamic flow. Strikingly, we find that electron 

hydrodynamics eliminates the bulk Landauer-Sharvin resistance. Finally, by imaging 

spiraling magneto-hydrodynamic Corbino flows, we reveal the key emergent length-

scale predicted by hydrodynamic theories – the Gurzhi length. These observations 

demonstrate that electronic fluids can dramatically transcend the fundamental 

limitations of ballistic electrons, with important implications for fundamental science 

and future technologies. 
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Electrical resistance is synonymous with the back-scattering of electrons. When an 

electron collides with an impurity, a phonon, or a rough device edge, it loses some of its 

momentum to the lattice, generating resistance. Therefore, it is very surprising that even 

when all these back-scattering sources are eliminated, an electronic device still has a non-

zero resistance. As shown by Landauer1, such resistance results from the finite conduction 

capacity of a channel, given by the number of its conduction modes multiplied by 𝑒2/ℎ (𝑒 

is the electronic charge and ℎ is Plank's constant). Sharvin2 realized that this resistance 

should appear at the interface between the device and its contacts, where the number of 

conduction modes changes sharply. This Landauer-Sharvin resistance thus sets the ultimate 

resistance limit for ballistic electrons and gives a performance bound on real-life devices, 

where electrons are forced to transition frequently between metals and semiconductors. 

A growing body of theoretical21–32 and experimental3–18 evidence suggests that 

when the interaction between electrons is sufficiently strong to dominate their scattering, 

the electronic system behaves as a hydrodynamic fluid. Key hydrodynamic features have 

been observed in transport3–8,10,11,15,16   and imaging9,12–14,17,18 experiments. Interestingly, 

transport measurements of hydrodynamic electrons flowing through constrictions7 

observed that they conducted up to 15% better than their ballistic counterparts. 

Theoretically, this was explained28 by hydrodynamic lubrication of the constriction walls. 

This raises a question of fundamental and practical importance19,20: if the Landauer-Sharvin 

resistance limits ballistic electrons, what is the ultimate conduction limit for hydrodynamic 

electrons? 

In this work, we show experimentally that hydrodynamic electrons can 

dramatically outperform ballistic electrons' limitations. By imaging electronic flows in a 

Corbino disk geometry, we observe that ballistic electrons exhibit roughly half of their 

Landauer-Sharvin resistance being distributed through the bulk of the device rather than at 

the contacts' interfaces. At elevated temperatures, we find that electron hydrodynamics 

efficiently eliminates this 'bulk Landauer-Sharvin' resistance. This observation is 

consistent with the recent theoretical prediction20 that hydrodynamic electrons can flow 

without Landauer-Sharvin resistance. By adding a small magnetic field, we set the 

electrons into a spiraling motion, generating a viscous boundary layer near the contacts. 
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This layer provides the first real-space observation of the key emergent length scale of 

hydrodynamic theories - the Gurzhi length. Our findings demonstrate that hydrodynamics 

can dramatically modify the well-established rules for electrons obeyed by their ballistic 

counterparts. 

To understand the origin of the Landauer-Sharvin resistance, consider ballistic 

transport through two device geometries: a straight channel (Fig. 1a) and a Corbino disk 

(Fig. 1b). In both cases, the total device resistance is given by the Landauer-Sharvin 

resistance, determined by the number of conduction modes traversing the device. In a 

straight channel, this resistance is given by 𝑅𝑠ℎ =
𝜋ℎ

4𝑒2

1

𝑘𝐹𝑊
, where 𝑘𝐹 is the Fermi 

momentum and W is the channel width. In a Corbino geometry, the width is replaced by 

the circumference of the inner contact, 2𝜋𝑟𝑖𝑛, and its total resistance is 𝑅𝑠ℎ
𝑖𝑛 =

𝜋ℎ

4𝑒2

1

𝑘𝐹(2𝜋𝑟𝑖𝑛)
. 

In a straight channel, this resistance drops only at the contact interfaces, with half dropping 

at each contact interface and none in the bulk (Fig. 1c). The situation changes in a Corbino 

geometry (Fig. 1d): here, similar to a straight channel, half of the Landauer-Sharvin 

resistance drops at the inner contact interface. However, curiously, theory predicts19,20 (Fig. 

1d) that the other half should be distributed across the bulk of the device.  

The theoretical prediction that the Landauer-Sharvin resistance can be distributed 

across the bulk of a device highlights it's geometrical/phase-space origin – this resistance 

appears whenever there is a spatial gradient in the number of conduction modes. In a 

straight channel, the number of modes changes sharply at the contact interfaces but is fixed 

throughout the bulk (Fig. 1e). Consequently, the Landauer-Sharvin resistance appears only 

at the contact interfaces. In contrast, in a Corbino disk, the number of conduction modes 

gradually decreases with decreasing radius (Fig. 1f). An electron traveling from the outer 

to the inner contact thus experiences a gradually shrinking phase space, which should 

manifest as a distributed bulk Landauer-Sharvin resistance. 

Interestingly, recent theory19 has suggested that for hydrodynamic electrons in a 

Corbino geometry, the bulk Landauer-Sharvin resistance, which forms about half of the 

total device resistance, should vanish. A new theory20 analyzed generalized flow 

geometries and showed that the Landauer-Sharvin resistance appears whenever there is a 
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gradient in the number of conducting modes, and that it originates from the reflection 

enforced on electrons whose mode is terminated. Electron-electron scattering allows these 

electrons to smoothly transfer from a mode that is about to be terminated to a propagating 

mode, and thus reduces the resistance. Consequently, the theory predicted that for 

hydrodynamic electrons, resistance should occur only where the number of modes has a 

non-zero second spatial derivative 20. Since in a Corbino disk the number of modes 

increases linearly with distance, this geometry is the ideal testbed to examine the 

elimination of the ballistic Landauer-Sharvin resistance for hydrodynamic flows.   

The devices studied here consist of high mobility hBN-encapsulated monolayer 

graphene patterned into a Corbino disk geometry, with a graphite back gate that tunes the 

carrier density, 𝑛. The graphene spans a disk between radii 𝑟𝑖𝑛 and 𝑟𝑜𝑢𝑡, where it connects 

to inner and outer Cr/Au contacts. The line connecting to the inner contact is deposited 

over the top hBN layer and a patch of crossed-linked resist, so the graphene disk is not 

perturbed, preserving its full angular symmetry (SI section 1). In the main text, we present 

data from a device with 𝑟𝑖𝑛 = 2 𝜇𝑚 and 𝑟𝑜𝑢𝑡 = 9 𝜇𝑚 (optical image in Fig. 1g). Similar 

results were obtained on a second Corbino device with different dimensions (SI section 8). 

A major advantage of the Corbino device geometry over the more commonly used 

Hall-bar devices is the absence of etched edges and lithographically-defined voltage 

probes. This eliminates spurious scattering at lithographic features and edges, allowing to 

measure the unperturbed electron flow. This advantage comes at a price: transport 

experiments can only measure the overall 2-probe resistance of the device, and thus cannot 

decipher how this resistance is distributed in space. To solve this, we use a nanotube-based 

scanning single electron transistor33 (SET) to spatially map the potential drop associated 

with the electronic current flow34. We drive an AC current, 𝐼, between the inner and outer 

Corbino contacts and use the SET to image the local electrostatic potential modulations at 

this AC frequency (Fig. 1h). This distinguishes the potential drop associated with the 

current flow from the static disorder potential, which we measure independently in DC in 

the absence of current. The spatial resolution of the measurement is limited by the scanning 

height of the SET above the device (∼ 800 𝑛𝑚). In the figures below, we plot the imaged 

potential normalized by the total current, 𝑅(𝑥, 𝑦) = 𝜙(𝑥, 𝑦)/𝐼, and define the zero of the 
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potential at the outer contact, 𝜙(𝑟𝑜𝑢𝑡) = 0. The quantity 𝑅(𝑥, 𝑦) therefore represents the 

resistance between the point (𝑥, 𝑦) and the outer contact. 

Fig. 2a shows a typical measured map of 𝑅(𝑥, 𝑦). Visibly, 𝑅(𝑥, 𝑦) rises 

monotonically from the outer to the inner contact. The rise is steeper at the graphene-

contact interfaces (𝑟 = 𝑟𝑖𝑛 and 𝑟 = 𝑟𝑜𝑢𝑡). Plotted as a colormap (inset), we see that 𝑅(𝑥, 𝑦) 

exhibits excellent angular symmetry, attesting to the high quality of the measured device. 

A similar level of angular symmetry is observed for the different temperatures, densities, 

and magnetic fields used throughout this work (SI section 3). This symmetry allows us to 

average over the angular direction and obtain an accurate radial resistance profile, 𝑅(𝑟), 

which conveys the essential information about the nature of the electron flow. 

We begin with measurements of the resistance profile at low temperatures, where the 

transport is expected to be ballistic. Fig. 2b shows 𝑅(𝑟) measured at 𝑇 = 6 𝐾 and 𝑛 =

4.5 × 1011 𝑐𝑚−2 (similar phenomenology is also observed at other densities, SI section 

7). We see that 𝑅(𝑟) starts flat at the outer contact, rises rapidly around 𝑟 = 𝑟𝑜𝑢𝑡, climbs 

gradually throughout the bulk of the Corbino disk, then rises rapidly again around 𝑟 = 𝑟𝑖𝑛, 

and finally flattens out at the inner contact. The overall resistance (the 2-probe resistance 

that would be measured in transport) can be read out directly from this graph to be 𝑅𝑡𝑜𝑡 =

19.5 Ω. To compare, the resistance of a completely ballistic Corbino device with perfect 

contacts is expected to be the Landauer-Sharvin resistance, 𝑅𝑠ℎ
𝑖𝑛 . Plotting the same 

measurement but now normalized by 𝑅𝑠ℎ
𝑖𝑛  (blue curve, Fig. 2c), we see that our device is 

not far from this ideal limit,  𝑅𝑡𝑜𝑡/𝑅𝑠ℎ
𝑖𝑛 = 1.42. 

The spatially resolved measurement now allows us to break the total resistance into 

the constituent contact and bulk components. The resistance of the graphene-contact 

interfaces leads to step functions of 𝑅(𝑟) at 𝑟 = 𝑟𝑖𝑛 and 𝑟 = 𝑟𝑜𝑢𝑡, but these are slightly 

smeared due to the finite resolution of our imaging. Using an complementary measurement 

on the same device, we accurately determine the point-spread-function (PSF) of our 

imaging (SI section 4). Thus, the only free parameter in these contact step functions, shown 

by 𝑅𝑐
𝑖𝑛(𝑟) and 𝑅𝑐

𝑜𝑢𝑡(𝑟) in Fig. 2c, is their height.  

Remarkably, if we fit the measured 𝑅(𝑟) (blue, Fig. 2c) to 𝑅𝐿𝑆(𝑟) + 𝑅𝑐
𝑖𝑛(𝑟) +

𝑅𝑐
𝑜𝑢𝑡(𝑟) (dotted black, Fig. 2c), where 𝑅𝐿𝑆(𝑟)  =

𝑅𝑠ℎ
𝑖𝑛

𝜋
asin (

𝑟𝑖𝑛

𝑟
)  is the theoretically-
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predicted dependence of the Landauer-Sharvin bulk resistance19,20, we find extremely close 

agreement throughout the bulk (~10 % difference). Note that the smeared contact 

functions, 𝑅𝑐
𝑖𝑛(𝑟) and 𝑅𝑐

𝑜𝑢𝑡(𝑟), penetrate very little into the bulk and therefore do not affect 

the quality of the fit in the bulk. The close agreement that we see is especially impressive 

given the fact that the expression for the Landauer-Sharvin bulk resistance has no free 

parameters. This measurement therefore provides the first real-space evidence of a 

distributed bulk Landauer-Sharvin resistance, originating from a spatial gradient of the 

number of conduction modes. 

The small difference between the measurement and the ideal Landauer-Sharvin 

expression can be readily accounted for by weak impurity scattering. Such scattering leads 

to an ohmic term that depends logarithmically on 𝑟, 𝑅𝑜ℎ𝑚(𝑟)/𝑅𝑠ℎ
𝑖𝑛  =

2𝑟𝑖𝑛

𝜋𝑙𝑀𝑅
log (

𝑟

𝑟𝑖𝑛
), with 

one free parameter – the momentum-relaxing mean free path, 𝑙𝑀𝑅. Adding this to 𝑅𝐿𝑆(𝑟), 

we obtain an excellent fit to the measurement with 𝑙𝑀𝑅 = 40 𝜇𝑚 (dashed red, Fig. 2c). 

Such a long mean free path is consistent with previous measurements on high mobility 

graphene devices14,35, and is much longer than the Corbino channel length (𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛 =

7𝜇𝑚), explaining the smallness of the ohmic contribution to the total resistance. 

From the above fit we also obtain the magnitude of the graphene-contact interface 

resistances. The obtained inner contact resistance step height is 0.82𝑅𝑠ℎ
𝑖𝑛 , larger than the 

0.5𝑅𝑠ℎ
𝑖𝑛  expected for an ideal contact (Fig. 1d). This difference reflects a contact 

transparency of 𝑇𝑖𝑛 ∼ 0.75 (SI section 5), on par with the best transparencies achieved with 

graphene contacts35,36. By subtracting the fitted contact resistance steps from the measured 

profile, we obtain 𝑅𝑏𝑢𝑙𝑘(𝑟) = 𝑅(𝑟) − (𝑅𝑐
𝑖𝑛(𝑟) + 𝑅𝑐

𝑜𝑢𝑡(𝑟)) (inset, Fig. 2c). This quantity 

gives the most accurate description of the bulk resistance profile, even very close to the 

contacts, because it eliminates the smeared tails of the contacts step functions. In the 

remainder of the paper, we will use this quantity to explore the physics in the bulk. 

The measured dependence of 𝑅𝑏𝑢𝑙𝑘(𝑟) on carrier density is shown in the left inset of 

Fig. 2d. We see that the total bulk resistance varies strongly with density (~ factor 4 over 

the measured density range). However, recalling that the number of conduction channels 

scales as 𝑘𝐹~√𝑛, and normalizing each curve by 𝑅𝑠ℎ
𝑖𝑛  at the corresponding density, we find 

that all curves collapse to a similar dependence (Fig. 2d, main panel) close to the Landauer-
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Sharvin expression (dotted). This demonstrates that at 𝑇 = 6 𝐾 the Landauer-Sharvin bulk 

resistance is the dominant contribution over a wide range of carrier densities. With 

decreasing 𝑛, the curves depart further from the ballistic limit, pointing to a growing ohmic 

component. Using a fit to 𝑅𝐿𝑆(𝑟) + 𝑅𝑜ℎ𝑚(𝑟), we obtain the 𝑛-dependence of 𝑙𝑀𝑅 (Fig. 2d 

right inset), in good agreement with previous measurements12,14,35. 

Having established the behavior at low temperatures, we proceed to explore the flow 

at elevated temperatures. Increased temperature increases both electron-phonon (e-ph) and 

electron-electron scattering. The former is momentum-relaxing and is thus expected to 

increase the device's resistance. Since the geometric and ohmic contributions are additive 

(as shown below), one may expect the total resistance to increase with the added ohmic 

resistance. For example, at 𝑇~140 𝐾, the previously measured14,35,37 e-ph mean free path 

(~4 𝜇𝑚) implies that the total resistance should more than double. 

The measured temperature dependence in Fig. 3a shows a surprisingly different 

behavior. The figure plots the measured 𝑅𝑏𝑢𝑙𝑘(𝑟) at temperatures 𝑇 = 6 𝐾 to 140 𝐾, where 

in all the curves we subtracted the same contact resistance steps, those obtained from the 

fit at 𝑇 = 6 𝐾 (gray traces, Fig 2c). We see that instead of increasing as 𝑇 increases, the 

resistance first decreases up to 𝑇 ≈ 60 𝐾 and then only mildly increases (~20%) toward 

𝑇 = 140 𝐾 (Fig. 3a inset). The measured spatial dependence of 𝑅𝑏𝑢𝑙𝑘(𝑟), plotted on a 

logarithmic 𝑟 axis in Fig. 3a, provides a hint for the underlying physics: whereas at low 𝑇, 

the dependence is curved, as expected from an asin(𝑟𝑖𝑛/𝑟) dependence (bottom dashed 

line), at 𝑇 = 140 𝐾 the dependence follows a perfectly straight line throughout almost the 

entire bulk of the device (top dashed line). Namely, at elevated 𝑇 the resistance follows a 

pure log(𝑟/𝑟𝑖𝑛) dependence. This suggests that as the ohmic e-ph contribution builds up, 

the contribution of the Landauer-Sharvin bulk resistance disappears, explaining why the 

resistance doesn't double as naively expected. 

Given the unavoidable presence of e-ph scattering at elevated temperatures, even in 

the cleanest graphene samples, how can we resolve the clean-limit hydrodynamic flow 

profiles, namely those involving only electron-electron and not momentum-relaxing 

collisions? Here, the angular symmetry of the Corbino geometry proves advantageous. In 

the presence of this symmetry and within the relaxation time approximation there is a direct 

mapping between the flow with ohmic scattering and the clean-limit flow: If 𝑅𝑏𝑢𝑙𝑘(𝑟)𝐿𝑒𝑒

𝐿𝑀𝑅 
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is the profile with momentum-conserving and momentum-relaxing mean free paths 𝐿𝑒𝑒 

and 𝐿𝑀𝑅, then one can obtain from it the clean-limit profile, �̃�𝑏𝑢𝑙𝑘(𝑟), by a mere subtraction 

of an ohmic term (the proof is given in SI section 9): 

 �̃�𝑏𝑢𝑙𝑘(𝑟)
𝐿𝑒𝑒=(𝑙𝑒𝑒

−1+𝑙𝑀𝑅
−1 )

−1
𝐿𝑀𝑅= ∞

= 𝑅𝑏𝑢𝑙𝑘(𝑟)𝐿𝑒𝑒=𝑙𝑒𝑒

𝐿𝑀𝑅= 𝑙𝑀𝑅 −
ℏ

2𝑒2𝑘𝐹𝑙𝑀𝑅
log (𝑟/𝑟𝑖𝑛) (1) 

The last term has only one free parameter, 𝑙𝑀𝑅, which we obtain directly from independent 

magneto-hydrodynamic imaging experiments. Before discussing these experiments, we 

first substitute the obtained 𝑙𝑀𝑅 into equation (1), giving us directly �̃�𝑏𝑢𝑙𝑘(𝑟) without 

adding any free parameters. 

Figure 3b plots the obtained clean-limit hydrodynamic flow profiles, �̃�𝑏𝑢𝑙𝑘(𝑟), at 

the various temperatures. At the lowest temperature, �̃�𝑏𝑢𝑙𝑘(𝑟) follows the bulk Landauer-

Sharvin dependence. With increasing 𝑇, however, this geometrical resistance gradually 

disappears. Remarkably, at 𝑇 = 140 𝐾 the profile becomes completely flat throughout 

most of the bulk of the device, apart from small regions (< 1 𝜇𝑚) near the inner and outer 

contacts. 

To understand these measurements in more detail, we performed numerical 

Boltzmann calculations for a Corbino geometry with an electron–electron mean free path 

𝑙𝑒𝑒, taken within the relaxation time approximation (SI section 10). Fig. 3c shows the 

calculated �̃�𝑏𝑢𝑙𝑘(𝑟)/𝑅𝑠ℎ
𝑖𝑛  for various 𝑙𝑒𝑒 values, smeared with the experimental PSF. For 

𝑙𝑒𝑒 = ∞ the calculation recovers the Landauer-Sharvin dependence. With decreasing 𝑙𝑒𝑒 

the Landauer-Sharvin resistance is gradually reduced. Once the mean free path becomes 

much shorter than the channel length, 𝑙𝑒𝑒 ≪  𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛, the resistive drop occurs only at a 

distance ~ 𝑙𝑒𝑒 from the contacts, nicely matching the measurements at elevated 

temperatures. This is the hydrodynamic buildup distance, over which the electron-electron 

interactions rearrange the flow from ballistic to hydrodynamic, and its accumulated 

resistance is the Stokes resistance19 ~𝑙𝑒𝑒/𝑘𝐹𝑟𝑖𝑛
2 . The calculations also reproduce the 

appearance of a resistive outer contact step with increasing 𝑇, albeit stronger than observed 

experimentally (SI section 11). Most importantly, similar to the experimental result, we see 

that throughout most of the bulk of the disk, the Landauer-Sharvin geometrical resistance 

is completely eliminated by the hydrodynamic flow.  
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Finally, we turn to exploring hydrodynamic flow at non-zero magnetic fields. 

Corbino geometry is an ideal testbed for magneto-hydrodynamics due to the lack of 

disruptive physical edges. Fig. 4a shows the evolution of 𝑅𝑏𝑢𝑙𝑘(𝑟), measured at 𝑇 =

140 𝐾, with a perpendicular magnetic field, 𝐵, ranging from zero to 30 𝑚𝑇. Evidently, the 

magnetic field increases the resistance throughout the Corbino channel. Plotting 𝑅𝑏𝑢𝑙𝑘 vs. 

𝐵 at several radii (inset), we see positive ~𝐵2 magnetoresistance (dashed lines).  

Figure 4b presents the ratio between the radial electric field, obtained via a 

numerical derivative of the measured potential, 𝐸𝑟 =
𝑑𝜙

𝑑𝑟
, and the radial current density, 

𝑗𝑟 = 𝐼/2𝜋𝑟. In contrast to a Hall bar geometry, where such a ratio between longitudinal 

field and current density gives the longitudinal resistivity, 𝜌𝑥𝑥, in a Corbino geometry, this 

ratio yields the inverse longitudinal conductivity, 𝜎𝑥𝑥
−1. This is because, in the latter, due to 

angular symmetry the transverse field rather than the transverse Hall current is zero. We 

see that at 𝐵 = 0, 𝜎𝑥𝑥
−1 is independent of 𝑟 throughout most of the disk's bulk. With 

increasing 𝐵 the magnitude of 𝜎𝑥𝑥
−1 increases. Interestingly, this increase is not constant in 

space, but is larger at the center of the conducting channel and smaller at its sides (dashed 

arrows). 

Recalling that 𝜎𝑥𝑥
−1 = 𝜌𝑥𝑥 + 𝜌𝑥𝑦

2 /𝜌𝑥𝑥 and 𝜌𝑥𝑦~𝐵, we see that the inverse 

conductivity, while being equal to the resistivity at 𝐵 = 0, acquires an additional Hall 

component at finite 𝐵. This term arises from the appearance of an angular current density, 

𝑗𝜃, and a corresponding Hall angle, tan(𝜃𝐻𝑎𝑙𝑙) = 𝜌𝑥𝑦/𝜌𝑥𝑥 = 𝑗𝜃/𝑗𝑟 (Fig. 4c inset), both of 

which grow linearly with 𝐵. By fitting  𝜎𝑥𝑥
−1(𝑟, 𝐵) to 𝜌𝑥𝑥(𝑟) + 𝑎(𝑟)𝐵2 we get directly from  

𝑎(𝑟) the dependence of tan(𝜃𝐻𝑎𝑙𝑙) /𝐵 on 𝑟, plotted in Fig. 4c. Visibly, tan(𝜃𝐻𝑎𝑙𝑙) is 

maximal at the center of the channel, but drops gradually toward the contacts. The length 

scale of the drop is much longer than our resolution limit (black line, Fig. 4c). Measurement 

of tan(𝜃𝐻𝑎𝑙𝑙) in the full 2D plane (Fig. 4d), shows a similar behavior: the Hall angle is 

largest at the center of the conducting channel, and gradually drops toward the contacts. 

Thus, in a finite magnetic field we observe a length scale that does not exists at 𝐵 = 0, and 

describes the spatial change of 𝜃𝐻𝑎𝑙𝑙 . 

Such an emergent scale was proposed by recent theories of magneto-hydrodynamic 

flow in a Corbino geometry19,31, whose predicted flow lines are reproduced in Fig. 4e. 
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These lines are slanted with respect to the radial electric field by the local Hall angle, 

tan(θHall(𝑟)) =
𝑗𝜃

𝑗𝑟
. At the center of the conducting channel, the Lorentz force and electric 

field balance to give the standard expression for the Hall angle, tan(θHall) =
𝑙𝑀𝑅

𝑅𝑐
 (𝑅𝑐 is the 

cyclotron radius). However, near the contacts, θHall must go to zero, since the electrons are 

injected from the contact isotropically, namely, 𝑗𝜃 = 0. Formally, the theory gives:  

 tan(𝜃𝐻) =
𝑙𝑀𝑅

𝑅𝐶
+ 𝐶1𝑟𝐼1 (

𝑟

𝑙𝐺
) + 𝐶2𝑟𝐾1 (

𝑟

𝑙𝐺
),  (2) 

where 𝐼1,𝐾1 are the modified Bessel functions, 𝐶1,𝐶2 are constants chosen such that 

tan(𝜃𝐻) = 0 at 𝑟 = 𝑟𝑖𝑛, 𝑟𝑜𝑢𝑡, and 𝑙𝐺 = √𝑙𝑀𝑅𝑙𝑒𝑒/4 is the Gurzhi length. The red curve in 

Fig. 4c plots the profile for 𝑙𝑀𝑅 = 4.35 𝜇𝑚 and 𝑙𝑒𝑒 = 1.3 𝜇𝑚, which agrees best with the 

experiment. In clean samples and elevated temperatures, 𝑙𝑀𝑅 is dominated by electron-

phonon coupling and is thus rather universal. Indeed the 𝑙𝑀𝑅 we find here is in full 

agreement with earlier experiments12,14,35. Moreover, the 𝑙𝑒𝑒 obtained from the 𝐵 = 0 

experiment (Fig. 3) and from the magneto-hydrodynamic experiment (Fig. 4) closely agree, 

although they have completely different manifestations in these two flow regimes: in the 

former, 𝑙𝑒𝑒 gives the hydrodynamic buildup length and the Stokes resistance of the inner 

contact (Figs. 3b and 3c). In the latter, 𝑙𝑒𝑒 enters only through its geometrical average with 

𝑙𝑀𝑅 to give the spatial scale of the 𝜃𝐻 gradient. Finally, we note that this is the first time 

that this key emergent length of electron hydrodynamics theory, the Gurzhi length, has 

been observed directly. 

Our experiments demonstrate the intimate connection between the Landauer-

Sharvin resistance and the spatial gradient in the number of conduction modes. Corbino 

devices have such gradients naturally, by virtue of their geometry. It is interesting to note 

that these devices are mathematically equivalent to devices with a simple (e.g., rectangular) 

geometry, in which the spatial gradient in the number of modes is caused by chemical 

doping rather than geometry20. This means that the physics discussed in this paper might 

even be relevant for future real-world devices. The observation that hydrodynamic 

electrons can dramatically outstrip the fundamental bounds of their ballistic counterparts, 

is thus of fundamental as well as technological importance. 
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Figure 1: Landauer-Sharvin bulk geometrical resistance and the experimental setup for its 

measurement. Comparing two channel geometries: a. A straight channel (channel - green, contacts - 

yellow) b. Corbino disk channel (inner and outer radii are 𝑟𝑖𝑛 and 𝑟𝑜𝑢𝑡, respectively). In the ballistic 

limit (no scattering, perfect edges) the total (2-probe) resistance of both geometries is inversely 

proportional to the number of conduction modes traversing the device, multiplied by 𝑒2/ℎ. For a 

straight graphene channel this gives 𝑅𝑠ℎ =
𝜋ℎ

4𝑒2

1

𝑘𝐹𝑊
 (𝑊 is the channel width and 𝑘𝐹 is the Fermi 

momentum). For a Corbino disk, 𝑊 is replaced by the inner contact circumference, giving a total 

resistance of 𝑅𝑠ℎ
𝑖𝑛 =

𝜋ℎ

4𝑒2

1

𝑘𝐹(2𝜋𝑟𝑖𝑛)
.  c.  In the straight channel, half of the Landauer-Sharvin resistance 

drops sharply at each contact interface and there is no resistive drop in the bulk. d. In the Corbino disk, 

similarly, half the Landauer-Sharvin resistance drops on the inner contact. However, the other half is 

distributed throughout the bulk of the Corbino disk, falling off as 𝑅(𝑟) =
1

2
𝑅𝑠ℎ

𝑖𝑛 2

𝜋
asin (𝑟𝑖𝑛/𝑟). The 

Landauer-Sharvin resistance has a fundamental geometrical / phase-space origin – it appears whenever 

there is a spatial gradient in the number of conduction modes: e. In a straight channel the number of 

modes is constant throughout the bulk but changes sharply at the interfaces with the metallic contacts 

that effectively have an infinite number of modes. f. In a Corbino disk, there is a similar sharp change 

in the mode number at the inner contact interface, but throughout the bulk there is a linear increase of 

mode number with the radius, leading to the bulk Landauer-Sharvin resistance. g. Optical image of 

one of the studied devices (𝑟𝑖𝑛 = 2 𝜇𝑚, 𝑟𝑜𝑢𝑡 = 9 𝜇𝑚). h. The device is composed of top hBN, 

graphene, bottom hBN and a graphite back gate, with inner (circular) and outer (ring) contacts. The 

carrier density is tuned by voltage 𝑉𝑏𝑔 on the graphite back-gate. We use a nanotube-based single 

electron transistor (SET) (inset) to image the potential in the device while flowing a current 𝐼 between 

the contacts. 
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Figure 2: Imaging the Landauer-Sharvin bulk resistance in a Corbino disk. a. Spatially resolved image 

of the resistance 𝑅(𝑥, 𝑦) = 𝜙(𝑥, 𝑦)/𝐼, where 𝜙(𝑥, 𝑦) and 𝐼 are the measured potential and current, 

respectively, displayed above the schematic of the Corbino device. (𝑇 = 140 𝐾, 𝑛 = 4.5 × 1011 𝑐𝑚−2). 

Inset: the same measurement presented as a colormap. The measurement exhibits excellent angular 

symmetry, allowing us to average along the angular direction and obtain 𝑅(𝑟). b. The measured radial 

dependence of the resistance, 𝑅(𝑟), at 𝑇 = 6 𝐾, 𝑛 = 4.5 × 1011 𝑐𝑚−2. Contacts are marked yellow and their 

interface with the graphene by dashed lines. c. Disentangling the different components of the resistance. The 

blue curve is the same measurement as in panel b, but now plotted normalized by 𝑅𝑠ℎ
𝑖𝑛 . We fit this curve with 

a function that include bulk and contact dependence. The graphene-contact interface resistances are described 

by 𝑅𝑐
𝑖𝑛(𝑟) and 𝑅𝑐

𝑜𝑢𝑡(𝑟) (gray curves), which are step functions at 𝑟 = 𝑟𝑖𝑛 and 𝑟 = 𝑟𝑜𝑢𝑡, smeared by the point-

spread-function (PSF) of our imaging experiment, which is measured separately in an complementary 

experiment (SI section 4). The dashed dotted line shows a fit of the measurement to 𝑅𝐿𝑆(𝑟) + 𝑅𝑐
𝑖𝑛(𝑟) +

𝑅𝑐
𝑜𝑢𝑡(𝑟), where 𝑅𝐿𝑆(𝑟)  =

𝑅𝑠ℎ
𝑖𝑛

𝜋
asin (

𝑟𝑖𝑛

𝑟
) is the theoretically-predicted Landauer-Sharvin bulk geometrical 

resistance that has no free parameters. The dashed red line is a fit to a similar function which includes in 

addition an ohmic term, 𝑅𝑜ℎ𝑚(𝑟)/𝑅𝑠ℎ
𝑖𝑛  =

2𝑟𝑖𝑛

𝜋𝑙𝑀𝑅
log (

𝑟

𝑟𝑖𝑛
), with a momentum-relaxing mean free path of 𝑙𝑀𝑅 =

40 𝜇𝑚. Inset: The bulk component of the resistance, obtained from the measured 𝑅(𝑟) by subtracting away 

the fitted contact resistance curves, 𝑅𝑏𝑢𝑙𝑘(𝑟) = 𝑅(𝑟) − (𝑅𝑐
𝑖𝑛(𝑟) + 𝑅𝑐

𝑜𝑢𝑡(𝑟)). d. Left inset: Measured 

𝑅𝑏𝑢𝑙𝑘(𝑟) at various carrier densities, 𝑛 (see key). Main panel: Same curves, but normalizing each curve by 

the Sharvin resistance at the corresponding density, 𝑅𝑠ℎ
𝑖𝑛 (𝑛). Dotted line, theoretical Landauer-Sharvin bulk 

dependence. Right inset: 𝑙𝑀𝑅 vs. 𝑛 obtained from fitting the graphs in the main panel to 𝑅𝐿𝑆(𝑟) + 𝑅𝑜ℎ𝑚(𝑟). 
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Figure 3. Observation of the perfect elimination of Landauer-Sharvin bulk resistance by 

hydrodynamic electron flow. a. Measured 𝑅𝑏𝑢𝑙𝑘(𝑟) at various temperatures, 𝑇, (see key) normalized by 𝑅𝑠ℎ
𝑖𝑛  

and plotted on a logarithmic 𝑟 axis. Similar to Fig 2, 𝑅𝑏𝑢𝑙𝑘(𝑟) is obtained from the measured 𝑅(𝑟) by 

removing the contact resistance contribution. Note that we removed from the curves at the different 

temperatures the same contact resistance traces, those obtained from the fit at 𝑇 = 6 𝐾 (𝑅𝑐
𝑖𝑛(𝑟) and 𝑅𝑐

𝑜𝑢𝑡(𝑟) 

shown in gray in Fig. 2c). We see that the total bulk resistance first decreases with increasing 𝑇 and then only 

mildly increases (gray dashed line). Inset: total bulk resistance normalized by 𝑅𝑠ℎ
𝑖𝑛  as a function of 𝑇. The 𝑟 

dependence of the resistance evolves from Landauer-Sharvin dependence (bottom dashed line), at 𝑇 = 6 𝐾, 

to a purely logarithmic dependence (top dashed line), at 𝑇 = 140 𝐾, with a small deviation only very close 

to the inner contact (< 1 𝜇𝑚). b. The clean-limit hydrodynamic flow profiles, �̃�𝑏𝑢𝑙𝑘(𝑟), at various 𝑇's, 

obtained from the data in panel a using equation (1) and a momentum-relaxing mean-free path, 𝑙𝑀𝑅, measured 

by a completely independent experiment on the same device (see main text). Note that in the bulk of the 

device these curves involve no free parameters. Notably, the distributed Landauer-Sharvin bulk resistance at 

𝑇 = 6 K is fully eliminated throughout most of the disk's bulk once the temperature has reached 𝑇 = 140 K 

(the horizontal dashed black line is a guide to the eye). A small resistive component remains only close (<

1 𝜇𝑚) to the inner contact. In addition, we see a slight increase of outer contact resistance with 𝑇 c. 

Theoretical clean-limit hydrodynamic profiles, calculated using Boltzmann equations in the Corbino 

geometry. Different traces correspond to different electron-electron scattering length, 𝑙𝑒𝑒  (see key). Similar 

to the subtraction of the 𝑇 = 6 𝐾 contact resistance steps in the experimental data, here we subtracted from 

all the curves the contact resistance steps calculated at 𝑙𝑒𝑒 = ∞. To allow for quantitative comparison with 

the experiment, the theory curves are smeared with the measured PSF of the imaging experiment. We observe 

a close correspondence between experiments and theory in the detailed profile shapes (see text).  
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Figure 4. Imaging spiraling magneto-hydrodynamic electron flow and its Gurzhi boundary layer. a. 

𝑅𝑏𝑢𝑙𝑘(𝑟), normalized by 𝑅𝑠ℎ
𝑖𝑛 , measured at 𝑇 = 140 𝐾 and various perpendicular magnetic fields, 𝐵 (see key). 

Inset: 𝑅𝑏𝑢𝑙𝑘/𝑅𝑠ℎ
𝑖𝑛  at three spatial locations, 𝑟 = 3 ,5 ,7𝜇𝑚, measured as a function of 𝐵. Dashed lines are 

parabolic fits. b. The inverse conductivity, 𝜎𝑥𝑥
−1 = 𝐸𝑟/𝑗𝑟, vs. 𝑟 at various 𝐵's (same key as in panel a). 𝐸𝑟  is 

the radial component of the electric field, obtained by numerically differentiating the measured potential, 

𝐸𝑟 = 𝑑𝜙/𝑑𝑟, and 𝑗𝑟 = 𝐼/2𝜋𝑟 is the current density obtained from the measured total current, 𝐼. Note that, 

while 𝜎𝑥𝑥
−1 is independent of 𝑟 throughout most of the disk's bulk at 𝐵 = 0, the component added to 𝜎𝑥𝑥

−1 at 

non-zero 𝐵 is largest in the center of the Corbino channel and decays gradually toward the contacts (dashed 

arrows). c. Spatial dependence of the Hall angle, 𝜃𝐻, obtained from fitting the quadratic-in-𝐵 term from panel 

b. The figure plots tan(𝜃𝐻) /𝐵 (since 𝜃𝐻 increases linearly with 𝐵) as a function of 𝑟. While 𝜃𝐻 plateaus at 

the center of the channel, it drops gradually toward zero at the contacts. The drop happens over the Gurzhi 

length (gray shading). This length scale is considerably longer than our imaging resolution as is apparent 

from the black curve, which is a rectangular function convolved with our imaging PSF. The red curve is a fit 

to hydrodynamic theory (see text. Inset: diagram sketching the radial current density, 𝑗𝑟, the angular current 

density, 𝑗𝜃, and the Hall angle, 𝜃𝐻. d. tan(𝜃𝐻) /𝐵, but now shown in a full 2D imaged spatial map. To obtain 

this image we measured 𝑅(𝑥, 𝑦) maps at 𝐵 = 0, 6, 12, 18, 24, 30 𝑚𝑇, then for each (𝑥, 𝑦) point determined 

the quadratic-in-𝐵 term in the resistance, from which we obtain the local tan(𝜃𝐻) /𝐵. Similar to panel c, 

which is the angular average of this measurement, even in this spatially resolved map we can clearly see that 

𝜃𝐻 plateaus at the center of the channel, but drops gradually to zero at the contacts, over a rather long spatial  

scale. e. The calculated map of tan(𝜃𝐻) /𝐵 using Navier-Stokes magneto-hydrodynamic equations and the 

parameters of the experiment in panels c and d. Overlaid are the flow lines. At the center of the channel, the 

flow lines are skewed from the radial direction following the standard expression for the Hall angle 

tan(𝜃𝐻) = 𝑙𝑀𝑅/𝑅𝑐. (𝑅𝑐 is the cyclotron radius). The boundary condition at the contacts dictates that 𝑗𝜃 = 0 

and thus 𝜃𝐻 = 0. The climb of 𝜃𝐻 from zero to its bulk value occurs over the Gurzhi length, 𝑙𝐺 = √𝑙𝑒𝑒𝑙𝑀𝑅/4, 

corresponding closely to the length scale that emerged in the experiment. 
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Methods: 

 

 

 Device fabrication: Scanning SET devices were fabricated using a nanoscale assembly 

technique38. The graphene/hBN devices were fabricated using electron-beam lithography 

and standard etching and nanofabrication procedures35 to define the channels and 

evaporation of Cr/Au (S4) to deposit contact electrodes. 

 

 Measurements: The measurements are performed on multiple graphene devices in home-

built, variable temperature, Attocube-based scanning probe microscopes. The microscopes 

operate in vacuum inside liquid helium dewar with superconducting magnets, and are 

mechanically stabilized using Newport laminar flow isolators. A local resistive SMD 

heater is used to heat the samples under study from 𝑇 = 7.5 K to 𝑇 = 150 K, and a DT-

670-BR bare chip diode thermometer mounted proximally to the samples and on the same 

printed circuit boards is used for precise temperature control. The voltage imaging 

technique employed is presented in reference34. Voltages and currents (for both the SET 

and sample under study) are sourced using a home-built DAC array, and measured using a 

home-built, software-based audio-frequency lock-in amplifier consisting of 1uV accurate 

DC+AC sources and a Femto DPLCA-200 current amplifier and NI-9239 ADC. The local 

gate voltage of the SET is dynamically adjusted via custom feedback electronics employing 

a least squares regression algorithm to prevent disruption of the SET’s working point 

during scanning and ensure reliable measurements.  

The voltage excitations applied to the graphene channels were as follows: 1 mV at 𝑇 =

6 K, and 8 mV at 𝑇 = 140 K.  The magnetic fields applied ranged between ±30 mT . 
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aware of a partially related STM work17, which images voltage drops in flows across a 

constriction.  
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S1. Device fabrication 

Our devices consist of monolayer graphene encapsulated between two hexagonal boron nitride (hBN) 

layers, with a graphite flake underneath acting as a back-gate. These devices are assembled using the 

standard dry transfer technique1. Briefly, a polypropylene carbonate (PPC) coated polydimethylsiloxane 

(PDMS) was used to pick up the top hBN, monolayer graphene, and the bottom hBN, and this stack was 

then dropped on a graphite flake. After assembly, the heterostructure was annealed under ultra-high 

vacuum at 500 °C for ∼ 8 hrs, followed by ironing with an AFM tip in contact mode. Both steps helped 

clean any residues from the surface of the top hBN and improve the sample's homogeneity by removing 

bubbles and ripples at the hBN-graphene interface2. Fig. S1a shows the optical image of the 

heterostructure. The monolayer graphene area (marked with a white dashed line) is free of 

bubbles/wrinkles. Next, we defined the Corbino disk using a standard electron beam lithography process, 

followed by reactive ion etching (RIE) with CHF3 + O2 and metal deposition of Cr (2 nm) / Au (80 nm) (Fig. 

S1b).  

For making contact to the inner circular disk without electrically shorting to the outer metal ring, a bridge 

was defined on a small section of outer contact (highlighted by the dotted black line in Fig. S1c). The bridge 

was made by cross-linking polymethyl methacrylate (PMMA), using a high dose (x1000 regular dose) 

during electron beam lithography. Finally, in another electron beam lithography step, we defined a lead 

that passes over the cross-linked PMMA, ensuring that the inner circular disk and the outer contact ring 

are electrically isolated. 

 

Fig. S1 | Device fabrication. a. Optical image of the heterostructure (hBN/Graphene/hBN/Graphite) after annealing 

and AFM ironing. The graphene region is demarcated with a white dashed line and is free of bubbles and wrinkles. 

The bottom graphite acts as a back-gate. The thicknesses of the top and bottom hBN are 40 𝑛𝑚 and 76 𝑛𝑚, 

respectively. b. Optical image of the heterostructure after making 1D contacts that define the Corbino disk geometry. 

c. Optical image of the Corbino disk after contacting the inner circular disk. The contact to the inner circular disk 

passes over cross-linked PMMA, defined over a small segment of outer contact (dashed black), electrically isolating 

the inner contact from the outer ring. The inner and outer radius of the graphene disk in this device are 𝑟𝑖𝑛 =  2 𝜇𝑚 

and 𝑟𝑜𝑢𝑡 = 9 𝜇𝑚 (arrows), respectively. 
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S2. Transport measurements 

We use standard lock-in techniques to measure the two-probe resistance between the inner and outer 

contacts of the Corbino disks as a function of carrier density, 𝑛, and temperature, 𝑇 (from 6 𝐾 to 140 𝐾).  

We find that a significant component of the resistance comes from the lithographic lines that lead to the 

device. Using the Scanning SET imaging we accurately determine these line resistances by imaging the 

potential drop between the voltage source and the actual potential of the metal contact, measured by 

the SET. This line resistance was measured as a function of temperature and back-gate voltage, 𝑉𝐵𝐺 (which 

controls the carrier density) and found that it depends on 𝑇 but not on 𝑉𝐵𝐺. The measured total line 

resistance at 𝑇 = 6 𝐾 is 𝑅𝑙𝑖𝑛𝑒𝑠 = 515 Ω  and it increases with increasing temperature, reaching 𝑅𝑙𝑖𝑛𝑒𝑠 =

615 Ω at 𝑇 = 140 𝐾. We subtract this SET-measured line resistance from the transport-measured two-

probe resistance to obtain an effective four-probe resistance. Note that this four-probe resistance still 

includes the metal-graphene contact resistance, which includes both the fundamental Landauer-Sharvin 

component, and the component due to imperfect contacts. Fig. S2a plots this effective four-probe 

resistance as a function of carrier density, 𝑛, at various temperatures (see legend).  Independently, we 

can determine the total device resistance directly from the SET measurements by reading out from the 

imaged 𝑅(𝑟) (e.g. Fig. 2b, main text) the difference in its value between the outer and inner contacts. The 

inset to Fig. S2a compares the SET measured device resistance (red dots) and the effective four-probe 

transport measured device resistance (blue) at 𝑇 = 6 K. We can see an excellent agreement between the 

two measurements. (Note that the removed line resistance is independent of density and has excellent 

agreement over the entire density range). Plotting the conductance at 𝑇 = 6 𝐾 as a function of √𝑛 we 

can estimate the charge inhomogeneity in our samples from the flat region of conductivity near the Dirac 

point, which comes out to be 𝛿𝑛 ∼ 5 × 109 𝑐𝑚−2 (Fig. S2b). In the main text, data is presented for the 

electron-doped region. Most of the data (apart from Fig. 2d) are taken at a gate voltage of, 𝑉𝐵𝐺 =

  2 𝑉 (𝑛 = 4.5 × 1011 𝑐𝑚−2), though we see similar phenomenology also at other densities (see e.g. 

section S7 below). 
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Fig. S2 | Transport measurements of the Corbino device in the main text. Main panel: effective four-probe 

transport resistance, 𝑅𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, as a function of density, 𝑛, and at various temperatures, 𝑇 (see legend). To obtain 

𝑅𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, we use standard lock-in measurements of the two-probe resistance between the Corbino disk's contacts. 

From this we subtract the lines resistance imaged using the scanning SET. We find that the line resistance depends 

on temperature but not on the back-gate voltage, 𝑉𝐵𝐺 . Inset: Corbino device resistance as a function of 𝑉𝐵𝐺  at 𝑇 =

6 K. The blue line was taken from the main panel (transport measurement with line resistance subtracted) the red 

dots are obtained from imaging measurements of 𝑅(𝑟) using the scanning SET (e.g. Fig. 2b, main text). b. Transport 

measured conductivity, 𝜎, at 𝑇 = 6 K , plotted as a function of √𝑛. The width of the plateau at the center provides 

an estimate for the charge disorder in the sample:  𝛿𝑛 ∼ 5 × 109 𝑐𝑚−2.  

 

S3. Angular symmetry of the measured flow 

In Figs. 2,3,4 of the main text we plot the resistance profile, 𝑅(𝑟), obtained by angular averaging of two-

dimensional SET images of 𝑅(𝑥, 𝑦). This procedure is valid as long as the physics has a high degree of 

angular symmetry. We demonstrate this symmetry below using a specific measurement and note that a 

similar level of symmetry exists also for the data measured at other carrier densities and temperatures. 

Figs. S3 plots a spatial scan of 𝑅 (𝑥, 𝑦) measured at 𝐵 = 30 𝑚𝑇, 𝑉𝐵𝐺 = 2 𝑉 and 𝑇 = 100 𝐾. Similar to the 

scan in Fig. 2a in the main text, which was performed at a different temperature and magnetic field, also 

here we see that the measurement exhibits excellent angular symmetry. Panels a and b show the same 

spatial scan, but with different averaging regions marked by a shaded "pizza" slice (outlined in black and 

red, respectively, in the two panels).  The two resulting 𝑅(𝑟) profiles are shown in panel c with the 

corresponding colors. We can see that the two profiles are practically identical.  
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Fig. S3: Angular symmetry of the measured data. a,b  In both panels we show the same spatial map of the resistance, 

𝑅(𝑥, 𝑦), measured at 𝐵 = 30 𝑚𝑇, 𝑉𝐵𝐺 = 2 V and 𝑇 = 100 K.  The shaded slices with black (panel a) and red (panel 

b) outline marks the regions used for the angular averaging.  c. The resistance profiles, 𝑅(𝑟), obtained from averaging 

over the slices in a and b, plotted with corresponding black and red colors. 

 

S4. Measurement of the point spread function (PSF) of the imaging 

experiments. 

The scanning SET measurements have a finite spatial resolution, determined by the scanning height of the 

SET above the graphene. This manifests in our scans as a spatial smearing with a point spread function 

(PSF) that depends on our scanning height. To accurately compare our measurements with the theory we 

extract the PSF from an independent imaging experiment and convolve the theory curves with this PSF. 

To determine the PSF we use an experiment that images the workfunction, 𝑊(𝑥, 𝑦), shown in Fig. S4a, 

and follow the recipe discussed in our previous work3. In contrast to the measurements of 𝑅(𝑥, 𝑦) which 

probe the potential that is generated by an electronic current (out of equilibrium), measurement of 

𝑊(𝑥, 𝑦) probe the static (equilibrium) potential, in the absence of current. These are therefore 

measurements of completely independent properties.  

In Fig. S4a we can see that the workfunction is constant throughout most of the graphene disk. On the 

central gold contact the workfunction is also constant, but with a different value. The transition between 

these two constants occurs very sharply, over lithographic scales. The workfunction image thus yields a 

sharp rise, ideal for determining the imaging PSF.  

Fig. S4b plots the measured workfunction (blue dots) along the blue dashed radial line in Fig. S4a. 

Compared to an ideal step function positioned at 𝑟𝑖𝑛 = 2 𝜇𝑚 (black line), we see that the measurement 

is spatially smeared. The red curve shows the step function convolved with a PSF given by 𝑔(𝑟) =

1/cosh2 (1.76
𝑟

𝜎
). In our previous work3  we demonstrated that this PSF describes well the smearing in 
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the experiment and that 𝜎 corresponds to our scanning height. We find a good fit between the 

measurement and the step function PSF-smeared with a height value of 𝜎 = 0.85 𝜇𝑚. This is the PSF used 

in the main text. 

 

Fig. S4: Obtaining the measurement's PSF from imaging of the workfunction. a. Colormap of the measured 

workfunction, 𝑊(𝑥, 𝑦), over the Corbino disk. The solid black lines indicate the inner and outer radius of the 

graphene disk. b. Measured 𝑊 (blue dots) along the dashed blue line in panel a.  The black line shows a step function 

at the radius of the inner contact.  The red line shows this profile smeared with the PSF 𝑔(𝑟) = 1/cosh2 (1.76
𝑟

𝜎
), 

where 𝜎 = 0.85 𝜇𝑚 . The smeared step function agrees well with the measured data.  

 

S5. Determining the contact transparency from the measured resistance 

profile 

As discussed in the main text, the two-probe resistance of a Corbino disk in the ballistic regime and with 

perfectly transmitting contacts, (transmission coefficient 𝑇 =  1), is equal to the Sharvin resistance that 

corresponds to the radius of its inner contact, 𝑅𝑠ℎ
𝑖𝑛 =

𝜋ℎ

4𝑒2𝐾𝐹(2𝜋𝑟𝑖𝑛)
.   Fig. 2b of the main text presents the 

radial dependence of resistance, 𝑅(𝑟), in the ballistic regime (𝑇 = 6 𝐾). Our measurement showed that 

the overall resistance (equivalent to two probe transport) is 19.5 Ω, somewhat larger than 𝑅𝑠ℎ
𝑖𝑛 ∼  13.67 Ω 

at this density. We showed that a small part of this difference appears in the bulk and is due to a finite 

mean free path (𝑙𝑀𝑅 = 40 𝜇𝑚) that leads to a small ohmic bulk resistance. However, most of this 

difference happens at the contacts. For example, from the fitting in Fig. 2c we found that inner contact 

resistance step height is 0.82𝑅𝑠ℎ
𝑖𝑛, larger than the 0.5𝑅𝑠ℎ

𝑖𝑛  expected for an ideal contact. We will focus here 

only on the inner contact, because at low temperatures the physics there is simpler than at the outer 

contact (see section SI11 below). This increased contact resistance reflects a contact transmission that is 
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smaller than one. Following Landauer, we know that a finite transmission leads to a resistance of 
1−𝑇

𝑇
𝑅𝑠ℎ

𝑖𝑛 . 

Adding this to the half Sharvin resistance expected for an ideal contact, we get: 

  𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
𝑅𝑠ℎ

𝑖𝑛

2
+

1−𝑇

𝑇
𝑅𝑠ℎ

𝑖𝑛 = 𝑅𝑠ℎ
𝑖𝑛 (2−𝑇)

2𝑇
  (S5.1) 

Rearranging the above expression, we get: 

 𝑇 =
2

2𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡/𝑅𝑠ℎ
𝑖𝑛 +1

 (S5.2)  

Fig. S5 plots the contact transparency of the inner contact at 𝑇 = 6 𝐾 as a function of carrier density, 

obtained by using equation S5.2 and 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡 deduced from similar fits as in Fig. 2c, but for the resistance 

profiles measured at the different densities. We see that over the entire carrier density range the contact 

transparency is high, on par with the best transparencies achieved with graphene contacts1,4. 

 

 

Fig. S5: Density dependence of the inner contact transparency. We fit 𝑅(𝑟) measured at 𝑇 = 6 𝐾 and different 

carrier densities and obtain the height of the resistive step at the inner contact (see main text). Using equation S5.2 

we obtain the corresponding contact transparency, presented in the figure as a function of the carrier density. 
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S6. Determining the momentum relaxing mean free path over the full 

temperature range. 

As explained in the main text, when the temperature is high enough such that the electron flow is 

hydrodynamic, we can determine the momentum relaxing mean free path, 𝑙𝑀𝑅, directly from 

measurements at finite magnetic fields (Fig. 4 in the main text). At low temperature, we can also 

determine  𝑙𝑀𝑅 from fitting the imaged resistance profile to Landauer-Sharvin + ohmic dependence + 

contact resistance, 𝑅𝐿𝑆(𝑟) + 𝑅𝑜ℎ𝑚(𝑟) + 𝑅𝑐
𝑖𝑛(𝑟) + 𝑅𝑐

𝑜𝑢𝑡(𝑟) (see Fig. 2c and corresponding text). In this 

section we use the theoretical expression for the temperature dependence of electron-phonon scattering 

to interpolate between these measurements and obtain the full temperature dependence of 𝑙𝑀𝑅. This 

𝑙𝑀𝑅 vs. 𝑇 curve is then used together with Eq. (1) in the main text to obtain the traces in Fig. 3b. 

In general, the momentum relaxing mean free path in graphene is determined by the scattering by 

disorder and phonons. We will term the former 'impurity scattering', although one has to keep in mind 

that disorder is not dominated few isolated impurities but is rather by a smooth potential modulation 

with long spatial scale caused by a distribution of many impurities spaced from the graphene by an hBN 

spacer. The corresponding disorder and electron-phono mean free paths are 𝑙𝑖𝑚𝑝 and 𝑙𝑒−𝑝ℎ. The total 

momentum relaxing mean free path is then given by the Matthiessen sum rule of these two processes: 

  𝑙𝑚𝑟 = (𝑙𝑖𝑚𝑝
−1 + 𝑙𝑒−𝑝ℎ

−1 )−1  (6.1) 

The density and temperature dependence of the resistance due to phonon scattering is given by1,5: 

 𝜌𝑒−𝑝ℎ(𝑛, 𝑇) =
8𝐷𝐴

2𝑘𝐹

𝑒2𝜌𝑚𝑣𝑠𝑣𝐹
2  𝑓𝑠 (

𝜃𝐵𝐺

𝑇
) (S6.2) 

where 𝑘𝐹 = √𝜋𝑛 is the Fermi momentum, 𝐷𝐴 is the acoustic deformation potential, 𝜌𝑚 is the mass 

density of graphene, 𝑣𝐹 is the Fermi velocity, 𝑣𝑠 is the longitudinal acoustic phonon velocity and 𝑓𝑠 is the 

Bloch Gruneisen function, given by 𝑓𝑠(𝑧) =  ∫
𝑧𝑥4√1−𝑥2 𝑒𝑧𝑥

(𝑒𝑧𝑥−1)2

1

0
 𝑑𝑥. The resistivity is translated to the e-ph 

mean free path using the standard relation valid for graphene: 

 𝑙𝑒−𝑝ℎ =
1

𝜌𝑒−𝑝ℎ(𝑛,𝑇)
(

ℎ

2𝑒2𝑘𝐹
) (S6.3) 

We obtain the density dependence of the impurity mean free path at 𝑇 = 6 𝐾 directly from our 

measurements (inset to Fig. 2d in the main text). These measurements are reproduced in blue dots in Fig. 

S6a together with a polynomial interpolation (blue line). At this temperature, the contribution of electron-
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phonon scattering is negligible, and thus this curve represents 𝑙𝑖𝑚𝑝(𝑛). We further assume that the 

temperature dependence comes entirely from the temperature dependence of the e-ph scattering. If we 

add to 𝑙𝑖𝑚𝑝(𝑛) the 𝑙𝑒−𝑝ℎ(𝑛, 𝑇)  from equations (S6.1) - (S6.3) and use the parameters given in Ref5 (𝐷𝐴 =

 21 𝑒𝑉, 𝜌𝑚 = 7.6𝑒 − 7 𝐾𝑔𝑚−2, 𝑣𝐹 = 1 × 106 𝑚𝑠−1 and 𝑣𝑠 = 2 × 104 𝑚𝑠−1 ) we obtain the total 𝑙𝑀𝑅 at 

elevated temperatures, shown by the different colored traces in Fig. S6a.  

The red and orange dots in Fig. S6a correspond to the 𝑙𝑚𝑟 obtained from magneto-resistance 

measurements (as described in the main text) at a density of 𝑛 = 4.5 × 1011 𝑐𝑚−2 and 𝑇 = 100 K 

(orange dot) and at the same density and  𝑇 = 140 K (red dot). We see that these measurements nicely 

fit the above expression. This can be also seen when we plot 𝑙𝑀𝑅 vs. temperature (Fig. S6b). The above 

expression (black line) fits well the three experimentally measured points. This suggest that we can use 

this expression for obtaining the 𝑙𝑀𝑅 at temperatures between our low and high temperatures data 

points. 

 

Fig. S6: 𝒍𝑴𝑹 vs. temperature and density. a. Measured mean free path as a function of carrier density at 

𝑇 = 6 K (blue dots), 100 K (orange dot) and 140 K (red dot) (see text).  The blue line is a polynomial fit 

through the data at 6 K. The lines corresponding to higher temperatures (see legend) include in addition 

the electron phonon scattering term (see text in this section). b. 𝑙𝑀𝑅 as a function of temperature at 𝑛 =

4.5 × 1011𝑐𝑚−2. The measured 𝑙𝑀𝑅 at 𝑇 = 6 K (blue dot) 100 K (orange dot) and 140 K (red dot) are in 

good agreement with the theoretical expression. 
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S7. Additional data at a different carrier density 

In the main text, we present data at 𝑉𝐵𝐺 = 2 𝑉, corresponding to 𝑛 = 4.5 × 1011 𝑐𝑚−2. Here, we present 

additional data from another carrier density (𝑉𝐵𝐺 = 1.5 𝑉, 𝑛 = 3.3 × 1011 𝑐𝑚−2), demonstrating similar 

behavior to that presented in the main text. 

Fig. S7a shows the imaged 𝑅(𝑟) at 𝑇 = 6 K and 𝑛 = 3.3 × 1011 𝑐𝑚−2. This curve has similar 

characteristics as that in Fig. 2b.  In Fig. S7b we use a similar fit as in the main text. The dashed line shows 

a fit to 𝑅𝐿𝑆(𝑟) + 𝑅𝑐
𝑖𝑛(𝑟) + 𝑅𝑐

𝑜𝑢𝑡(𝑟), demonstrating that the measured bulk resistance is predominantly 

given by the Landauer-Sharvin resistance. Adding the ohmic term 𝑅𝑜ℎ𝑚(𝑟)  = 𝑅𝑠ℎ
𝑖𝑛 2𝑟𝑖𝑛

𝜋𝑙𝑀𝑅
log (

𝑟

𝑟𝑖𝑛
) with 

𝑙𝑚𝑟 = 38 𝜇𝑚 we obtain the excellent fit shown the dashed red curve. 

Fig. S7c shows the bulk resistance 𝑅𝑏𝑢𝑙𝑘(𝑟) = 𝑅(𝑟) − (𝑅𝑐
𝑖𝑛(𝑟) + 𝑅𝑐

𝑜𝑢𝑡(𝑟)), as a function of temperature. 

We see similar trend to the measurements in the main text: the total bulk resistance first decreased with 

increasing temperature up to ~𝑇 = 60 K and then goes slightly up. Moreover, the spatial dependence 

within the bulk shows a similar evolution to the one shown in the main text: from a curved resistance 

profile at low temperatures (when plotted on a logarithmic 𝑟 axis), ~asin (𝑟𝑖𝑛/𝑟), to a linear profile, 

namely ~log (𝑟/𝑟𝑖𝑛), at high temperatures.  

 

Fig. S7 | Measured resistance profiles at 𝒏 = 𝟑. 𝟑 × 𝟏𝟎𝟏𝟏 𝒄𝒎−𝟐. a. Measured 𝑅(𝑟), at 𝑇 = 6 𝐾. b. Breaking up the 

resistance to bulk and contact components. The PSF smeared contact resistances, 𝑅𝑐
𝑖𝑛(𝑟) and 𝑅𝑐

𝑜𝑢𝑡(𝑟) (grey), are as 

described in the main text. Dotted black line: Fit to 𝑅𝐿𝑆(𝑟) + 𝑅𝑐
𝑖𝑛(𝑟) + 𝑅𝑐

𝑜𝑢𝑡(𝑟), where , 𝑅𝐿𝑆(𝑟)  = 𝑅𝑠ℎ
𝑖𝑛 1

𝜋
asin (

𝑟𝑖𝑛

𝑟
) is 

the theoretically predicted Landauer-Sharvin bulk geometrical resistance. Red dashed line shows a fit to the same 

expression with the addition of 𝑅𝑜ℎ𝑚(𝑟)  = 𝑅𝑠ℎ
𝑖𝑛 2𝑟𝑖𝑛

𝜋𝑙𝑀𝑅
log (

𝑟

𝑟𝑖𝑛
), with 𝑙𝑀𝑅 = 38 𝜇𝑚. c. Measured 𝑅𝑏𝑢𝑙𝑘(𝑟) = 𝑅(𝑟) −

(𝑅𝑐
𝑖𝑛(𝑟) + 𝑅𝑐

𝑜𝑢𝑡(𝑟)) at various temperatures, 𝑇, normalized by 𝑅𝑠ℎ
𝑖𝑛  and plotted with a logarithmic 𝑟 axis.  
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S8. Imaging measurements on a second Corbino device 

We performed measurements on a second Corbino disk with different dimensions, 𝑟𝑖𝑛 = 1 𝜇𝑚 and 𝑟𝑜𝑢𝑡 =

6 𝜇𝑚. The inset in Fig S8a shows the optical image of this device, fabricated using similar procedure as 

discussed in SI section 1.  

Fig. S8a presents the measured 𝑅(𝑟) at 𝑇 = 6 K and 𝑛 = 4.5 × 1011 𝑐𝑚−2, where the transport is 

ballistic. This curve has the same characteristics to that in Fig. 2b.  In Fig. S8b we use a similar fit as in the 

main text. The dashed line shows a fit to 𝑅𝐿𝑆(𝑟) + 𝑅𝑐
𝑖𝑛(𝑟) + 𝑅𝑐

𝑜𝑢𝑡(𝑟), demonstrating that the measured 

bulk resistance is predominantly given by the Landauer-Sharvin resistance. Adding the ohmic term 

𝑅𝑜ℎ𝑚(𝑟)  = 𝑅𝑠ℎ
𝑖𝑛 2𝑟𝑖𝑛

𝜋𝑙𝑀𝑅
log (

𝑟

𝑟𝑖𝑛
) with 𝑙𝑚𝑟 = 27 𝜇𝑚 we obtain the excellent fit shown the dashed red curve.  

Fig. S7c shows the bulk resistance 𝑅𝑏𝑢𝑙𝑘(𝑟) = 𝑅(𝑟) − (𝑅𝑐
𝑖𝑛(𝑟) + 𝑅𝑐

𝑜𝑢𝑡(𝑟)), as a function of temperature. 

We see similar trend to the measurements in the main text that: the resistance evolves from a curved 

resistance profile at low temperatures (when plotted on a logarithmic 𝑟 axis), ~asin (𝑟𝑖𝑛/𝑟), to a linear 

profile, namely ~log (𝑟/𝑟𝑖𝑛), at high temperatures.  

 

 

Fig. S8 | Imaging of a second Corbino device. a. Inset: optical image of the device. Main panel: measured 𝑅(𝑟), at 

𝑇 = 6 𝐾. b. Breaking up the resistance to bulk and contact components. The PSF smeared contact resistances, 

𝑅𝑐
𝑖𝑛(𝑟) and 𝑅𝑐

𝑜𝑢𝑡(𝑟) (grey), are as described in the main text. Dotted black line: Fit to 𝑅𝐿𝑆(𝑟) + 𝑅𝑐
𝑖𝑛(𝑟) + 𝑅𝑐

𝑜𝑢𝑡(𝑟), 

where , 𝑅𝐿𝑆(𝑟)  = 𝑅𝑠ℎ
𝑖𝑛 1

𝜋
asin (

𝑟𝑖𝑛

𝑟
) is the theoretically predicted Landauer-Sharvin bulk geometrical resistance. Red 

dashed line shows a fit to the same expression with the addition of 𝑅𝑜ℎ𝑚(𝑟)  = 𝑅𝑠ℎ
𝑖𝑛 2𝑟𝑖𝑛

𝜋𝑙𝑀𝑅
log (

𝑟

𝑟𝑖𝑛
), with 𝑙𝑀𝑅 =

27 𝜇𝑚. c. Measured 𝑅𝑏𝑢𝑙𝑘(𝑟) = 𝑅(𝑟) − (𝑅𝑐
𝑖𝑛(𝑟) + 𝑅𝑐

𝑜𝑢𝑡(𝑟)) at various temperatures, 𝑇, normalized by 𝑅𝑠ℎ
𝑖𝑛  and 

plotted with a logarithmic 𝑟 axis. 
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S9. Derivation of Equation 1 in the main text 

In this section we prove the identity: 

 𝑅(𝑟, 𝐿𝑒𝑒 = (𝑙𝑒𝑒
−1 + 𝑙𝑀𝑅

−1 )−1, 𝐿𝑀𝑅 =  ∞) = 𝑅(𝑟, 𝐿𝑒𝑒 = 𝑙𝑒𝑒, 𝐿𝑀𝑅 =  𝑙𝑀𝑅) −
ℏ

2𝑒2𝑘𝐹𝑙𝑀𝑅
log (𝑟/𝑟𝑖𝑛)  

  (s9.1) 

which is equation (1) in the main text, used to obtain the clean-limit hydrodynamic flow profile. 

In the equation above 𝑅(𝑟, 𝐿𝑒𝑒 , 𝐿𝑀𝑅) is the bulk resistance profile with momentum-conserving and 

momentum-relaxing mean free paths of 𝐿𝑒𝑒 and 𝐿𝑀𝑅 correspondingly. 

The full Boltzmann equation reads as: 

 �⃗�. ∇𝜒 + (𝑙𝑒𝑒
−1 + 𝑙𝑀𝑅

−1 )(𝜒 − �̅�) − 𝑙𝑒𝑒
−12 cos(𝜃) 𝜒 cos(𝜃) = 0 (S9.2) 

where 𝜒(𝑟, 𝜃) is the Boltzmann function describing the distribution of the carrier's momenta direction, 

given by 𝜃 at location 𝑟, and �̅� is its averaging over 𝜃.  

We rewrite equation (S9.2) as, 

 �⃗�. ∇𝜒 + (𝑙𝑒𝑒
−1 + 𝑙𝑀𝑅

−1 )(𝜒 − �̅�) − (𝑙𝑒𝑒
−1 + 𝑙𝑀𝑅

−1 )2 cos(𝜃) 𝜒 cos(𝜃) + 𝑙𝑀𝑅
−1 2 cos(𝜃) 𝜒 cos(𝜃) = 0 (S9.3) 

or, 

 𝐿0𝜒 + 𝑙𝑀𝑅
−1 2 cos(𝜃) 𝜒 cos(𝜃) = 0 

 

(S9.4) 

where 𝐿0 is the Boltzmann equation for a modified problem with 𝐿𝑀𝑅 = ∞ and 𝐿𝑒𝑒 = (𝑙𝑒𝑒
−1 + 𝑙𝑀𝑅

−1 )−1. 

Denoting the solution of 𝐿0as 𝜒0, we look for a solution of the form 𝜒 = 𝜒0 + 𝛿𝜒(𝑟). 

We find  

𝐿0𝛿𝜒 +  𝑙𝑀𝑅
−1 2 cos(𝜙𝜃) 𝜒 cos(𝜃) = 0 

cos(𝜃) 𝜕𝑟𝛿𝜒 + 𝑙𝑀𝑅
−1 2 cos(𝜃) 𝜒 cos(𝜃) = 0  

 𝜕𝑟𝛿𝜒 + 𝑙𝑀𝑅
−1 𝑗 = 0 (S9.5) 

and thus  

 
𝛿𝜒 =  −𝑙𝑀𝑅

−1
𝐼

2𝜋
 (log(𝑟) − log(𝑟𝑖𝑛) )  (S9.6) 
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S10. Boltzmann simulations of interacting flow in a Corbino geometry 

To model electron flow through the graphene channels, we employ an approach based on the Boltzmann 

equation6–9 that incorporates the effects of both electron-impurity and electron-phonon scattering as well 

as electron-electron interactions:   

 𝜕𝑡𝑓 + �⃗� ∙ 𝛻𝑟𝑓 =
𝜕𝑓

𝜕𝑡
|𝑠𝑐𝑎𝑡𝑡, (S10.1)  

where the scattering integral,  

𝜕𝑓(𝑟, �⃗�)

𝜕𝑡
|𝑠𝑐𝑎𝑡𝑡 = −

𝑓(𝑟, �⃗�) − 𝑛(𝑟)

𝜏
+

2

𝜏𝑒𝑒
�⃗� ∙ 𝑗(𝑟), (S10.2)  

 

has two contributions: one from momentum-relaxing scattering, with a rate 
1

𝜏𝑀𝑅
, and one from 

momentum-conserving, electron-electron scattering, with a rate 
1

𝜏𝑒𝑒
. This equation describes the 

evolution of the semiclassical occupation number 𝑓(𝑟, �⃗�) for a wave packet at position 𝑟 and velocity �⃗�, 

where 𝑛(𝑟) = 〈𝑓〉�⃗⃗� is the local charge density, 𝑗(𝑟) = 〈𝑓�⃗�〉�⃗⃗� the local current density, 〈… 〉�⃗⃗� is the 

momentum average, and 
1

𝜏
=

1

𝜏𝑀𝑅
+

1

𝜏𝑒𝑒
. For the sake of simplicity, we consider the case of a circular Fermi 

surface with �⃗� = 𝑣𝐹�̂�(𝜃), where �̂� is the radial unit vector at angle 𝜃. Mean free paths are then simply 

defined as 𝑙𝑀𝑅(𝑒𝑒) = 𝑣𝐹 ∙ 𝜏𝑀𝑅(𝑒𝑒). The term proportional to 𝜏𝑒𝑒
−1 is the simplest momentum-conserving 

scattering term that can be written, assuming that the electrons relax to a Fermi-Dirac distribution shifted 

by the drift velocity6,10–12.  

The sample is a Corbino disk with inner radius 𝑟𝑖𝑛 and outer radius 𝑟𝑜𝑢𝑡. We use polar coordinates in real 

space as well, with radius 𝑟 and angle 𝜙. Thanks to a rotational symmetry, the 𝜙 variable drops out of the 

calculation. Combining everything, the Boltzmann equation takes the form: 

𝑐𝑜𝑠(𝜃)𝜕𝑟𝑓 − 𝑠𝑖𝑛(𝜃)
1

𝑟
𝜕𝜃𝑓 = −

𝑓(r, 𝜃) − 𝑛(r)

𝑙
+

2

𝑙𝑒𝑒
�⃗� ∙ 𝑗(r) 

with = 𝑣𝐹𝜏 , 𝑛(𝑟) =
1

2𝜋
∫ 𝑑𝜃 𝑓(𝑟, 𝜃) and where 𝑗𝑟(𝑟) =

1

2𝜋
∫ 𝑑𝜃 𝑓(𝑟, 𝜃) cos(𝜃) is the radial current (the 

azimuthal current is zero by symmetry). 

The rapid transition from a practically-infinite density of states in the metal contact, to the finite density 

of states at the graphene channel next to it, imposes the following boundary condition:  
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𝑓(𝑟 = 𝑟𝑚𝑖𝑛, −𝜋/2 ≤ 𝜃 ≤ 𝜋/2) = 𝑓𝑖𝑛

 𝑓(𝑟 = 𝑟𝑚𝑎𝑥, 𝜋/2 ≤ 𝜃 ≤ 3𝜋/2) = 0, (S10.3)
 

where 𝑓𝑖𝑛 is a constant whose value is set to fix the total current.  

The resulting integrodifferential equation is solved numerically using the method of characteristics13 to 

invert the differential part of the equation, and an iterative method to solve the integral part.   

Based on the solution for 𝑓, one finds the total current as 𝐼 = 2𝜋𝑗𝑟 and the electrochemical potential as 

the electron density 𝑛(𝑟) divided by the density of states at the Fermi level.  

Further, the contact resistance can be deduced by assuming the following form for 𝑓 at the two contacts: 

𝑓(𝑟 = 𝑟𝑚𝑖𝑛 − 𝜀, 𝜃) = 𝑓𝑖𝑛 at the inner contact, and 𝑓(𝑟 = 𝑟𝑜𝑢𝑡 + 𝜀, 𝜃) = 0 at the outer contact, where 𝜀 

is infinitesimal. 
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S11. Temperature dependence of the outer contact resistance 

The experiments described in Fig. 3b of the main text shows that as the temperature increases, a small 

step gradually builds up near the outer contact. We recall that in all the curves in that figure 

(corresponding to measurement temperatures from 𝑇 = 6 𝐾 to 140 𝐾) we subtracted the same contact 

step functions 𝑅𝑐
𝑖𝑛(𝑟) and 𝑅𝑐

𝑜𝑢𝑡(𝑟), those obtained from fitting the resistance profile at 𝑇 = 6 𝐾 (Fig. 2c). 

This means that the contact steps that we see in Fig. 3b reflect the difference between the contact 

resistance at finite temperatures and that at 𝑇 = 6 𝐾. The fact that we observe a finite outer contact step 

at high 𝑇 therefore suggests that the outer contact resistance is larger at higher 𝑇. 

In our Boltzmann numerical calculations (Fig. 3c) we observed a similar effect, but even stronger. There 

upon decreasing of 𝑙𝑒𝑒 (which corresponds to increasing 𝑇 in the experiment) we see the buildup of a 

resistance step at the outer contact. We note that we use a similar procedure to the one used for the 

experimental curves - subtracting from all the Boltzmann curves the same contact resistance steps, the 

one obtained in the calculation with 𝑙𝑒𝑒 = ∞. The buildup of contact resistance step with decreasing 𝑙𝑒𝑒 

in Fig. 3c therefore implies that the outer contact resistance increases with decreasing 𝑙𝑒𝑒. 

The Boltzmann calculation allows us to identify that this phenomenon originates from the transition 

between highly non-local ballistic flow at 𝑙𝑒𝑒 = ∞ and a locally equilibrated hydrodynamic flow at small 

𝑙𝑒𝑒. In a ballistic flow, the angular distribution of carriers in graphene, just outside the inner contact, has 

half of the angles populated by hot carriers emitted from the inner contact. Going toward the outer 

contact, the hot electrons get collimated to a smaller angular spread (the simple analogy would be the 

angle distribution of light rays reaching from the sun to an observer. As the observer gets further away 

from the sun, the distribution of light rays (/hot electrons) becomes more collimated). At a radius 𝑟 the 

hot electrons are collimated to an angular spread of Δ𝜃 = 2 asin (
𝑟𝑖𝑛

𝑟
). As we have shown in the paper, 

the corresponding 𝑟 dependence of the resistance is 𝑅(𝑟) = 𝑅𝑠ℎ
𝑖𝑛 1

𝜋
asin (

𝑟𝑖𝑛

𝑟
). For 𝑟 = 𝑟𝑜𝑢𝑡 ≫ 𝑟𝑖𝑛 the 

collimated beam is very narrow, Δ𝜃 ≈ 2
𝑟𝑖𝑛

𝑟𝑜𝑢𝑡
. The outer contact resistance can be readily obtained from 

the value of the resistance function at 𝑟𝑜𝑢𝑡, since at the outer contact itself it equals zero. Namely, the 

theoretically predicted outer contact resistance in the ballistic regime is: 

(ballistic) 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡
𝑜𝑢𝑡 = 𝑅𝑠ℎ

𝑖𝑛 1

𝜋
asin (

𝑟𝑖𝑛

𝑟𝑜𝑢𝑡
) ≈ 𝑅𝑠ℎ

𝑖𝑛 1

𝜋

𝑟𝑖𝑛

𝑟𝑜𝑢𝑡
 (S11.1) 
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Indeed, this is the value that we obtain in the Boltzmann calculations in the ballistic regime (𝑙𝑒𝑒 = ∞). 

 When we examine the Boltzmann calculations deep in the hydrodynamic case (𝑙𝑒𝑒 ≪

𝑟𝑖𝑛, 𝑟𝑜𝑢𝑡, 𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛) we see that we obtain a different outer contact resistance. In fact, in this case we 

observe that this resistance roughly equals the resistance one would obtain in the diffusive regime, 

namely, half the Sharvin resistance corresponding to 𝑟𝑜𝑢𝑡, 𝑅𝑠ℎ
𝑜𝑢𝑡 =

𝜋ℎ

4𝑒2

1

𝑘𝐹(2𝜋𝑟𝑜𝑢𝑡)
. Consequently,  

(hydrodynamic) 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡
𝑜𝑢𝑡 =

1

2
𝑅𝑠ℎ

𝑜𝑢𝑡 = 𝑅𝑠ℎ
𝑖𝑛 1

2

𝑟𝑖𝑛

𝑟𝑜𝑢𝑡
 (S11.2) 

At the same time, in the hydrodynamic regime, the angular distribution of the electrons near the outer 

contact is ~cos (𝜃). Comparing equations (11.1) and (11.2) we see that 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡
𝑜𝑢𝑡  in the hydrodynamic 

regime is larger by a factor 𝜋/2 than that in the ballistic regime (we ignore here higher orders in 𝑙𝑒𝑒). This 

corresponds to the increase of outer contact resistance with decreasing 𝑙𝑒𝑒 seen in Fig. 3c. This factor 

reflects the fact that the current density carried by a highly collimated angular distribution is larger by a 

factor of 𝜋/2 than the current density carried by a cos (𝜃) distribution.  

 In the experiment we observe similar effect to that in the Boltzmann numerics, although the 

increase of the outer contact resistance with temperature is somewhat smaller. We note also that this 

feature is approaching the noise level of our experiment. It is likely that the reduced amplitude of the 

effect in the experiment, compared to the ideal theory, reflects the fact that the collimation effect 

described above is much more sensitive to experimental imperfections, such as roughness of the outer 

contact, more than the other effects reported in this paper that display very good agreement with the 

theory. 
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In compensated two-component systems in confined, two-dimensional geometries, nonlocal re-
sponse may appear due to external magnetic field. Within a phenomenological two-fluid framework,
we demonstrate the evolution of charge flow profiles and the emergence of a giant nonlocal pat-
tern dominating charge transport in magnetic field. Applying our approach to the specific case of
intrinsic graphene, we suggest a simple physical explanation for the experimental observation of
giant nonlocality. Our results provide an intuitive way to predict the outcome of future experiments
exploring the rich physics of many-body electron systems in confined geometries as well as to design
possible applications.

The trend towards miniaturization of electronic devices
requires a deeper understanding of the electron flow in
confined geometries. In contrast to the electric current
in household wiring, charge flow in small chips with mul-
tiple leads may exhibit complex spatial distribution pat-
terns depending on the external bias, electrostatic envi-
ronment, chip geometry, and magnetic field. Tradition-
ally, such patterns were detected using nonlocal transport
measurements [1–7], i.e. by measuring voltage drops be-
tween various leads other than the source and drain. De-
vised to study ballistic propagation of charge carriers in
mesoscopic systems, these techniques were recently ap-
plied to investigate possible hydrodynamic behavior in
ultra-pure conductors [8–12], where the unusual behavior
of the nonlocal resistance is often associated with viscos-
ity of the electronic system [13–17].

Nonlocal resistance measurements have also been used
to study edge states accompanying the quantum Hall ef-
fect [18–23]. While the exact nature of the edge states
has been a subject of an intense debate, the nonlocal
resistance, RNL, appears to be an intuitively clear con-
sequence of the fact that the electric current flows along
the sample edges and not through the bulk. Such a cur-
rent would not be subject to exponential decay [24] ex-
hibited by the bulk charge propagation leading to a much
stronger nonlocal resistance.

In recent years the focus of the experimental work on
electronic transport has been gradually shifting towards
measurements at nearly room temperatures [6, 8–10, 21].
A particularly detailed analysis of the nonlocal resistance
in a wide range of temperatures, carrier densities, and
magnetic fields was performed on graphene samples [21].
Remarkably, the nonlocal resistance measured at charge
neutrality remained strong well beyond the quantum Hall
regime, with the peak value RNL ≈ 1.5 kΩ at B = 12 T
and T = 300 K, three times higher than that at T = 10 K.

In this Letter, we argue that the giant nonlocality ob-
served in intrinsic graphene at high temperatures can be
attributed to the presence of two types of charge carriers

FIG. 1: Giant nonlocality in a compensated semimetal in
magnetic field. The arrows indicate the current flow and the
color map shows the electrochemical potential (see the main
text and Figs. 2 and 3 for specific parameters).

(electrons and holes): at the neutrality point, the two
bands (the conductance and valence bands) touch creat-
ing a two-component electronic system. Physics of such
systems is much richer than in their single-component
counterparts. Observed phenomena that are directly re-
lated to the two-band structure of the neutrality point
include giant magnetodrag in graphene [25, 26] and lin-
ear magnetoresistance [27, 28]. Both effects have been
explained within a phenomenological framework [26, 27]
allowing for a two-component (electron-hole) system cou-
pled by the external magnetic field. We generalize this
approach to investigate evolution of the spatial distribu-
tion of the electron current density in the experimentally
relevant Hall bar geometry. In sufficiently strong mag-
netic fields, the current density forms a giant nonlocal
pattern where the current is flowing not only in the bulk,
but also along the boundaries leading to strong nonlocal
resistance, see Fig. 1. Such patterns can be directly ob-
served in laboratory experiments using the modern imag-
ing techniques [29–31]. Tuning the model parameters to
the specific values available for graphene, we arrive at a
quantitative estimate of the nonlocal resistance [21].

To highlight the difference between the one- and two-
component systems, we briefly recall the macroscopic de-
scription of electronic transport in the standard (former)
case. Allowing for nonuniform charge density, the linear
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FIG. 2: Classical Hall effect in a one-component electronic
system. The current density (shown by the arrows) and the
electrochemical potential (shown by the color map) were ob-
tained from Eqs. (1) for a sample of the width W = 1µm and
length L = 4µm with the carrier density n = 1012 cm−2 at
the temperature T = 240 K and in magnetic field B = 0.2 T.

relation between the electric current J and the external
fields E, B could be formulated as [17, 32, 33]

r0J = E + rHeB×J +
1

eν0
∇n, (1a)

where e > 0 is the unit charge, ν0 is the density of states
(DoS), n is the carrier density, eB is the unit vector in
the direction of the magnetic field, and r0 and rH are the
longitudinal and Hall resistivities. Within the Drude-like
description, rH = ωcτr0 (ωc is the cyclotron frequency
and τ is the mean free path). The relation Eq. (1a)
is applicable to a wide range of electronic systems from
simple metals [34, 35] to doped graphene [11, 36]. The
transport coefficients r0 and rH could be treated as phe-
nomenological or could be derived from the underlying
kinetic theory [11, 32, 37].

In addition to Eq.(1a), the electric current satisfies the
continuity equation, which for stationary currents reads

∇·J = 0. (1b)

Charge density inhomogeneity induces electric field, so
that Eq. (1a) should be combined with the corresponding
electrostatic problem. Most recent experiments were per-
formed in gated structures, where the relation between
the electric field and charge density simplifies [27, 38]. In
two-dimensional (2D) samples

E = E0 −
e

C
∇n, (1c)

where C = ε/(4πd) is the gate-to-sample capacitance per
unit area, d is the distance to the gate, ε is the dielectric
constant, and E0 is the external field.

In a two-terminal (slab) geometry, solution of Eqs. (1)
is a textbook problem. In the absence of magnetic field,
the resulting electrochemical potential is governed by the
relation of the mean free path to the system size, exhibit-
ing either a flat (in short, ballistic samples) or linear (in
long, diffusive samples) spatial profile. Most recently,
these solutions were used as benchmarks in the imaging
experiment [29] and the numerical solution of the hydro-
dynamic equations in doped graphene [17]. In external

FIG. 3: Charge flow in compensated semimetals. Top: Ohmic
flow in the absence of magnetic field. Bottom: emergent non-
locality in weak magnetic field B = 0.2 T. The associated
potential on the sample boundaries grows with the increasing
field, see Fig. 1 for the pattern at B = 2 T. Stronger fields
expel the current from the bulk such that it flows along the
boundary.

magnetic field, the system exhibits the classical Hall ef-
fect, which in short samples is accompanied by nontrivial
current flow patterns [39].

In a four-terminal Hall bar geometry, the electric cur-
rent still fills the whole sample, but decays exponentially
[24] away from the direct path between source and drain.
The resulting flow pattern was calculated (in the context
of doped graphene) in Refs. [14, 15, 17]. In magnetic field,
the pattern gets skewed due to the classical Hall effect,
but exhibits no qualitatively new features, see Fig. 2.

Let us now extend the transport equations (1) to a
two-component system. Keeping in mind applications to
graphene, we re-write Eq. (1a) for the quasiparticles in
the conduction band (“electrons”) in the form

− je = eDνeE + ωcτje×eB +D∇ne, (2a)

where je is the electron flow density (carrying the electric
current Je = −eje) and νe is DoS. The “holes” (i.e., the
quasiparticles in the valence band) are described by

− jh = −eDνhE − ωcτjh×eB +D∇nh. (2b)

Here the electric current carried by the holes is Jh = ejh
and DoS may differ from that of electrons, νh 6= νe. For
simplicity, we assume that the the cyclotron frequency,
mean free time, and diffusion constant for the two bands
coincide (a generalization is straightforward, but doesn’t
lead to qualitatively new physics).

The total electric current in the two component system
is given by J = −ej, where j = je − jh. Introducing
also the total quasiparticle flow jI = je + jh, we find (cf.
Ref. [37])

j + eD(νe + νh)E + ωcτjI×eB +D∇n = 0, (3a)

jI + eD(νe − νh)E + ωcτj×eB +D∇ρ = 0, (3b)
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FIG. 4: Giant nonlocality in the Hall bar geometry. The sample has a width W = 1µm and length 8µm, with the distance
between contacts L = 5µm. The driving current is I = 0.1µA. The flow pattern was computed for B = 0.8 T, cf. Fig. 1.

where n = ne − nh is the carrier density per unit charge
(the charge density being −en) and ρ = ne + nh is the to-
tal quasiparticle density. The transport equations have
to be supplemented by continuity equations reflecting the
particle number conservation. The electric current satis-
fies Eq. (1b), but the total number of quasiparticles [40]
can be affected by electron-hole recombination processes
leading to a weak decay term in the continuity equation

∇·jI = −δρ/τR, (3c)

where δρ is the deviation of the quasiparticle density from
its equilibrium value and τR is the recombination time.

Under the assumption of electron-hole symmetry (e.g.,
at the charge neutrality point in graphene), νe = νh, we
recover the phenomenological model of Ref. [27]. In the
two-terminal geometry this model yields unsaturating
linear magnetoresistance in classically strong fields [28].

Now we analyze the behavior of the phenomenological
model (3) in the four-terminal Hall bar geometry. In
the absence of the magnetic field, the system exhibits
a typical Ohmic flow [14, 15, 17], see the top panel in
Fig. 3. Applying the field we find a qualitative change in
the flow pattern – the emergence of a boundary flow and
the associated electrochemical potential at the sample
edges. Increasing the field leads to the nonlocal pattern
growing until it fills the whole sample, see Figs. 1 and 4.
Stronger fields essentially expel the current from the bulk
with the charge flow being concentrated along the sample
boundaries, which leads to strong nonlocal resistance.

The nonlocal flow pattern emerging in magnetic field,
see Figs. 1, 3 and 4, has to be contrasted with the vor-
tices appearing in the viscous hydrodynamic flow (e.g., in
doped graphene [14, 15, 17, 41]). In the latter case, vor-
ticity appears due to the constrained geometry of the flow
and the particular boundary conditions [15, 17, 42]: ne-
glecting Ohmic effects, the solution of the hydrodynamic
equations can be obtained by introducing the stream
function, which obeys a biharmonic equation indepen-
dent of viscosity, which however affects the distribution
of the electrochemical potential. In contrast, within the
model (3) the “Ohmic” scattering represents the only
source of dissipation and hence cannot be omitted. One
can still introduce the stream function, but now it is de-
termined not only by the sample geometry, but also by

the Ohmic scattering and magnetic field. As a result,
the flow pattern does not exhibit vortices, unlike those
suggested recently for the hydrodynamic flow in intrinsic
graphene [41] (in the absence of magnetic field).

Nonlocal resistance in graphene subjected to external
magnetic field was studied experimentally in Ref. [21]. At
high enough temperatures where signatures of the quan-
tum Hall effect are washed out, strong (or “giant”) non-
locality was observed at the neutrality point. The effect
vanishes in zero field as well as with doping away from
neutrality. Both features are consistent with the model
(3): in zero field the model exhibits usual Ohmic flow
patterns, see Fig. 3, while at sufficiently high doping lev-
els the effects of the second band are suppressed – the two
equations (3a) and (3b) become identical showing the re-
sponse typical of one-component systems, see Fig. 2.

Having discussed the qualitative features of the charge
flow in two-component systems, we now turn to a quan-
titative calculation of nonlocal resistance in graphene.
Although the model (3) is applicable to any semimetal,
graphene is a by far better studied material with read-
ily available experimental values for model parameters.
Here we use the data measured in Refs. [8, 9, 21, 26, 43]
and theoretical calculations of Refs. [11, 12, 26, 37, 41].

DoS of the quasiparticles in graphene has been evalu-
ated in, e.g., Refs. [11, 12, 36, 37], and has the form

νe + νh = 2T /(πv2g), νe − νh = 2µ/(πv2g), (4)

where µ is the chemical potential, vg is the quasiparticle
velocity in graphene, and T = 2T ln[2 cosh(µ/2T )]. The
generalized cyclotron frequency is ωc = eBv2g/(cT ) and
the diffusion coefficient has the usual form D = v2gτ/2.
At charge neutrality, µ = 0 and T = 2T ln 2, while in the
degenerate regime T (µ� T ) = µ. The latter confirms
that all coefficients in Eqs. (3a) and (3b) become identi-
cal with doping. Similarly, the continuity equations (1b)
and (3c) should coincide in the degenerate regime. In
graphene this happens by means of the fast decay of the
recombination rate [26]. Close to neutrality we assume

τ−1
R = g2T/ cosh(µ/T ), (5)

where g is determined by the corresponding matrix ele-
ment. The above expression [26] reflects the exponential
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FIG. 5: Nonlocal resistance measured in the Hall bar geome-
try, see Fig. 4, as a function of carrier density. Top: Coulomb
scatterers; bottom: short-ranged impurities. The impurity
model parameters are chosen to represent the mobility at
n = 1011 cm−2 reported in Ref. [21]. The range of magnetic
fields and carrier densities as well as the distance to the gate
(d = 50 nm) is taken from Ref. [21], see Fig.2.

decay of the two-band physics away from charge neutral-
ity, which is responsible for the fast decay of RNL as a
function of carrier density [21], see Fig. 5. Finally, the
mean-free time, τ , in graphene is a non-trivial function of
temperature and carrier density [11, 12, 36, 43, 44], which
strongly depends on the model of the impurity potential
[45–50]. However, these dependencies are typically not
exponential and hence do not affect the exponential de-
cay of the nonlocal resistance.

In Fig. 5 we demonstrate the decay of RNL for two im-
purity models – the Coulomb scatterers and short-ranged
impurities – showing nearly identical behavior. Such ro-
bustness of the model (3) with respect of the functional
dependence of the mean free time justifies the inaccuracy
of our description of electronic transport in graphene,
where close to charge neutrality the resistivity is strongly
affected by electron-electron interaction. The data shown
in Fig. 5 were obtained by solving Eqs. (3) in the Hall

bar geometry of Fig. 4 using the estimate [41] for the re-
combination length scale, `R = vgτR ≈ 10µm (a previous
calculation of Ref. [26] put it at a smaller value 1.2µm),
which leads to similar results for the nonlocal resistance,
but with a smaller peak value at charge neutrality.

The results for RNL shown in Fig. 5 are extremely sim-
ilar to those reported in Ref. [21] with the exception of
the values at neutrality, which are grossly exaggerated.
There are several reasons for this behavior. Firstly, by
ignoring the effects of electron-electron interaction, we
strongly underestimate the usual resistivity of intrinsic
graphene. Secondly, we ignore viscous effects. Further-
more, DoS in real graphene never really vanishes “at neu-
trality” due to electrostatic potential fluctuations [51].
As a result, the minimal carrier concentration is often as
high as 1010cm−2, essentially cutting off the lower den-
sity range around the peak in Fig. 5. Finally, Eq. (5) is
a rather crude estimate that needs to be improved.

To conclude, we have argued that the observed giant
nonlocality in neutral graphene in non-quantizing mag-
netic fields at relatively high temperatures observed in
Ref. [21] is a direct consequence of the two-band nature
of the quasiparticle spectrum in graphene. As such, this
effect is not specific to graphene and should be observ-
able in any compensated two-component system. Our
theory does not involve spin-related phenomena includ-
ing the effect of Zeeman splitting invoked in Ref. [21].
The latter should be independent of the field direction,
however, the effect was not observed in the nearly par-
allel field studied in Ref. [51]. Assuming the g-factor
to be equal to 2, we estimate the Zeeman splitting
as Ez ≈ 0.35 meV≈ 4 K at B = 10 T. The correspond-
ing residual quasiparticle density (at T = 0) is given by
ρQ = E2

z/(4πv
2
g) ≈ 2.2× 106 cm−2. As a result, we ex-

pect the effects of Zeeman splitting to be observable at
temperatures and carrier densities much lower than those
typical to nonlocal measurements discussed here.

With material-specific parameters, our phenomenolog-
ical model is capable of a quantitative description of the
effect. For graphene, a more precise calculation involv-
ing solution of the full system of hydrodynamic equations
near charge neutrality is required to reach perfect agree-
ment with the data, however the present approach shows
that the effect is more general and does not require ad-
ditional assumptions of electronic hydrodynamics.

The authors are grateful to I.V. Gornyi, A.D. Mir-
lin, J. Schmalian, J.A. Sulpizio, M. Schütt, A. Shnir-
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Collective behavior is one of the most intriguing aspects of the hydrodynamic approach to elec-
tronic transport. Here we provide a consistent, unified calculation of the dispersion relations of
the hydrodynamic collective modes in graphene. Taking into account viscous effects, we show that
the hydrodynamic sound mode in graphene becomes overdamped at sufficiently large momentum
scales. Extending the linearized theory beyond the hydrodynamic regime, we connect the diffusive
hydrodynamic charge density fluctuations with plasmons.

Electronic hydrodynamics is quickly growing into a
mature field of solid state physics [1–17]. Similarly to
the usual hydrodynamics [18], this approach offers a uni-
versal, long-wavelength description of collective flows in
interacting many-electron systems. Such flows have been
experimentally confirmed [6] to be more efficient than the
usual single-electron (ballistic or diffusive) transport.

In graphene, hydrodynamic collective modes have been
considered by many authors [2, 15, 19–26]. All of them
agree that at charge neutrality, the ideal electronic fluid
(i.e., neglecting all dissipative processes) allows for a
sound-like collective mode (which has been referred to
as either the “cosmic sound” [20] or the “second sound”
[25]) with the dispersion relation

ω = vgq/
√

2, (1)

where vg is the quasiparticle velocity in graphene. Tak-
ing into account dissipation changes the above dispersion
relation giving rise to damping. To the best of our knowl-
edge, no consensus on the latter effect has been reached
so far with several contradicting results available in the
literature [15, 23].

The hydrodynamic approach to electronic systems is
applicable in an intermediate parameter regime [1, 2]. In
particular, the underlying gradient expansion is valid at
length scales much larger than the typical length scale `ee
describing the energy- and momentum-conserving inter-
action (responsible for equilibration of the system). At
smaller length scales, one can study more traditional col-
lective excitations in interacting many-electron systems,
including plasmons [15, 21, 24–42], which behavior is well
established both theoretically and experimentally.

In this paper we provide a consistent, unified calcu-
lation of the dispersion relations of the hydrodynamic
collective modes in graphene. While the true hydrody-
namics is universal (as long as no symmetries are broken),
graphene is somewhat unique in the sense that there are
two length scales associated with electron-electron inter-
action that are parametrically different in the weak cou-
pling limit [2, 25, 43, 44]. This allows us to extend the
results of the linearized hydrodynamic theory [15, 43, 45]

FIG. 1. Real (top) and imaginary (bottom) parts of the hy-
drodynamic sound dispersion in neutral graphene taking into
account viscosity and weak disorder, Eq. (2). The numeri-
cal values were computed with the realistic parameter values
taken from Refs. 3, 9, and 12; see the main text. The dis-
persion acquires a finite real part at the threshold value of
momentum determined by dissipation. The mode becomes
overdamped at small enough momenta, still in the region of
the growing real part. The dashed line shows the ideal dis-
persion, Eq. (1).

to the length scales smaller that `ee (going beyond the
small-momentum expansion of Ref. 15). At that point
the sound mode (1) in neutral graphene (see Fig. 1) be-
comes overdamped due to the high viscosity [3, 9, 46]

ω =

√
v2
gq

2

2
−

(1+q2`2G)
2

4τ2
dis

− i1+q2`2G
2τdis

, (2)

where τdis is the disorder mean free time and `G is the

ar
X

iv
:2

01
1.

03
80

6v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
9 

M
ar

 2
02

1



2

so-called Gurzhi length [47–51] (here ν stands for the
kinematic viscosity [2, 3, 9, 46])

`G =
√
ντdis. (3)

This mode describes energy fluctuations and is com-
pletely decoupled from charge fluctuations. The latter
are purely diffusive within the hydrodynamic approach,
where dissipation is described by the momentum- and
frequency-independent coefficients, including the electri-
cal conductivity and viscosity.

Extending the linearized theory beyond the hydrody-
namic regime, we are able to connect the charge fluctu-
ations with the more conventional plasmons by taking
into account the frequency and momentum dependence
of conductivity. At charge neutrality we find the plasmon
mode

ω =

√
v2
gκq
2

(
1+

q

κ

)
−

v4
gκ2

64π2σ2
0

− i
v2
gκ

8πσ0
, (4)

where σ0 is the conductivity in neutral graphene [1, 2,
16, 52]

σ0 =
2e2T ln 2

π

τ11τdis

τ11+τdis
, (5)

and κ is the inverse Thomas-Fermi screening length. Ne-
glecting dissipation and for small momenta, the disper-
sion (4) coincides with the result of Ref. 19.

Finally, we extend our results over the whole range of
carrier densities up to the degenerate (“Fermi-liquid”)
regime. Given the weak density dependence of the kine-
matic viscosity in graphene [3, 9, 46] the sound dispersion
remains qualitatively similar to that shown in Fig. 1 at
all doping levels.

I. HYDRODYNAMIC THEORY OF
ELECTRONIC TRANSPORT IN GRAPHENE

In this Section, we briefly review the hydrodynamic
theory of electronic transport in graphene.

A. Nonlinear hydrodynamic equations

The complete set of hydrodynamic equations includes
the generalized Navier-Stokes equation [16, 17]

W (∂t + u·∇)u + v2
g∇P + u∂tP + e(E ·j)u = (6a)

= v2
g

[
η∆u− ηH∆u×eB + enE +

e

c
j×B

]
− Wu

τdis
,

the continuity equations [1, 2, 16]

∂tn+ ∇·j = 0, (6b)

∂tnI + ∇·jI = −nI−nI,0
τR

, (6c)

and the generalized “heat transport” equation [53–55]
(we follow the usual approach [18] using the entropy flow
equation instead of the continuity equation for energy).

T

[
∂s

∂t
+ ∇· 3Pu− µj − µIjI

T

]
= (6d)

= δj ·
[
eE+

e

c
u×B−T∇µ

T

]
− TδjI ·∇

µI
T

+
η

2
(∇αuβ+∇βuα−δαβ∇·u)

2

−nE−nE,0
τRE

+ µI
nI−nI,0
τR

+
Wu2

v2
gτdis

.

Here u is the hydrodynamic velocity, c is the speed of
light, and n and nI are the carrier and imbalance densi-
ties (nI,0 is the equilibrium value), related to the quasi-
particle densities in each of the two bands by

n = n+ − n−, nI = n+ + n−.

The carrier density n differs from the charge density by a
multiplicative factor of the electric charge, e. Similarly,
we define the two quasiparticle currents, j and jI ,

j = j+ − j−, jI = j+ + j−,

with the electric current J = ej. We also define the two
chemical potentials, µ and µI ,

µ = (µ+ + µ−)/2, µI = (µ+ − µ−)/2,

allowing for the two independent chemical potentials for
each band out of equilibrium [53] (hence the term “im-
balance”). The remaining vector quantities in Eqs. (6)
are the electric field E and the magnetic field B. The
thermodynamic quantities are the enthalpy density W ,
pressure P , entropy density s, and temperature T . Fi-
nally, η and ηH are the shear and Hall viscosities, τR is
the recombination time [53] [the recombination term in
Eq. (6c) agrees with Ref. 54, whereas Ref. 53 suggests a
slightly different term that is proportional to µI instead
of the δnI ], and τRE is the energy relaxation time [55].
In equilibrium, µI = 0.

In comparison to the usual hydrodynamics [18], the
electronic system in graphene is characterized by one ad-
ditional variable describing the second band. Traditional
ideal fluid is described by two thermodynamic variables,
e.g., density and pressure, and the velocity field. As a
result, in two dimensions one needs four equations to de-
scribe the dynamics of the flow. Two of these are given by
the Euler equation, the third is the continuity equation,
while the fourth can be either the continuity equation for
energy or the adiabaticity equation (i.e., the continuity
equation for entropy). In graphene these are Eqs. (6a),
(6b), and (6d) in the absence of dissipation. The addi-
tional continuity equation (6c) for the quasiparticle den-
sity nI appears exactly due to the presence of the second
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band, which is why the overall number of hydrodynamic
equations as well as independent variables in graphene is
five. As the additional variable one can choose either nI
or the corresponding chemical potential µI .

The entropy flow equation (6d) should be compared
to the corresponding equations in Refs. 2, 53, and 54.
The four equations contain mostly the same terms (up
to trivial notation changes) with the following exceptions.
Equation (54) of Ref. 2 is written in the relativistic nota-
tion omitting the imbalance mode, quasiparticle recombi-
nation, and disorder scattering, all of which are discussed
separately elsewhere in Ref. 2. Reference 53 was the first
to focus on the imbalance mode with Eq. (2.6) contain-
ing all the terms of Eq. (6d) except for the viscous term.
Finally, Eq. (1c) of Ref. 54 contains all of the terms in
Eq. (6d) and in addition contains a term describing en-
ergy relaxation due to electron-phonon scattering that is
neglected in this paper (generalization of the resulting
theory is straightforward).

Weak disorder scattering is described in Eqs. (6a) and
(6d) by the mean free time τdis. The disorder contri-
bution to the hydrodynamic equations was derived in
Ref. 16 using the simplest τ -approximation to the ki-
netic equation. A better version of the disorder colli-
sion integral in graphene should involve the Dirac factors
suppressing backscattering [56] which would lead to the
similar approximation but with the transport scattering
time. In graphene, this brings about a factor of 2. In
this paper, we treat τdis as a phenomenological parame-
ter adopting the approach of Ref. 12.

The imbalance density nI appears under the assump-
tion of the approximate conservation of the number of
particles in each individual band. The processes that
break this conservation (i.e., mix electrons and holes) in-
volve the three-particle scattering, Auger processes [53],
and most importantly, impurity assisted electron-phonon
coupling [57]. These effects are described in Eq. (6c) by
the phenomenological [58, 59] recombination time [60],
τR, as well as the energy relaxation time τRE in Eq. (6d).

B. Dissipative corrections to quasiparticle currents

The usual hydrodynamic flow [18] is a mass flow where
dissipative processes lead to a correction to the energy
flux as described by the thermal conductivity. Conse-
quently the flow is characterized by three dissipative co-
efficients, the thermal conductivity κ and two viscosi-
ties η and ζ. In contrast, electronic hydrodynamics in
graphene describes an energy flow where the quasiparti-
cle currents acquire dissipative corrections. The energy
flow is proportional to the momentum density and hence
can only be affected by disorder, which is “extrinsic” to
the hydrodynamic theory. As a result, the dissipative co-
efficients include the electrical conductivity σ and viscos-
ity, while the thermal conductivity has to be computed
by solving the linear response equations (similarly to the
electrical conductivity in the standard theory). Within

FIG. 2. Dimensionless scattering rates comprising the matrix

T̂: t−1
11 , t−1

12 , t−1
22 (blue, black, and green, respectively). The

red dashed line indicates the “Fermi-liquid” limit, Eq. (11).

the three-mode approximation of Ref. 16, the bulk viscos-
ity vanishes, ζ = 0. In the absence of the magnetic field
the dissipative corrections are related to external bias by
means of a “conductivity matrix” [16, 53, 54](

δj
δjI

)
= Σ̂

(
eE − T∇(µ/T )
−T∇(µI/T )

)
. (7)

In particular, at the Dirac point µ = µI = 0 the matrix

Σ̂ is diagonal with the upper diagonal element defining
(in the absence of disorder) the “quantum” or “intrinsic”
conductivity [1, 2, 16, 53, 54]

σQ = e2Σ11(0). (8)

In the hydrodynamic theory of graphene, the elements

of the matrix Σ̂ play the role that is equivalent to that
of the thermal conductivity κ in the usual hydrodynam-

ics. The matrix nature of Σ̂ reflects the band structure
of graphene. In the case of strong recombination, the
imbalance mode becomes irrelevant and one is left with
the single dissipative coefficient σQ, see Ref. 2.

1. Macroscopic currents within the three-mode
approximation

Within the three-mode approximation of Ref. 16, one
defines three macroscopic currents (using W̄ = 3n̄E/2)

j = n̄u+δj, jI = n̄Iu+δjI , jE =
3

2
n̄Eu, (9)

where n̄, n̄I , and n̄E are the equilibrium values of the car-
rier, imbalance, and energy densities, respectively. The
linear response theory relates the dissipative corrections
δj and δjI to the external bias by Eq. (7). The dimen-
sionless conductivity matrix (at B = 0) is given by [16]

Σ̂ = M̂ Ŝ
−1

xx M̂, Ŝxx =
α2
gT

2

2T 2
T̂+

π

T τdis
M̂, (10a)
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FIG. 3. Matrix elements of Σ̂. The blue, red, and green
curves correspond to Σ11, |Σ12|, |Σ22|, respectively (notice,
that Σ21 = −Σ12). The inset shows the log plot of Σ11, where
the red and blue lines indicate the exponential decay, while
the green line is the power law ∼ x−2.

where

M̂=

(
1− 2ñ2

3ñE

T
T

xT
T −

2ññI

3ñE

T
T

xT
T −

2ññI

3ñE

T
T 1− 2ñ2

I

3ñE

T
T

)
, (10b)

with dimensionless densities [see Eq. (15a) below]

ñ = Li2
(
−e−x

)
− Li2 (−ex), ñI = x2/2 + π2/6,

ñE = −Li3 (−ex)− Li3
(
−e−x

)
, (10c)

x = µ/T, T = 2T ln [2 cosh(x/2)] ,

and dimensionless scattering rates

T̂ =

(
t−1
11 t−1

12

t−1
12 t−1

22

)
, t−1

ij =
8πT
α2
gNT

2
τ−1
ij , (10d)

where τ−1
ij are the scattering rates that can be obtained

by solving the kinetic equation within the three-mode
approximation [15, 16, 25, 44]. The zeros in the matrix
(10d) are the manifestation of energy and momentum
conservation, which is also responsible for the vanishing
dissipative correction to the energy current in the ab-
sence of the magnetic field [16]. The three dimensionless

elements of the matrix T̂ are shown in Fig. 2 as a function
of x = µ/T .

The resulting matrix elements of the conductivity Σ̂
are shown in Fig. 3 as functions of x = µ/T . As discussed
below, the numerical precision of the present calculation
is insufficient to track the exponential corrections to the
scattering rates in the degenerate regime. Hence, the
decay shown in the inset in Fig. 3 might be an artifact.

2. Dimensionless scattering rates

In the degenerate regime all scattering rates (i.e., the
matrix elements t−1

ij ) coincide (up to exponentially small

corrections) approaching the limiting value

t−1
ij (µ� T )→ 8π2/3. (11)

At µ = 0, the off-diagonal elements t−1
12 (0) = 0, while

the diagonal elements t−1
ii (0) determine the diagonal ele-

ments of the conductivity matrix, σQ and σI , see below.
For small x� 1 the dimensionless “scattering rates” tij
have the form [45] (see Fig. 4 for illustration)

1

t11
=

1

t
(0)
11

+ x2

(
1

t
(2)
11

− 1

8 ln 2

1

t
(0)
11

)
+O(x3), (12a)

1

t12
=

x

t
(1)
12

+O(x3), (12b)

1

t22
=

1

t
(0)
22

+ x2

(
1

t
(2)
22

− 1

8 ln 2

1

t
(0)
22

)
+O(x3). (12c)

For unscreened Coulomb interaction, the dimensionless

quantities t
(0,1,2)
ij are just numbers without any depen-

dence on any physical parameter. Numerically, one finds
the following values (neglecting the small [52] exchange
contribution):(

t
(0)
11

)−1

≈ 34.63,
(
t
(2)
11

)−1

≈ 5.45,

(
t
(1)
12

)−1

≈ 5.72,
(
t
(0)
22

)−1

≈ 19.73,
(
t
(2)
22

)−1

≈ 5.65.

Note that these values are slightly different from those
listed in Ref. 45. The reason for this is the use of different
numerical methods. In the case of screened interaction,

the quantities t
(0,1,2)
ij depend on the screening length.

3. Conductivity matrix close to charge neutrality

Close to charge neutrality we expand the matrix M̂

M̂ = M̂(0) + δM̂+O(x3),

with

M̂(0) =

(
1 0
0 δI

)
, (13)

where ζ(z) is the Riemann’s zeta function and

δI = 1− π4

162ζ(3) ln 2
≈ 0.28.
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FIG. 4. Dimensionless scattering rates close to charge neu-
trality. The blue, black, and green curves correspond to t−1

11 ,
t−1
12 , t−1

22 , respectively. The red dashed lines indicate the lead-
ing behavior close to charge neutrality (11).

The leading-order correction is given by

δM̂ =
x

54ζ(3) ln 2

×

(
−16x ln2 2 27ζ(3)−4π2ln 2

27ζ(3)−4π2ln 2 2π2x
[

π2

48 ln 2 + π2ln 2
9ζ(3) −1

]).
The matrix Ŝxx can be expanded in the same way, using
the expansion of the scattering rates (12):

Ŝxx = Ŝxx(0) + δŜxx +O(x3),

where

Ŝxx(0)=
π

2T ln 2

[(
τ−1
11 0
0 τ−1

22

)
+

1

τdis
M̂

]
, (14)

and

δŜxx =
α2
g

8 ln2 2
δT̂+

π

2T ln 2
τ−1
dis δM̂,

with

δT̂ = x

 x

t
(2)
11

− 1
8 ln 2

x

t
(0)
11

1/t
(1)
12

1/t
(1)
12

x

t
(2)
22

− 1
8 ln 2

x

t
(0)
22

 .

Combining the above matrices, one finds the leading cor-
rections to the conductivity matrix in the vicinity of the
Dirac point, see Fig. 5.

Equations (6) and (7) reviewed in this Section repre-
sent a close set of hydrodynamic equations describing the
electronic flows in graphene in the intermediate (“hydro-
dynamic”) temperature window [1, 2]. So far, these equa-
tions were mostly studied within linear response (nonlin-
ear phenomena were discussed, e.g., in Ref. 15). The
hydrodynamic collective modes are also obtained by lin-
earizing the hydrodynamic equations.

FIG. 5. Matrix elements of the dimensionless conductivity

Σ̂ for small x = µ/T . The blue, green, and red curves cor-
respond to Σ11, Σ21, |Σ22|, respectively. The dashed lines
indicate the leading behavior close to charge neutrality.

II. LINEARIZED HYDRODYNAMIC THEORY
AT B = 0

In this Section, we discuss the linearization of the hy-
drodynamic theory in graphene suitable for a discussion
of the bulk collective modes in the absence of the mag-
netic field, which is the primary focus of this paper.

Within linear response one considers small deviations
of hydrodynamic quantities from their equilibrium val-
ues. At equilibrium, the stationary fluid is character-
ized by vanishing macroscopic currents and homogeneous
thermodynamic quantities. Equilibrium quantities are
most conveniently expressed in terms of the equilibrium
values of temperature and chemical potential:

µ= µ̄, T = T̄ , µI =0, x= µ̄/T̄ , (15a)

n = n̄ =
NT̄ 2

2πv2
g

ñ, nI = n̄I =
NT̄ 2

2πv2
g

ñI ,

P = P̄ =
NT̄ 3

2πv2
g

ñE , W = 3P̄ , s =
3P̄ − µ̄n̄

T̄
.

Finally, the electric potential is homogeneous as well

ϕ = ϕ̄, E = −∇ϕ̄ = 0, j = jI = jE = 0. (15b)

The values µ̄, ϕ̄, and T̄ are determined by the environ-
ment in which the system is placed or, in other words,
by the boundary conditions.

Once the system is subjected to a weak external volt-
age and temperature gradient, the hydrodynamic veloc-
ity u acquires a nonzero value and thermodynamic quan-
tities become inhomogeneous. To the lowest (linear) or-
der, one introduces small inhomogeneous fluctuations of
the equilibrium quantities (not all being independent)

µ = µ̄+ δµ, T = T̄ + δT, ϕ = ϕ̄+ δϕ, (16a)

n = n̄+ δn, nI = n̄I + δnI , P = P̄ + δP, (16b)
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as well as small values for those quantities that vanish in
equilibrium

u, µI . (16c)

The macroscopic currents have the form (9). Within
linear response, the nonequilibrium corrections (9) [in
general given in Eq. (7)] may be expressed as(

δj
δjI

)
= Σ̂

(
−e∇δζ + x∇δT

−∇µI

)
, (16d)

where Σ̂ is evaluated at equilibrium and

δζ = δϕ+
1

e
δµ, (16e)

is the electrochemical potential. Here we used the fact
that µI and ∇δT are both assumed to be small, so that
their products, e.g., µI∇δT , have to be neglected.

The same corrections can be expressed in terms of the
density fluctuations rather than the chemical potentials
[15](

δj
δjI

)
= Σ̂

(
eE
0

)
− T̄ 2

T
Σ̂′
(
∇δñ− 2ñ

3ñE
∇δñE

∇δñI− 2ñI

3ñE
∇δñE

)
, (16f)

with dimensionless fluctuations of the densities and pres-
sure [cf. Eqs. (16a) and (16b)] defined as

δn =
NT̄ 2

2πv2
g

δñ, δnI =
NT̄ 2

2πv2
g

δñI , δP =
NT̄ 3

2πv2
g

δñE ,

(16g)
the quantity T is related to the equilibrium compressibil-
ity [15, 16, 43, 45]

∂n̄

∂µ̄
=

NT
2πv2

g

, T = 2T̄ ln 2 cosh
µ̄

2T̄
, (16h)

and finally

Σ̂′ = M̂ Ŝ
−1

xx , Σ̂ = Σ̂′ M̂. (16i)

The expressions (16d) and (16f) are completely equiva-
lent, however one has to be careful with the electric field.
Indeed, electrical conductivity is typically measured as
a response to the “total” electric field and not to the
“external electric field.” The total electric field includes
the so-called Vlasov self-consistency [1, 2, 15, 16, 43] tak-
ing into account the electric field induced by the density
fluctuations. The latter can be obtained using Poisson’s
equation

EV = −e∇
∫
d2r′

δn(r′)

|r−r′|
. (17a)

This relation simplifies in gated structures, where [60, 61]

EV = − e
C
∇δn(r). (17b)

Here C = ε/(4πd) is the gate-to-channel capacitance per
unit area, d is the distance to the gate, and ε is the di-
electric constant. This approximation neglects the long-
ranged (dipole-type) part of the Coulomb interaction
(screened by the gate) and is valid as long as the charge
density n(r) varies on length scales much longer than d.

Linearizing the hydrodynamic equations (6) we find

3P̄

v2
g

∂tu + ∇δP = η∆u + en̄E − 3P̄u

v2
gτdis

, (18a)

∂tδn+ n̄∇·u + ∇·δj = 0, (18b)

∂tδnI + n̄I∇·u + ∇·δjI = −δnI/τR, (18c)

2∂tδP + 3P̄∇·u = −2δP/τRE . (18d)

Notice that the linearized “thermal transport” equation
(18d) is completely equivalent (within linear response) to
the continuity equation for the energy flow; see Refs. 1, 2,
15, 16, and 43. The energy relaxation term in Eq. (18d)
was derived in Ref. [55].

At this point one has to choose the set of independent
variables. Based on the form of the linearized equations
(18), one can choose δn, δnI , and δP . Together with
the two components of u one has five variables for five
differential equations (18). This set was used in Ref. 43
to discuss collective modes in the electronic fluid.

An alternative choice based on the form of dissipative
corrections (16d) may include δζ, µI , and δT . These vari-
ables were chosen in Ref. 53 for the discussion of the role
of the imbalance mode in thermoelectric effects. Indeed,
using the thermodynamic relation [2, 16, 18, 53]

dP = ndµ+ nIdµI + sdT, (19)

in the linearized Navier-Stokes equation (18a), one finds

3P̄

v2
g

(
∂t+τ

−1
dis

)
u=η∆u−en̄∇ζ−n̄I∇µI−

3P̄−n̄µ̄
T̄

∇δT,

(20)
where we combine the electric and chemical potential into
the electrochemical potential (16e). Given that the den-
sities and pressure are given by known functions of the
chemical potentials and temperature, see Eqs. (15a), it’s
a matter of simple algebra to express the rest of Eqs. (18)
in terms of δζ, µI , and δT .

While the choice of the thermodynamic variables is
a matter of taste, there is an important distinction be-
tween static and dynamic response [2]. Static linear re-
sponse equations contain only the electrochemical poten-
tial ζ. However, the dynamic part of Eq. (18d) contains
the chemical potential only. Consequently, one has to
be careful considering response functions that depend on
time and spatial coordinates at the same time. In this
case, an additional equation (17) describing Vlasov self-
consistency has to be taken into account [15].
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FIG. 6. Real part of the sound dispersion in moderately doped, gated graphene in the presence of both weak disorder and
viscosity. Left pane: results for n = 1012 cm−2. Right panel: same for n = 1011 cm−2. The right panel also shows the zero
mode Eq. (38).

III. COLLECTIVE MODES AT B = 0

Collective modes in the electronic fluid were considered
within the same approach in Ref. 15, see also Refs. 2,
44, and 62. These are the eigenmodes of the linearized
equations (18). The most convenient choice of variables
for this task is the density-pressure variables, δn, δnI ,
and δP , and the velocity u. The dissipative corrections
to the currents are given by Eq. (16f) and the electric
field in Eq. (18a) is the total electric field.

Now, it is convenient to solve linear differential equa-
tions with the help of the Fourier transform. Using the
standard convention

u(t, r) =

∫
dωdq

(2π)3
e−iωt+iqru(ω, q),

we rewrite Eqs. (18) in the dimensionless form

(
ω̃+i

1+q̃2 ˜̀2
G

τ̃dis

)
ñEv −

1

3
q̃δñE − q̃Ṽq

eñ

6
δñ =

i

6
eñE0,

(21a)

ω̃δñ− ñq̃ ·v − 2π

N
q̃ ·δj̃ = 0, (21b)

(
ω̃+

i

τ̃R

)
δñI − ñI q̃ ·v −

2π

N
q̃ ·δj̃I = 0, (21c)

(
ω̃+

i

τ̃RE

)
δñE −

3

2
ñE q̃ ·v = 0, (21d)

where

q̃ = vgq/(2T̄ ), ω̃ = ω/(2T̄ ), v = u/vg, (22a)

τ̃j = 2T̄ τj (j = dis, R, RE), E0 = vgE0T̄
−2, (22b)

the dimensionless Gurzhi length is defined so that

q̃ ˜̀
G = q`G, (22c)

and the self-consistent Vlasov potential is given by

Ṽq =
eNT̄

πv2
g

Vs, Vs(q) =

{
e/C, gated,

2πe/q, Coulomb,
(22d)

Finally, the dimensionless form of the dissipative corrections to the macroscopic currents is given by(
δj̃

δj̃I

)
= Σ̂

(
eE0−iq̃Ṽqδñ

0

)
− iq̃ Σ̂′

ln 2 cosh x
2

(
δñ− 2ñ

3ñE
δñE

δñI− 2ñI

3ñE
δñE

)
. (23)

The collective modes can now be found by analyzing the system of Eqs. (21). For convenience, it can be written in
the matrix form

ω̃+ i2πq̃2

N

[
Σ11Ṽq+

Σ′
11

ln 2 cosh x
2

]
i2πq̃2Σ′

12

N ln 2 cosh x
2

− i4πq̃
2

3N
Σ′

11ñ+Σ′
12ñI

ñE ln 2 cosh x
2

−ñq̃
i2πq̃2

N

[
Σ21Ṽq+

Σ′
21

ln 2 cosh x
2

]
ω̃+ i

τ̃R
+

i2πq̃2Σ′
22

N ln 2 cosh x
2
− i4πq̃

2

3N
Σ′

21ñ+Σ′
22ñI

ñE ln 2 cosh x
2

−ñI q̃
0 0 ω̃+ i

τ̃RE
− 3

2 ñE q̃

−q̃Ṽq ñ6 0 − q̃
3

[̃
ω+i

1+q̃2 ˜̀2
G

τ̃dis

]
ñE


 δñ
δñI
δñE
v

=


2πe
N Σ11q̃E0

2πe
N Σ21q̃E0

0
i
6eñE0

.
(24)
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Dispersion relations of the collective modes are given by the zeros of the determinant of the matrix in the left-hand
side of (24)[

ω̃ + i
1 + q̃2 ˜̀2

G

τ̃dis

]
(25)

×

{[
ω̃+

i

τ̃R
+

i2πq̃2Σ′22

N ln 2 cosh x
2

][
ω̃+

i2πq̃2

N

(
Σ11Ṽq̃+

Σ′11

ln 2 cosh x
2

)][(
ω̃+

i

τ̃RE

)(
ω̃+i

1+q̃2 ˜̀2
G

τ̃dis

)
− q̃

2

2

]

− 2πq̃2Σ′12

N ln 2 cosh x
2

[
q̃2Ṽq̃ñ

6ñE

(
ñ

2πq̃2Σ′21

N ln 2 cosh x
2

+
ñI
τ̃RE
− ñI
τ̃R

)

− 2πq̃2

N

(
Σ21Ṽq̃+

Σ′21

ln 2 cosh x
2

)[(
ω̃+

i

τ̃RE

)(
ω̃+i

1+q̃2 ˜̀2
G

τ̃dis

)
− q̃

2

2

]]

− q̃
2Ṽqñ

2

6ñE

(
ω̃+

i

τ̃RE
+

i2πq̃2Σ′11

N ln 2 cosh x
2

)(
ω̃+

i

τ̃R
+

i2πq̃2Σ′22

N ln 2 cosh x
2

)}
= 0.

The first line in Eq. (25) is the factor determining the
dispersion of the transverse fluctuations of the velocity
field. Under our assumptions this mode is completely
decoupled from the rest of the system and remains dif-
fusive for all values of the carrier density. This might
change if one considers long-range disorder [63], where it
was argued to induce vortical flow near charge neutrality.

The rest of the equation is best solved numerically. In
Fig. 6 we present the results of a numerical calculation
of the real part of the dispersion for the two values of
the carrier density, n = 1012 cm−2 and n = 1011 cm−2.
Equation (25) was solved using the typical values of the
effective coupling constant [12, 64] αg = 0.23, disorder

scattering time [12] τ−1
dis = 1 THz, kinematic viscosity

[3, 46] ν = 0.2 m2/s, and temperature T = 300 K. The
result is qualitatively similar to that shown in Fig. 1,
therefore we postpone the discussion until after we have
considered the two limiting cases where the dispersion
can be obtained analytically, see Eq. (2).

1. Collective modes in neutral graphene

At charge neutrality, the linearized equations (21) can
be simplified using the fact that the “conductivity ma-

trices” Σ̂ and Σ̂′ are block-diagonal (here we take into
account weak disorder)

Σ̂=
1

e2

(
σ0 0
0 σIδI

)
, Σ̂′=

1

e2

(
σ0 0
0 σI

)
. (26)

As a result, the dissipative corrections (23) simplify

δj̃ =
1

e
σ0E −

iq̃σ0

e2 ln 2
δñ, (27a)

δj̃I = − iq̃σI
e2 ln 2

(
δñI−

2π2

27ζ(3)
δñE

)
. (27b)

Using the explicit form of the equilibrium quantities [16],
we rewrite Eqs. (21) in the form

q̃δñE −
9ζ(3)

2

(
ω̃+i

1 + q̃2 ˜̀2
G

τ̃dis

)
v = 0, (28a)

(
ω̃ + i

2πq̃2σ0

e2N ln 2

)
δñ =

2πσ0

eN
q̃ ·E, (28b)

(
ω̃+

i

τ̃R
+
i2πq̃2σI
e2N ln 2

)
δñI−

π2

6
q̃ ·v− i4π3q̃2σIδñE

27ζ(3)Ne2 ln 2
=0,

(28c)

2

(
ω̃+

i

τ̃RE

)
δñE −

9ζ(3)

2
q̃ ·v = 0. (28d)

Combining Eqs. (28a) and (28d) to exclude the velocity,
one finds

q̃2δñE = 2

(
ω̃+i

1 + q̃2 ˜̀2
G

τ̃dis

)(
ω̃+

i

τ̃RE

)
δñE ,

yielding the spectrum (2) [in dimensionless units; in
Eq. (2) we have neglected weak energy relaxation]

ω̃ =

√√√√ q̃2

2
− 1

4

[
1+q̃2 ˜̀2

G

τ̃dis
− 1

τ̃RE

]2

− i1+q̃2 ˜̀2
G

2τ̃dis
− i

2τ̃RE
.

(29)
In the absence of dissipation this is the so-called “cosmic
sound” wave [2, 15, 20] with the linear dispersion (1).

Same conclusions can be reached using the general
form Eq. (25). At charge neutrality, Eq. (25) factorizes[(
ω̃+i

1 + q̃2 ˜̀2
G

τ̃dis

)(
ω̃+

i

τ̃RE

)
− q̃

2

2

][
ω̃ + i

1 + q̃2 ˜̀2
G

τ̃dis

]
(30)

×
[
ω̃ +

i

τ̃R
+

2πiq̃2σI
Ne2 ln 2

][
ω̃+

2πiq̃2σ0

Ne2

(
Ṽq̃+

1

ln 2

)]
= 0.
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Here the first factor yields the spectrum (29), the last
factor describes the transverse fluctuations of the velocity
field, while the remaining two correspond to the charge
and imbalance modes.

The sound mode (29) is the energy wave not involving
charge density fluctuations [since neither Eq. (28a) nor
Eq. (28d) contains δñ]. Consequently, the sound spec-
trum is not affected by the Vlasov self-consistency (17).

Other modes are diffusive. Since Eqs. (28a) and (28d)
are independent of the density fluctuations δñ and δñI ,
the diffusive modes can be read off Eqs. (28b) and (28c).

The electric charge density fluctuations are decoupled
from the rest of the variables. Restoring the dimension-
full units and using the explicit form (5) of the conduc-
tivity at charge neutrality [1, 2, 16, 19, 43, 44, 52, 62, 65]
we can write the corresponding dispersion as

ω = −iD0q
2

[
1+eVs(q)

∂n

∂µ

]
, D0 =

1

2

v2
gτ11τdis

τ11+τdis
. (31)

In a gated structure the mode is diffusive with the diffu-
sive coefficient containing a correction due to the Vlasov
self-consistency. In the case of the long-range Coulomb
interaction the dispersion is still purely imaginary, with
ω ∼ iq at small q.

Similarly, the imbalance mode is characterized by the
diffusive spectrum

ω = −iDIq
2 − i

τR
, DI =

1

2

v2
gτ22τdisδI

τ22δI+τdis
, (32)

which is gapped by the recombination processes.
The hydrodynamic theory outlined in Section I is jus-

tified by the gradient expansion and hence for momenta
smaller than a certain scale defined by the electron-
electron interaction

q`hydro � 1, `hydro ∼
vg
α2
gT̄

.

Assuming an ultra-clean sample with τdis → ∞ (where
energy relaxation due to supercollisions [55] may be ne-
glected, τRE � τdis), the expression under the square
root in Eq. (29) yields

v2
gq

2

2
−
(
1+q2`2G

)2
4τ2

dis

→
v2
gq

2

2

[
1−Aq2`2hydro−O(τ−1

dis )
]
,

where A is a numerical coefficient. As a result, within
the region of applicability of the hydrodynamic theory
the viscous term should be neglected. The resulting dis-
persion acquires a simple form [15]

ω =

√
v2
gq

2

2
− 1

4τ2
dis

− i

2τdis
, (33)

illustrated in Fig. 7. Now, keeping the viscous term to
the leading order, but neglecting disorder scattering [23]
yields an expansion

ω =
vgq√

2

(
1− ν2q2

4v2
g

)
− iνq2

2
. (34)

Similar expression was obtained in Ref. 23 based on the
phenomenological collision integral (which did not take
into account graphene-specific collinear scattering singu-
larity). However, the viscosity-induced correction to the
real part was positive indicating a tendency towards an
indefinite growth of the dispersion instead of the decrease
towards zero implied in Eqs. (1) and (29) and illustrated
in Figs. 1 and 6. The sign of the correction in Eq. (34)
is, in fact, dictated by the dissipative nature of viscos-
ity, which represents an additional decay mechanism and
hence affects the dispersion similarly to weak disorder;
see Eq. (33). Indeed, both terms, τ−1

dis and νq2, enter
the dispersion equation [following from the first term in
Eq. (30)] on equal footing.

As shown in Refs. 15, 43, 45, and 66 the linearized
theory (18) has a wider applicability range due to the
kinematic peculiarity of the Dirac fermions in graphene
known as the “collinear scattering singularity” [1, 2, 15,
44]. In the weak coupling limit, the linear response theory
is valid at much shorter length scales

q`coll � 1, `coll ∼
vg

α2
gT̄ | lnαg|

� `hydro. (35)

At the same time, the viscous term is the result of the
gradient expansion that is justified at smaller momenta

q`hydro � 1,

which formally restricts us to small values of νq/vg, such
that the result (29) should be expressed in terms of the
expansion (34). Moreover, the imaginary part of the
sound dispersion becomes comparable to the real part
at q`hydro ∼ 1, such that the decline of the dispersion at
larger q shown in Figs. 1 and 6 is unlikely to be observ-
able anyway. Nevertheless in Figs. 1, 6, and 10 we show
the sound dispersion in the whole range of momenta to
illustrate the analytic structure of our results.

For realistic model parameters, the dispersion (29)
shown in Figs. 1 and 6 is overdamped practically over
the whole range of momenta. In the limit of large τdis

and small viscosity, the dispersion (29) approaches the
ideal sound dispersion (1) if

(vgτdis)
−1 � q � `−1

G .

However, taking into account the numerical prefactors
and realistic parameter values leads to Figs. 1 and 6,
where the dispersion strongly deviates from Eq. (1).

2. Collective modes in the degenerate regime

In the opposite limit of the degenerate regime, µ� T ,
the matrix in the left-hand side of Eq. (24) simplifies to

ω̃ 0 0 −ñq
0 ω̃+ i

τ̃R
0 −ñIq

0 0 ω̃+ i
τ̃RE

− 3
2 ñEq

−qṼq eñ6 0 −q
3

[
ω̃+i

1+q2 ˜̀2
G

τ̃dis

]
ñE

, (36)

such that Eq. (25) factorizes again
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FIG. 7. Real (left panel) and imaginary (right panel) parts of the sound dispersion in neutral graphene neglecting viscosity.
The dashed line represents the ideal “cosmic sound” dispersion (1).

FIG. 8. Sound dispersion in strongly doped graphene neglecting both weak disorder and viscosity. Left panel: the result for
the Coulomb screening, resembling the 2D plasmon for very low q. Right panel: same for a gated structure. The dashed line
represents the ideal “cosmic sound” dispersion (1).

{
ω̃

[(
ω̃+i

1 + q̃2 ˜̀2
G

τ̃dis

)(
ω̃+

i

τ̃RE

)
− q̃

2

2

]
− q̃2Ṽqeñ

2

6ñE

(
ω̃+

i

τ̃RE

)}[
ω̃ +

i

τ̃R

][
ω̃ + i

1 + q̃2 ˜̀2
G

τ̃dis

]
= 0. (37)

The transverse velocity fluctuations remain decoupled
with the same diffusive dispersion. The imbalance mode
is no longer diffusive: if created, any imbalance density
fluctuations decay exponentially in agreement with phys-
ical intuition.

The charge and energy densities are now coupled by
the self-consistent Vlasov field. The corresponding dis-
persion can be found by equating the expression in curly
brackets in Eq. (37) to zero. This leads to a cubic equa-
tion that can be solved exactly, but the analytic solu-
tion is cumbersome and not physically transparent. In-
stead, we focus on the limit τRE � τdis solving the equa-
tion perturbatively. Neglecting energy relaxation yields
two modes, one being a flat zero mode and another
the “sound mode” (29) renormalized by the Vlasov self-
consistency. To the leading order in energy relaxation,
the zero mode in a gated structure acquires the diffusive
dispersion

ω = − i

τRE

κv2
gq

2

(κ+2πC)v2
gq

2+4πCτ−1
REτ

−1
dis

, (38)

where the Thomas-Fermi screening length is given by

κ = NαgkF = Ne2µ/v2
g . (39)

In the case of the long-range Coulomb interaction, the
factor 2πC should be replaced with the momentum q.
Physically, Eq. (38) describes energy diffusion appearing
due to Vlasov self-consistency that couples charge and
energy fluctuations.

Similarly to the above limit of neutral graphene, these
results can be obtained from a direct analysis of the lin-
earized hydrodynamic equations (21). In the degenerate
regime (µ � T or x � 1), Eqs. (21) can be simplified
by noticing that only one band contributes. For electron
doping, n ≈ nI , while the dissipative corrections to the
currents vanish [16]

δj(T � µ) = δjI(T � µ) = 0.

As a result, one of Eqs. (21) is redundant.

Assuming a gated structure and substituting the ex-
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plicit form of equilibrium densities, we find[(
ω̃+

i

τ̃dis

)
x3

2
+iq̃2η̃

]
v − q̃δñE = ie

[
E0−

iq̃e

C̃
δñ

]
x2

4
,

(40a)

ω̃δñ− (x2/2)q̃ ·v = 0, (40b)

2

(
ω̃+

i

τ̃RE

)
δñE − (x3/2)q̃ ·v = 0. (40c)

Combining Eqs. (40a) and (40c) one finds the cosmic
sound mode [2, 15, 20] damped by disorder and viscosity
(back to dimensionful units and for τRE � τdis)

ω=

√
v2
gq

2

2

[
1+

κ
2πC

]
−

(1+`2Gq
2)

2

4τ2
dis

−
i
(
1+`2Gq

2
)2

2τdis
. (41)

This is clearly the same mode as Eq. (29), albeit with
the velocity renormalized by the capacitive screening.

Long-range Coulomb interaction modifies the screen-
ing contribution to the sound mode (41)

ω=

√
v2
gq

2

2

[
1+

κ
q

]
−

(1+`2Gq
2)

2

4τ2
dis

−
i
(
1+`2Gq

2
)2

2τdis
. (42)

Taking the naive limit q → 0 (and x → ∞) in Eq. (42),
one arrives at the spectrum similar to the usual two-
dimensional plasmon [15, 67]

ω(q � κ) = − i

2τdis
+

√
1

2
v2
gqκ −

1

4τ2
dis

. (43)

The dispersion (43) is meaningful if the following condi-
tions are met

q`G � 1, q � κ, v2
gκqτ2

dis � 1.

At the same time, for the hydrodynamic approach to be
valid at all, the gradients are supposed to be small on the
scale that is defined by the electron-electron interaction

q`hydro � 1, `hydro ∼
vg
α2
gT̄

.

These conditions to be consistent if (using the explicit
form of physical quantities in the degenerate regime)

vgκτdis � 1 ⇒ Nαgµτdis � 1,

`G � v2
gκτ2

dis ⇒ N2α4
gµτdis(T̄ τdis)

2 � 1,

providing a possibility to observe the dispersion (43) in
a parametrically defined range of wavevectors.

The eigenvectors of the “flat zero mode” and the sound
mode mix the charge, energy density, and velocity fluc-
tuations. In that sense, the mode (43) is not a true plas-
mon, even though its dispersion is identical with that

of the usual plasmon in two dimensions. Moreover, the
dispersion (43) resembles the plasmon dispersion only in
an intermediate interval of rather small q, while the true
plasmon exists at large values of q.

The above dispersion can be illustrated numerically as
follows. Using the same typical values τ−1

dis = 1 THz,
ν = 0.2 m2/s (the kinematic viscosity varies only weakly
with the carrier density [46]), and T = 300 K, as well
as the typical value of the coupling constant [12, 64]
αg = 0.23 and the parameters characterizing the exter-
nal gate in a typical graphene-on-boron nitride structure
[3], the dielectric constant of the hexagonal boron nitride
ε = 4.4 and the graphene to gate distance d = 80 nm, we
plot the two dispersions (41) and (42) in Figs. 8-10. In
Fig. 8, we show the two dispersions (41) and (42) in the
absence of both weak disorder and viscosity. The effect
of the screening can be summarized as follows. In a gated
structure screening leads to a slight (for the realistic pa-
rameter values chosen above) change of slope of the sound
mode dispersion. In contrast, Coulomb screening leads
to a plasmon-like square-root dispersion for the smallest
values of momentum, which soon turns into a linear dis-
persion with the same slope as the “cosmic sound” of the
ideal fluid, but slightly (again, for the realistic parameter
values) shifted upwards. Taking into account dissipative
processes washes out qualitative differences between dif-
ferent types of screening. The results are also qualita-
tively the same for strongly doped and neutral graphene.
In Fig. 9 we show the results for the dispersion in the
presence of weak disorder, but still neglecting viscosity.
Qualitatively, the results for both types of screening are
similar with the only difference being that the real part
of the dispersion in the case of the Coulomb screening
is shifted upwards relative to the ideal sound dispersion,
similarly to the left panel in Fig. 8, while in the case
of the gated structure the resulting straight line at large
enough q has a slightly larger slope than 1/

√
2.

Once viscosity is taken into account, the curves in
Fig. 10 strongly resemble the results in neutral graphene,
cf. Fig. 1. The results for gated graphene show only in-
significant numerical differences from the curves in Fig. 1,
while in the case of the Coulomb screening the real part
of the dispersion appears at a smaller value of q and ex-
ceeds the ideal spectrum (represented in all figures by the
dotted line) in a small intermediate range of q.

IV. HYDRODYNAMIC COLLECTIVE MODES
AND PLASMONS

The hydrodynamic approach is applicable in the long-
time and long-wavelength limit [1, 2, 45, 68], i.e., at mo-
menta that are small compared to the typical “equili-
bration” length scale `hydro. At higher momenta (and
frequencies), the system is not in equilibrium. In this
regime (sometimes referred to [27] as “collisionless”), the
electronic fluid exhibits well-known collective excitations,
the plasmons. In two dimensions and in the absence of
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FIG. 9. Real and imaginary parts of the sound dispersion in strongly doped graphene in the presence of weak disorder, but
neglecting viscosity. Top panels: the result for the Coulomb screening. Bottom panels: same for a gated structure. Dashed
lines represents the ideal “cosmic sound” dispersion (1).

FIG. 10. Real and imaginary parts and the quality factor Q = Reω/Imω of the sound dispersion in strongly doped graphene
in the presence of both weak disorder and viscosity. Top panels: the result for the Coulomb screening. Bottom panels: same
for a gated structure. Dashed lines represent the ideal “cosmic sound” dispersion (1).

impurity scattering (τdis → ∞) the plasmon dispersion
in the degenerate electron gas has the form [27]

ω =
√

2e2µq
(

1 + γ
q

κ

)
, (44)

where γ is a numerical coefficient (see below). The
“proper” way to derive Eq. (44) is to evaluate the
Lindhard function within the random phase approxi-
mation (RPA), which would lead [27] to the coefficient

γ = 3/4. An attempt to derive the plasmon dispersion
from a macroscopic (hydrodynamic-like) theory leads to
the same form (44), but with a different value for γ. This
discrepancy is well known and can be attributed to the
failure of the hydrodynamic description at high frequen-
cies and momenta [27]. As a result, one concludes that
the hydrodynamic collective modes have nothing to do
with plasmons simply because they belong to a differ-
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ent parameter regime. In this Section we extend these
arguments to Dirac fermions in graphene and establish
the relation between the above hydrodynamic modes and
plasmons.

A. Degenerate regime

The case of graphene is special because of the kine-
matic peculiarity known as the “collinear scattering sin-
gularity” [1, 2, 15, 16, 19, 43, 44, 62, 66] leading to the
existence of the two parametrically (in the weak coupling
limit) different length scales associated with electron-
electron interactions, `coll � `hydro. In an intermediate

momentum range, `−1
hydro � q � `−1

coll, the hydrodynamic
theory of Section I breaks down, while the linear response
theory of Ref. 43 is still valid. Remarkably, the macro-
scopic equations of the latter theory are identical with the
linearized hydrodynamic equations, so that the collective
modes in the two parameter regimes coincide.

In the degenerate regime and in the absence of mag-
netic field, the linear response theory [43] reduces to the
single macroscopic equation describing the dynamics of
the electric current J (here ρ is the charge density)

∂J

∂t
+
v2
g

2
∇ρ− ν∆J −

v2
g

2

∂n

∂µ
e2E = − J

τdis
, (45)

which is essentially the generalized Ohm’s law. To obtain
the plasmon dispersion, we introduce the Vlasov field [cf.
Eq. (17)] and use the continuity equation. In the case of
Coulomb interaction, the standard algebra [27] leads to
the following equation

ω
(
1 + q2`2G − iωτdis

)
= −iDq2 − i2πσq,

where D = v2
gτdis/2 and σ = v2

g(∂n/∂µ)τdis/2 are the dif-
fusion coefficient and the Drude conductivity. The result-
ing spectrum has the form

ω =

√
2e2µq

(
1+

q

κ

)
−

(1+q2`2G)2

4τ2
dis

− i(1+q2`2G)

2τdis
. (46)

The spectrum (46) is exactly the same as Eq. (42).
For a clean system (τdis →∞), the expansion for small
q → 0 yields the form (44) with the “wrong” coefficient,
γ = 1/2. At the same time, the leading term (neglect-
ing the correction for q � κ) agrees with the standard
Fermi liquid result even in the presence of disorder [67]
(neglecting viscosity).

The expression (46) is valid for momenta up to `−1
coll,

but in fact it becomes overdamped already at momenta
of order `−1

hydro. At larger momenta, q � `−1
coll, the quasi-

equilibrium description breaks down and the true plas-
mons emerge with the dispersion (44). By that time the
spectrum (46) becomes purely imaginary (see Fig. 10),
and hence the two modes are not connected. Similar
conclusions have been reached in Ref. 24, where it was
argued that Coulomb interaction precludes the appear-
ance of hydrodynamic sound in Fermi liquids.

B. Two-fluid hydrodynamics

Let us slightly digress and consider the curious case
of the two-fluid hydrodynamics [49, 50, 69] in compen-
sated semimetals. Following Ref. 49 we assume that the
full electronic systems comprises two weakly coupled flu-
ids, one consisting of electrons and another of holes. This
means that the length scales `ee and `hh describing intra-
band electron-electron scattering are much smaller than
the interband scattering length `eh. In that case, the
system is described by two equations similar to Eq. (45)
with an extra interband scattering term

∂jα
∂t

+
〈v2〉

2
∇nα − ν∆jα −

〈v2〉
2

∂nα
∂µ

eαE = (47)

= − jα
τdis
− jα − jα′

2τeh
,

where eh = −e > 0, ee = e < 0, jα denotes the quasi-
particle currents, and α′ denotes the other constituent.
For simplicity we assume the system to be electron-hole
symmetric (`ee = `hh).

Combining the two currents into the linear combina-
tions, j = je − jh and jI = je + jh, we find the decou-
pled (in the absence of the magnetic field) equations

∂j

∂t
− ν∆j − 〈v

2〉
2

∂nI
∂µ

eE = − j

τdis
− j

τeh
, (48a)

∂jI
∂t

+
〈v2〉

2
∇nI − ν∆jI = − jI

τdis
. (48b)

Combining these equations with the two continuity equa-
tions (6b) and (6c), we find a sound-like mode

ω =

√
〈v2〉q2

2
−
(

1+q2`2G
2τdis

− 1

2τR

)2
− i(1+q2`2G)

2τdis
− i

2τR
,

(49a)
and a plasmon-like mode

ω =

√
〈v2〉κq

2
−

(1+q2`2G∗)
2

4τ2
∗

− i(1+q2`2G∗)

2τ∗
, (49b)

where

κ = 2πe2 ∂nI
∂µ

, τ∗ =
τdisτeh
τdis+τeh

, `G∗ =
√
ντ∗.

In the hydrodynamic parameter range, both modes
(49) are well defined. The expression under the square
root in Eq. (49a) can be rewritten as

〈v2〉
2

[
q2

(
1− τee

τdis
+
τee
τR
− q

2`2ee
2

)
− 1

2

(
1

`dis
− 1

`R

)2
]
.

Here τee � τdis, τee � τR by the assumptions of the hy-
drodynamic regime and q`ee � 1 under the assumption



14

of the gradient expansion in the hydrodynamic theory
(here we consider a generic semimetal and hence do
not have the aforementioned scale separation specific to
graphene, hence we cannot extend the argument beyond
the validity region of the gradient expansion). There-
fore apart from the small gap due to the interplay be-
tween disorder scattering and recombination processes,
the sound mode is well defined within the hydrodynamic
range of momenta.

Similar arguments can be extended to the plasmon-
like mode (49b). Assuming a clean system, τeh � τdis,
τ∗ → τeh, one finds under the square root in Eq. (49b)

〈v2〉
2

[
qκ−q2 τee

τeh
− q

4`2ee
2
− 1

2`2eh

]
.

Typically, the Thomas-Fermi screening radius is smaller
then the electron-electron scattering length, κ`ee � 1.
Hence, the mode (49b) is also well defined. Here the
electron-hole scattering yields the (small) gap in the dis-
persion similarly to the disorder scattering in Eq. (46).

C. Graphene at charge neutrality

Utilizing the scale separation in graphene (see above),
we can approach the question of the collective modes
from the standpoint of the linear response theory of
Ref. 43. Here, instead of formulating the hydrodynamic
equations (6), we turn to the macroscopic equations de-
scribing the behavior of the three inequivalent currents
in the system, j, jI , and jE

∂j

∂t
+
v2
g

2
∇n− 2 ln 2

π
e2TE = − j

τdis
− j

τ11
, (50a)

∂jI
∂t

+
v2
g

2
∇nI−

γ1ν

T
∆jE = − jI

τdis
−
jI −

π2jE

27ζ(3)T

τ22δI
, (50b)

∂jE
∂t

+
v2
g

2
∇nE − ν∆jE = − jE

τdis
, (50c)

where γ1 is a numerical prefactor. At charge neutral-
ity, the viscous term vanishes from Eq. (50a) in con-
trast to the two-fluid model, see Eq. (49a). In graphene,
the electron and hole subsystems are strongly coupled
(`ee = `hh ∼ `eh) forming a single fluid, where the elec-
tric current is not affected by viscous effects because of
electron-hole symmetry. Viscosity still affects neutral
quasiparticle and energy flows in agreement with the hy-
drodynamic approach, where the hydrodynamic velocity
in neutral graphene describes the flow of energy.

Similarly to the hydrodynamic regime (Section III 1),
the energy and charge decouple completely. Combining
Eq. (50c) with the continuity equation for the energy
density (18d) – that is equivalent to the linearized heat
transport equation (6d) – we recover the sound mode (2).

On the other hand, combining Eq. (50a) with the con-
tinuity equation (6b) we find

ω2 + iω

(
1

τdis
+

1

τ11

)
=
v2
g

2
q2 + (4 ln 2)e2Tq, (51)

leading to the plasmon-like spectrum. For large enough
frequencies, ω � τ−1

11 � τ−1
dis , and small momenta, q → 0,

the resulting dispersion coincides with the leading behav-
ior of the true plasmon dispersion established in Ref. 19

ω =
√

(4 ln 2)e2Tq ⇒ ω̃ =
√

2(ln 2)αg q̃, (52)

where the last equality is expressed in terms of the di-
mensionless variables (22a), also used in Ref. 19. Note,
that at large momenta, where the first term in the left-
hand side of Eq. (51) dominates, the resulting dispersion
resembles the cosmic sound (1), contradicting the result
of Ref. 19, where the dispersion in the large-q limit also
becomes linear, but without the extra

√
2.

Considering the limit τ∗ → ∞ in Eq. (49b), we ar-
rive at the same result [in graphene at the charge neu-
trality point, v2

gκ/2 = (4 ln 2)e2T , while viscosity does
not affect charge transport]. In the absence of disorder,
the two-fluid model considered in Section IV B describes
the electron and hole subsystems as being weakly cou-
pled (similarly to the effect of Coulomb drag [70], but
without spatial separation). Charge density fluctuations
are correspond to the out-of-phase motion of electrons
and holes. In the absence of the electron-hole scatter-
ing (τ∗ → ∞), charge transport is effectively decoupled
from the in-phase (imbalance) mode and hence Eq. (48a)
becomes equivalent to Eq. (50a) yielding the same plas-
monic mode.

Rewriting Eq. (51) in the form

iω

[
−iω +

1

τdis
+

1

τ11

]
=
v2
g

2
q2 + (4 ln 2)e2Tq,

we express the plasmon dispersion in the form closely
resembling Eq. (31)

ω = −i σ(ω)q2

e2∂n/∂µ

[
1 + eVs(q)

∂n

∂µ

]
,

where instead of the static conductivity (5) we find the
optical conductivity [45]

σ(ω) =
2e2T ln 2

π

1

−iω + τ−1
11 + τ−1

dis

.

In the hydrodynamic regime σ(ω → 0)→ σ0 and we re-
cover the diffusive mode (31).

Resolving Eq. (51) we find the full plasmon dispersion

ω = −i τdis+τ11

2τdisτ11
+

√
v2
g

2
q2+(4 ln 2)e2Tq− (τdis+τ11)2

4τ2
disτ

2
11

.

(53)
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FIG. 11. Comparison between the plasmon mode (54) and the sound mode (55) within the linear response theory. Solid curves
show the real part of the dispersion, dashed curves the absolute value of the imaginary part. The dotted line shows the ideal
“cosmic sound” dispersion (1). The plasmon dispersion is shown in blue, the sound in red. The distinction between the two
modes is clearly defined by their frequencies that are much higher for the plasmon mode. Left panel shows the dispersion for
a clean sample; right panel the same for the typical value τ−1

dis = 1 THz. The coupling constant is taken at a model value
αg = 0.1, hence, no renormalization of the velocity vg is taken into account strongly underestimating viscosity. The real part
of the sound dispersion vanishes at q̃ ≈ 0.54, which is similar to the applicability limit of the linear response theory, `−1

coll. The
imaginary part exceeds the real part at a lower value of q̃, such that the mode becomes overdamped and disappears still within
the applicability region of the theory. In the presence of disorder (right panel) the sound model is completely overdamped, see
Fig. 1 for more realistic values.

To analyze the two modes – the plasmon and sound – to-
gether, we rewrite the above dispersion in dimensionless
units (22a). The plasmon dispersion takes the form

ω̃p=

√
2(ln 2)αg q̃

[
1+

q̃

4(ln 2)αg

]
−
[

1

2τ̃dis
+
α2
g ln 2

2πA

]2

− i
2

(
1

τ̃dis
+
α2
g ln 2

πA

)
, (54)

where the constant A ≈ 0.12 determines the quantum
conductivity at charge neutrality [1, 2, 16, 52]

σQ = Ae2/α2
g.

At the same time, the sound dispersion (1) is given by

ω̃s=

√
q̃2

2
−
[

1

2τ̃dis
+

πBq̃2

9ζ(3)α2
g

]2

− i

2

(
1

τ̃dis
+

2πBq̃2

9ζ(3)α2
g

)
,

(55)
where the constant B ≈ 0.45 determines the shear viscos-
ity in neutral graphene [1, 2, 16, 17]

η(µ=0) = BT 2/(α2
gv

2
g).

In pure graphene (τ̃dis →∞) in the weak coupling limit
(αg → 0), the regions where the two dispersions are real
overlap: the plasmon dispersion (54) is real for q̃ � α3

g,

while the sound dispersion (55) is real for q̃ � α2
g. Weak

disorder does not yield any qualitative changes.
The linear response theory, Eqs. (50), is applicable at

length scales larger than `coll, the graphene-specific scale
[see Eq. (35)], reflecting the collinear scattering singular-
ity. In dimensionless units, `−1

coll ∼ α2
g| lnαg|, which in the

weak coupling limit greatly exceeds `−1
hydro ∼ α2

g, which
determines the applicability of the hydrodynamic theory
of Section I. In the limit τ̃dis →∞, the real part of the
sound dispersion (55) vanishes when

q̃ = q̃0 =
9ζ(3)√

2πB
α2
g ≈ 5.41α2

g.

Here the large numerical coefficient may mask the dif-
ference between the two length scales `hydro and `coll for
all but the lowest values of αg. We illustrate the result-
ing dispersions in Fig. 11, where we use a model value
αg = 0.1 to keep the two length scales well separated.
Even though q̃0 is of the same order of magnitude as `coll,
the imaginary part of the dispersion becomes compara-
ble to the real part at a significantly lower value of q̃. At
that point the mode becomes overdamped and essentially
disappears. Adding realistic disorder renders the mode
completely overdamped, see the right panel in Fig. 11.

V. SUMMARY

In this paper we described electronic collective modes
in graphene based on the hydrodynamic approach and
compared the results with the more general linear re-
sponse theory. Our results generalize the discussion of
these issues reported in Ref. 15 within the small momen-
tum expansion. Given the universality of hydrodynam-
ics, the results for the collective modes in the hydrody-
namic regime are applicable to other semimetals (where
the momentum density represented by u is effectively de-
coupled from the charge transport unless the system is
doped far away from charge neutrality), while the three-
mode approximation used to derive the linear response
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theory discussed in Section IV is specific to graphene.
Our main results are illustrated in Figs. 1 and 11. The

former shows the dispersion of the sound mode in the hy-
drodynamic regime with the viscous damping and weak
disorder taken into account. Using the typical exper-
imental values of the viscosity and disorder scattering
time, we find that the sound mode in real graphene is
strongly damped, making it difficult to observe the ideal
“cosmic sound” dispersion (1) experimentally.

In Fig. 11 we illustrate the sound and plasmon modes
in neutral graphene obtained within the linear response
theory of Ref. 43 (extended beyond the stationary and
uniform fields). Both modes are evaluated with the
“bare” parameter values (ignoring, e.g., the renormal-
ization of quasiparticle spectrum in graphene [46, 71])
for clarity. Effectively, this approach strongly underesti-
mates the kinematic viscosity and hence the sound mode
in Fig. 11 is much more pronounced than in Fig. 1.

The plasmon mode (54) is characterized by higher fre-
quencies that the sound mode (55) and hence is not ac-
cessible within the standard hydrodynamic approach of
Section I. The connection between the two calculations
can be made by allowing for the frequency-dependent
(optical) conductivity in Eqs. (25) and (31). Reducing
the dissipative coefficients in the hydrodynamic theory
to frequency-independent constants (following the stan-
dard approach of Ref. 18) leads to the diffusive behavior
of the collective charge fluctuations, see Eq. (31). Sim-
ilarly, all other hydrodynamic collective modes (except
for the sound mode) are characterized by purely imagi-

nary spectra. This should be contrasted with the linear
response theory, Eqs. (50), that allows for the frequency-
dependent conductivities leading to the real plasmon dis-
persion (54), as well as a third (neutral) collective mode
following from Eqs. (50b) and (6c). The fact that these
additional (to the sound) modes can be reached within
the linear response theory and connected to the hydro-
dynamic description should be attributed to the scale
separation in graphene (due to the kinematic peculiarity
of Dirac fermions [1, 2, 16, 44, 62]), see Eq. (35). All
other qualitative conclusions of the paper are valid in a
wider class of semimetals. The obtained collective modes
can be observed using the by now standard plasmonics
experiments, see Refs. 30–38.
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Spread and erase – How electron hydrodynamics can eliminate the Landauer-Sharvin
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It has long been realized that even a perfectly clean electronic system harbors a Landauer-Sharvin
resistance, inversely proportional to the number of its conduction channels. This resistance is usually
associated with voltage drops on the system’s contacts to an external circuit. Recent theories have
shown that hydrodynamic effects can reduce this resistance, raising the question of the lower bound
of resistance of hydrodynamic electrons. Here we show that by a proper choice of device geometry,
it is possible to spread the Landauer-Sharvin resistance throughout the bulk of the system, allowing
its complete elimination by electron hydrodynamics. We trace the effect to the dynamics of electrons
flowing in channels that terminate within the sample. For ballistic systems this termination leads
to back-reflection of the electrons and creates resistance. Hydrodynamically, the scattering of these
electrons off other electrons allows them to transfer to transmitted channels and avoid the resistance.
Counter-intuitively, we find that in contrast to the ohmic regime, for hydrodynamic electrons the
resistance of a device with a given width can decrease with its length, suggesting that a long enough
device may have an arbitrarily small total resistance.

Introduction The electronic resistivity to the flow of
current is a fundamental quantity in condensed matter
physics. Frequently, its minimization is desired. The
Drude model, dating back to 1900, suggests that the re-
sistivity originates mostly from momentum loss to impu-
rities. However, it was realized that even in the ballistic
limit, in which impurities and phonons are absent, the
interface between the electronic system and the metallic
contacts to which it is coupled carries another funda-
mental source of resistance - the Landauer-Sharvin (LS)
resistance[1–4]. This resistance is inversely proportional
to the number of quantum mechanical channels that are
transmitted through the system.

More recently, another regime of transport was discov-
ered, in which electrons behave like a viscous fluid due
to strong momentum-conserving electron-electron scat-
tering. [5–50]. Somewhat counter-intuitively, it was
shown that the resistance in this hydrodynamical regime
may be lower than the ballistic one, suggesting the term
“super-ballistic”[29, 30, 51–53]. Furthermore, conditions
in which field-free current flow may locally exist were
suggested[42].

In this work, using a combination of Landauer and
Boltzmann analyses we demonstrate a mechanism by
which electron hydrodynamics can eliminate the LS re-
sistance, and find the minimal value that this resistance
may attain. Our study is semi-classical and focuses on
two dimensional systems. We describe an electronic sys-
tem in terms of its conduction channels, and show that
when the number of channels varies along the direction
of the current flow, the Landauer-Sharvin resistance de-
taches from the contacts and spreads over the bulk of the
electronic system. When the length scale of this spread-
ing is larger than the electron-electron scattering mean
free path, `ee, the resistance is dramatically suppressed.

FIG. 1. The wormhole geometry is a two dimensional
azimuthally-symmetric electronic system embedded in three
dimensional space, described by the equation r = r(z), where
the radius is maximal (rmax) at the interface to the contacts
and minimal (rmin) at the center. A current I is driven from
negative to positive z, and the potentials at the two contacts
are V (∓L/2) = ±V0

2
.

Microscopically, this suppression results from the scat-
tering of electrons whose channels are being terminated
due to a narrowing of the system’s cross-section or a de-
crease of its carrier density. In a ballistic system, these
electrons are reflected back and do not contribute to the
current, thereby generating LS resistance in the sample’s
bulk. In contrast, in the hydrodynamic regime electron-
electron scattering transfers these electrons into trans-
mitted channels, thus avoiding their reflection and the
corresponding resistance.

Equipped with this analysis, we can ask the question of
the minimal resistance of hydrodynamic electrons flow-
ing through a constriction. In the ballistic case, for a
sample of length L and a minimal cross section 2πrmin,
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the LS resistance is given by h
2e2kF rmin

(kF is the Fermi
momentum, and we consider a single spin species). In
the hydrodynamic case, previous works[29, 30, 42] re-
ported a reduction of the LS resistance by a factor of
`ee/rmin due to electron hydrodynamics. We find a fur-
ther reduction of the resistance by an additional factor
of rmin/L if the constriction’s width varies over a scale
L � rmin. In contrast to the familiar ohmic regime,
in which resistance increases with L, the resistance in
the hydrodynamic regime decreases with L. This implies
that a system with a given rmin and a large enough L
may have an arbitrarily small total resistance.

Wormhole geometry In order to study the resistance of
hydrodynamic electrons in a generic expanding geometry
while avoiding boundary effects, we use a “wormhole” ge-
ometry (Fig. (1)). This geometry is a two-dimensional
surface of revolution embedded in three dimensions, with
azimuthal symmetry (toward the end of the paper we
consider also a Corbino disk and a bar with varying elec-
tronic density). In cylindrical coordinates the wormhole
is defined by r = r(z), with its minimum radius, rmin,
occurring at z = 0, and maximum radius, rmax, oc-
curring at the contacts positioned at z = ±L/2. For
simplicity we assume r(z) = r(−z). A current I driven
through the wormhole in the z-direction leads to a po-
tential V (z = ∓L/2) = ±V0

2 at its contacts. On the
manifold, we define a local Cartesian system of coordi-
nates tangent to the manifold, in which ŷ is the unit vec-
tor in the azimuthal direction, and x̂ = 1√

1+r′2
(r′, 0, 1) is

the unit vector in the direction along the manifold. For
brevity, we set ~ = e = 1.

Boltzmann description Time-independent transport in
a wormhole geometry may be described by a Boltzmann
equation. In the absence of a driving force, the mag-
nitude of the electron’s momentum is constant, but its
direction varies. Consequently, the equation reads:

cos θ∂zf −
r′

r
sin θ∂θf =

√
1 + r′2I[f ] (1)

where f(r,p) is the deviation of the number of electrons
in a position r with momentum p from its equilibrium
value, θ is the angle of the momentum with respect to
the locally defined x-direction, r′ ≡ dr/dz, and I[f ] is the
scattering integral, elaborated below. As explained in the
Appendix, this equation is derived in two steps. First, we
solve for the trajectories of free particles constrained to
the manifold. Second, we equate the variation of f along
these trajectories with the scattering integral I[f ].

It is common to substitute the ansatz

f(p, r) = δ(εF − ε(p))h(p, r) (2)

in (1), and integrate both sides over the magnitude of
the momentum

∫
pdp
4π2 , with p = |p|. This integration

fixes |p| = pF such that h becomes a function of r and θ,
which describes the non-equilibrium angular shape of the

Fermi surface. The integration replaces the δ-function in
(2) by a density of states at the Fermi energy and angle
θ, ν(EF , θ) = νF /2π (here νF is the density of states
at the Fermi energy). The Boltzmann equation becomes
an equation for νFh(θ, r)/2π. The azimuthal symmetry
reduces the dependence on r to a dependence on z only.

Landauer description In the Landauer picture, the sys-
tem is composed of 2jmax + 1 channels, enumerated
by their angular momentum j = −jmax..0..jmax, with
jmax = kF rmax. The angular momentum j = py(z)r(z),
with py the momentum in the azimuthal direction. Each
channel is characterized by transmission and reflection
probabilities Tj , Rj satisfying Tj + Rj = 1. We assume
r(z) to vary slowly on the scale of the Fermi wavelength,
such that in the absence of interactions, channels with
|j| < kF rmin are fully transmitted, and all other chan-
nels are fully reflected. The reflection takes place at the
classical turning point r(z) = |j|/kF . The current flow-
ing through the wormhole is I = kF rmin

π V0, leading to a
dimensionless LS resistance Rballistic = π/kF rmin.

“Landauerizing” Boltzmann We reformulate the Boltz-
mann equation to elucidate its relation to the Landauer
picture. To that end, we express the shape of the Fermi
surface in terms of different variables - the channel an-
gular momentum j, the direction of motion, right (R) or
left (L), and the position, z. Semi-classically the angular
momentum is a real number, which is quantized to an in-
teger in Landauer’s quantum mechanical analysis. Here,
we think about it semi-classically.

Two steps are needed to transform the Boltzmann
equation from an equation for h(θ, z) to an equation for
the occupation in terms of j, z and direction of motion,
which we denote by hjR,L(z). First, we change the vari-

ables in Eq. (1). Second, the integral
∫
pdp
4π2 should be

replaced by an integral over the x-component of the mo-
mentum, namely pF

∫
dpx
2π , where the limits are given by

px = 0 and px = ±∞, for R,L respectively. The δ-
function in (2) is then replaced by a density of states at
the Fermi level at a fixed j = pyr(z),

νj =
νF√

1−
(

j
kF r(z)

)2 Θ (kF r(z)− |j|) (3)

This density of states is inversely proportional to the x–
component of the velocity, as familiar from Landauer’s
analysis. The details of the transformation are given in
the Appendix, but the outcome is quite expected from
the conservation of angular momentum:

± νF∂zhjR,L(z) =
√

1 + r′2Ĩ[hjR,L(z)] (4)

where the ± refers to right and left moving electrons,
and Ĩ is the scattering term expressed as a functional of
hjR,L(z), derived below.

The electronic density ρ(z), current density Jx(z) and
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potential V (z) are,

ρ(z) =

∫
dp

4π2
f(p, z) =

1

2πkF r(z)

∫
djνj(z)

[
hjR + hjL

]
Jx(z) =

∫
dp

4π2

px
m
f(p, z) =

1

4π2r(z)

∫
dj
[
hjR − h

j
L

]
V (z) = ρ(z)/νF (5)

where the limits of integration are over all angular mo-
menta for which νj 6= 0, i.e. from −jmax to jmax =
kF rmax.
Ballistic regime. In the absence of collisions (Ĩ = 0),

Eq. (4) implies that hjR,L is independent of z and is

such that hjR = hjL at the classical turning point, where
j = kF r(z). The solution states that there is no inter-
channel scattering along the wormhole, which is a conse-
quence of angular momentum conservation. As for intra-
channel back-scattering, two situations may exist: fully
transmitted channels are those with j < kF rmin. For
these channels, each of the two non-equilibrium occupa-
tions hjR,L(z) is determined by the contact from which it
emanates, and is independent of z. In contrast, if there
is a point z0 for which j = kF r(z0), at this point the
momentum has no x-component, hR = hL and the chan-
nel is fully reflected. Then, on one side of z0 where the
channel exists we have hR = hL, with the value being
determined by the contact from which the channel em-
anates and to which it is back-reflected. Both occupa-
tions vanish at the other side of z0, in which the channel
does not exist. Figure (2a,b) presents hjR ∓ hjL for a
particular example of a ballistic wormhole, showing the
non-equilibrium channel-dependent contributions to the
local potential and current density.

Each contact feeds into the wormhole all channels be-
low its potential, ±V0/2 for the left and right contacts
respectively, thus specifying the boundary conditions.
By Landauer’s formula, V0 = πI/kF rmin. With these
boundary conditions, we can solve for hjR,L(z) and use
the solution to calculate the potential as a function of z.
We find the potential to be,

Vballistic(z) = −sgn(z)
V0
π

∫ kF r(z)

kF rmin

dj√
(kF r(z))2 − j2

= −sgnz
V0
2

[
1− 2

π
arcsin

rmin
r(z)

]
(6)

Interestingly, although there are no collisions, we see
that there is a potential drop, and thus resistance, in
the bulk of the wormhole. Eq. (6) shows that the po-
tential close to the edges of the wormhole (z = ±L/2)
is smaller than that in the contacts by V0

π arcsin rmin
rmax

.
This difference is the LS contact resistance. In the limit
rmax � rmin this contact resistance becomes negligi-
ble, and practically all the LS resistance drops in the
bulk. From Eq. (6) we see that voltage drops in the
bulk when the upper limit of the integral varies with

FIG. 2. Non-equilibrium distribution functions hR − hL

and hR +hL for ballistic (a,b) and hydrodynamic (c,d) cases.
These distribution functions contribute to the current density
and voltage respectively (see Eq. (5)). They are plotted for
the wormhole defined in (11) with a/r0 = 6, as a function of
the spatial coordinate z, and the normalized channel index,
j/kF rmin. In panels (c,d) `ee/r0 = 0.3. Green color corre-
sponds to zero population, while white reflects states above
the Fermi energy.

z. Hence, the bulk LS resistance appears whenever the
number of conduction channels varies in the bulk. As we
show below, electron-electron scattering can dramatically
suppress the bulk potential drop, allowing the system to
conduct much better than the fundamental LS limit.
Electron-electron scattering and the hydrodynamic

regime. We now turn to consider the effect of momentum
conserving electron-electron interactions on the worm-
hole resistance. Within the relaxation time approxima-
tion, taking conservation laws into account [11, 54], we
have

I[f(p, r)] = − 1

`ee

[
f − δ(εF − ε(p))

νF
(ρ(r) +

2Jx(r) cos θ

vF
)

]
(7)

The second and third terms on the right hand side guar-
antee charge and momentum conservation, respectively.
We obtain Ĩ[hj ] using the same ansatz we used before,

Ĩ[hjR,L(z)] =

− νj

`ee

hjR,L(z)− ρ(z)

νF
∓ 4πJx(z)

kF

√
1−

(
j

kF r(z)

)2

(8)

The νj/`ee factor makes the mean free path j-dependent

and shortens it from `ee to `ee

√
1−

(
j

kF r(z)

)2
. This
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may be understood by noting that for j/r(z) large, px
is small and a shorter distance is traversed in the z-
direction between two scattering events. In particu-
lar, the scattering length vanishes when the channel is
about to be terminated, opening a way for the elec-
trons to avoid back-scattering by being scattered to a
transmitted channel. Furthermore, in contrast to the
case of impurity scattering, in which in Eq. (8) `ee is
replaced by a momentum-relaxing mean free path and
the third term is absent, here the presence of the third
term allows for a Galilean boost of the Fermi surface
hjR,L(z) = ± 4πJx(z)

kF

√
1− (j/kF r(z))2 to be carried out

without developing a resistance.
We find the solution to a leading order in `ee (the cal-

culation is given in the Appendix),

hjR,L(z) = ± 2I

kF r(z)

√
1−

(
j

kF r(z)

)2

+
2I`ee sin ξ(z)

kF r2(z)
[1− 2(

j

kF r(z)
)2]

−
∫ z

0

I`ee
kF r2(z′)

cos ξ(z′)
dξ

dz′
(z′)dz′ (9)

where ξ(z) is the local angle between z-axis and the man-
ifold, i.e. r(z)′ = tan ξ(z). This solution is valid in the
bulk, away from the contacts. We comment on the role
of the contacts below, with details in the Appendix.

The first term in Eq. (9) is a rigidly shifted Fermi
surface. It is the solution expected for r′ = 0 far away
from the contacts, after all deformations of the Fermi
surface are suppressed by the scattering term. The sec-
ond and third terms are smaller than the first by a factor
of `ee/r(z), and originate from the breaking of Galilean
invariance. The second term makes the shifted Fermi sur-
face acquire an elongated shape, with more electrons in
the head-on direction (small j), and less in the j ≈ kF r(z)
channels. The third term is independent of j. It carries
an electronic density, and leads to a potential drop and
resistivity. Note that while the second term exists when
sin ξ 6= 0, the third term requires d sin ξ

dz 6= 0. Stated dif-
ferently, in contrast to ballistic electrons for which local
resistance appears when the number of conduction chan-
nels varies with z, i.e., when r′ 6= 0, for hydrodynamic
electrons resistance is generated only when this function
has a non-zero curvature, r′′ 6= 0.

The potential originating from the third term of Eq.
(9) may be written also as:

Vhydro(z) = I

∫ ξ(z)

0

`ee
4πkF r2(ξ)

cos ξdξ (10)

The resistance scale may be estimated from Eq. (10).
The r2 in the denominator suggests that the wormhole
resistance is characterized by a “super-ballistic” scale
[29, 30, 42, 50], 2π`ee

kF r2min
, smaller by 2`ee/rmin than the

ballistic LS resistance. However, Eq. (10) opens the way

-5 -2.5 0 2.5 5
z=a

-0.5

-0.25

0

0.25

0.5

V
=
I

[:
=
k

F
r m

in
]

a=r0 = 1 lee=r0 = 0:3

a=r0 = 10 lee=r0 = 0:3

ballistic
hydro
hydro

FIG. 3. The potential along the wormhole defined in (11),
divided by the current, V/I, in units of the LS resistance,
plotted for a ballistic flow (`ee =∞) and hydrodynamic flows
(`ee/rmin = 0.3) with varying values of a/r0 (see legend).

for a much smaller scale, `ee
4πkF r2min

sin ξ0, where ξ0 is the

angle at which r becomes much larger than rmin. If r
grows slowly, sin ξ0 may be much smaller than one, with
the resistance becoming much smaller than the super-
ballistic scale. Consequently, for a fixed rmax � rmin
the resistance generally decreases with increasing L, op-
posite to the familiar Ohmic dependence.

To illustrate the two hydrodynamic scales, consider an
example where

r(z) = r0 cosh z/a (11)

In this wormhole rmin = r0 and rmax � rmin for L �
a. Under the latter condition, the contribution to the
resistance decays fast with |z| � a, and we can take
L→∞. Then, using Eq. (10),

Rcosh =
`ee

2πkF

 1

r20 − a2
−
a2 arctanh

√
r20−a2
r0

r0(r20 − a2)3/2

 (12)

In the limit a → 0 the resistance tends to `ee
2πkF r20

, but

when a� r0 it decreases to become of order `ee
4kF r0a

. As
can be seen in Eq. (10), most of the resistance originates
from the product of the minimum radius rmin and the
change in angle ∆ξ over which the radius becomes sig-
nificantly larger than r0. When a � r0 the change in
angle is ∆ξ ∼ r0/a and hence the decrease in resistance.
Fig. (2c,d) show the calculated hL−hR and hL +hR for
hydrodynamic flow in the wormhole in Eq. (11). These
quantities contribute to the current density and poten-
tial, respectively (Eq. (5)). Fig. (3) shows potential
drop in this wormhole as a function of z, in the ballis-
tic case and in the hydrodynamic cases for two values of
a/r0. The hydrodynamic suppression of the resistance
with increasing a is evident. Note that when r(z) is con-
stant the resistance in the bulk vanishes, since the bulk is
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Galilean invariant. However, the LS voltage drop occurs
then sharply at the contacts, and is not suppressed by
electron-electron scattering. To suppress the resistance
by electron-electron scattering r(z) should vary slowly
from rmin to rmax � rmin.

Our analysis elucidates this suppression of the resis-
tance: a potential drop results from reflection of elec-
trons. In the ballistic regime the contact sends into the
sample electrons in channels for which j is too large to
be transmitted. Those electrons are reflected, leading to
a voltage drop (Eq. (6)). In contrast, in the hydrody-
namic regime electrons of high j are scattered to channels
of smaller j, and largely end up being transmitted, with-
out generating a potential drop. Note that our entire
analysis assumes `ee � a and `ee � r0, in contrast to
the sharp constriction case, studied, e.g., in 29, leading
to a rather different evolution of R with `ee.

Eqs. (10) and (11) show that the bulk resistance of
a Corbino disk vanishes, as a consequence of the lack
of variation of ξ. With the limitation of z to a proper
range, and with the limit a → 0, Eq. (11) may be used
to describe a Corbino disk. The resulting bulk resistance
vanishes in that limit. Indeed, in a Corbino disk the num-
ber of channels grows linearly with the radial coordinate,
its second derivative vanishes, and so does the hydrody-
namic resistance. Importantly, this vanishing bulk resis-
tance is in series with a contact resistance which in this
case is π/(2kF rmin), where rmin is the inner radius of
the disk.

The elimination of the LS resistance in a Corbino disk
was experimentally confirmed, as reported in a com-
panion article[55]. In that article, we generalized the
present calculations to include momentum relaxation due
to phonon and impurity scattering, and showed that it
leads to a simple additive contribution to the resistance.

Finally, although the wormhole is illuminating theoret-
ically, it is a rather exotic geometry for real-life transistor
devices. Those typically have a long rectangular bar ge-
ometry, in which the density varies along the x-axis and is
maximal near the contacts. In a bar geometry, previous
work (e.g. [27]) has focused on a viscous contribution
arising from the no-slip boundary condition. Here, we
neglect this contribution by assuming specular boundary
scattering, or a wide bar. By carrying out an analysis
similar to that of the wormhole (see Appendix), we find
the resistance

Rbar =

∫ ∞
−∞

dx
(k′F `ee)

′

2k2F r
. (13)

Here we account also for the possibility that `ee varies
with the variation of kF . Assuming that the change in kF
is much larger than its minimnal value, we can estimate
R ∼ `ee/kF ra, where a is the scale over which kF and
`ee become much larger than their minimal value.

In summary, we showed here that when the LS re-
sistance of an electronic system is spread into its bulk,

rather than being localized at the interface with the con-
tacts, it may be significantly reduced by electron-electron
scattering, in principle all the way down to zero.
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Supplemental material to “Spread and erase – How electron hydrodynamics can
eliminate the Landauer-Sharvin resistance”

In this supplemental material, we give (A) the derivation of the Boltzmann equation in the wormhole geometry, (B)
the solution of the Boltzmann equation in the hydrodynamic regime for a wormhole, (C) the solution of the Boltzmann
equation in the hydrodynamic regime for a bar with a density variation, and (D) a discussion of the contact resistance.

Appendix A: Derivation of Boltzmann equation for the wormhole

The wormhole is a surface of revolution defined, in a cylindrical system of coordinates, by r(z). In Cartesian
components it is defined (r(z) cos(φ), r(z) sin(φ), z). The kinetic energy of a particle (which is also the Lagrangian) is
given by

|vF |2 = (rφ̇)2 + ż2(1 + r′2) (A1)

and is conserved. Since the norm of the velocity is conserved, we only need to keep track of its angle θ, measured
with respect to an arbitrary axis. We define θ by :

rφ̇ = vF sin(θ)√
1 + r′2ż = vF cos(θ)

(A2)

The equations of motion are given by:

φ̈ = −2
r′

r
żφ̇

z̈ =
rr′

1 + r′2
φ̇2 − r′r′′

1 + r′2
ż2

(A3)

We start from the initial 2D problem with 2 coordinates and 2 velocities. Time independent distribution of electrons
will necessarily be rotational invariant, and hence independent of φ. Furthermore, in the absence of a driving force
the magnitudes of the momentum and the velocity are conserved, such that their dynamical variable is the he angle
θ, measured with respect to the x-axis. The Boltzmann equation is then an equation for two coordinates - the radial
coordinate r and the direction of the velocity θ. The equations of motion for r, θ:

ṙ = r′ż =
r′√

1 + r′2
vF cos(θ)

θ̇ = −r
′

r

1√
1 + r′2

vF sin(θ)

(A4)

We can now write the Boltzmann equation for f(r, θ) as:

df

dt
= ∂r(f)ṙ + ∂θ(f)θ̇ = vF I[f ] (A5)

with I[f ] the scattering integral given in the main text. This leads to

∂r(f)
r′√

1 + r′2
cos(θ)− ∂θ(f)

r′

r

1√
1 + r′2

sin(θ) = I[f ] (A6)

This can be rewritten as

∂r(f) cos(θ)− ∂θ(f)
1

r
sin(θ) =

√
1 + r′2

r′
I[f ] (A7)

The left hand side is independent of z, which means in the ballistic regime, all surfaces are equivalent once expressed
in terms of r. In the non-ballistic case, the only difference between surfaces is that the scattering rate acquires a
dependence on r′ through the factor

√
1 + r′2/r′. Multiplying Eq. (A7) by r′, and using r′∂r = ∂z we obtain Eq. (1).
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Appendix B: Wormhole and Corbino disk - solution of the Boltzmann equation in the hydrodynamic regime

The equation describing the non-equilibrium current distribution is obtained from Eq. (A7) by setting f(p, z) =
δ(εF − ε(p))hy(py) and integrating pF

∫
dpx
2π . We get,

±
[
νF∂zh

y
R,L − νF

r′

r
py∂pyh

y
R,L

]
=
√

1 + r′2Ĩ[hy] (B1)

with,

Ĩ[hyR,L(p, r)] = − ν
y

`ee

[
hyR,L −

ρ(r)

2νF
∓ 4πjx(r)

kF

√
1− (py/kF )2

]
(B2)

The transformation of this equation to an equation for hj is explained below.

1. Deriving the Boltzmann equation for hj

To get the Boltzmann equation that appears in Eq. (4) of the main text, we start from Eq. (B1) and change the
variables z, py → z, j. Since j = pyr (z) we must treat the dependence between the coordinates carefully. It is easy to

confirm that the second term in the LHS of (B1) becomes −j r
′

r ∂jhR,L, however, the first term also changes because

it is a total derivative, ∂zhR,L → ∂zhR,L + ∂j
∂z∂jhR,L. Using ∂j

∂z = pyr
′ we get that

∂j

∂z
∂jhR,L − j

r′

r
∂jhR,L = 0,

thus obtaining Eq. (4).

2. Solving the Boltzmann equation to linear order in `ee

In this subsection we solve the equation for hj up to first order in `eer
′/r.

Assuming that r(z) varies slowly on a scale of `ee we try as a first attempt the z-independent solution of a uniform

r, adjusted at each point to the local r(z), i.e., ± 2I
kF r(z)

√
1−

(
j

kF r(z)

)2
. This attempted solution conserves current.

Substituting it into Eq. (4) we find on the LHS a remainder term − 2I
kF

r′
(
1−2

(
j

kF r

)2
)

r2
√

1−
(

j
kF r(z)

)2
. It is linear in r′, as expected.

To compensate for this term, we modify our solution, making it

hjR,L (z) = ± 2I

kF r (z)

√
1−

(
j

kF r (z)

)2

+
2I`eer

′

kF r2 (z)
√

1 + r′2

[
1− 2

(
j

kF r (z)

)2
]

= ± 2I

kF r (z)

√
1−

(
j

kF r (z)

)2

+
2I`ee sin ξ (z)

kF r2 (z)

[
1− 2

(
j

kF r (z)

)2
]

(B3)

The term we added to h is linear in `ee, such that when substituted into the RHS, it balances the remainder term on
the LHS, which is `ee-independent. However, it generates a new remainder term on the LHS, which is linear in `ee.
Specifically, this term is,

± 2I`ee
kF

rξ′ cos ξ

(
1− 2

(
j
kF r

)2)
+ 2r′ sin ξ

(
4
(

j
kF r

)2
− 1

)
r3

(B4)

Naively, we should balance this term by adding a term δh ∝ `2ee to our solution, thereby generating a term δhνj/`ee
on the RHS to cancel the contribution (B4) on the LHS. We should note, however, that the RHS cannot cancel parts
of δh that carry a current or a density. Furthermore, we cannot add to h a term that carries current, because we
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assume a fixed driven current. As it turns out, the second term in (B4) can be cancelled by the RHS, but the first
term requires more care. We write it as

± I`ee
kF r2

ξ′ cos ξ ± I`ee
kF r2

ξ′ cos ξ

(
1− 4

(
j

kF r

)2
)

(B5)

and cancel the first, j-independent, term by subtracting a j-independent, density carrying, term,∫
dz′

I`ee
kF r2

ξ′ cos ξ (B6)

When divided by νF , this term gives the local electrochemical potential.

Appendix C: Bar with a density variation - solution of the Boltzmann equation for the hydrodynamic regime

We consider an infinite bar parallel to the z-axis, in which the equilibrium density, and hence kF vary with z.
Furthermore, with a variation of density comes also a variation of `ee. When the walls of the bar are specular, we
can view it as a cylinder, and we denote the circumference by 2πr. With these assumptions, Boltzmann equation (4)
and the collision term (8) remain the same as they were for a wormhole, with r′ = 0:

± νF
νj
∂zhR,L = − 1

`ee

hR,L − ρ

2νF
∓ 4πjx

kF

√
1−

(
j

kF r

)2
 (C1)

For the limit of small `ee, we first try as a naive `ee-independent solution the locally Galilean boosted Fermi sphere:

hR,L = ± 2I
kF r

√
1−

(
j
kF r

)2
, and we aim to find all corrections of order `ee to this term. Any amendment we do to the

naive solution should not carry current, since the current is fixed to I. When the naive solution is substituted in (C1)

the right hand side vanishes since I = 2πrjx and ρ = 0. However we get an extra term of − 2Ik′F
k2F r

(
1− 2

(
j
kF r

)2)
on

the LHS. We can balance this term by adding to our solution
2I`eek

′
F

k2F r

(
1− 2

(
j
kF r

)2)
.

This amended solution solves (C1), up to a remainder term on the LHS:√
1−

(
j

kF r

)2

∂z

[
2I`eek

′
F

k2F r

(
1− 2

(
j

kF r

)2
)]

(C2)

This remainder term is of the order `ee and we need to amend our solution further to eliminate it. In principle, there
are two ways to do that. The part of (C2) that does not carry density or current can be eliminated by an addition of
a term of order `2ee to h. Such a term will yield an order `ee term on the RHS. However, being a contribution to h
that is of order `2ee, it is beyond our scope. The part of (C2) that carries density of current, on the other hand, should
be canceled by adding a term of order `ee to h, that is purely a density term. Such a term will not affect the RHS,
and its substitution in the LHS will cancel the terms in (C2). It is this term we are after. An inspection of (C1) and
(C2) allows us to find it and write the full expression of h to linear order in `ee as

hjR,L = ± 2I

kF r

√
1−

(
j

kF r

)2

+
2I`ee
k2F r

k′F

(
1− 2

(
j

kF r

)2
)

− I
∫ z

dz̃
(k′F `ee)

′

2k2F r
(C3)

where in the integrand in the last term kF , `ee are both functions of z̃.



10

Appendix D: Contact resistance

At the contact the density variation is fast. As a consequence the full solution of the Boltzmann equation becomes
hard to obtain, but we can still estimate the voltage drop on the contact region. For the simplest case of a ballistic
cylinder (ξ = 0), or a ballistic rectangular-shaped conductor with specular walls, the entire potential drop is on the
two contacts. By symmetry, at the center of the wormhole hjR = −hjL = I

2kF r
and consequently V = 0. In fact,

these values of hjR, h
j
L hold anywhere within the sample, at |z| < L/2. In the contacts (z = ±(L/2 + ε)) themselves

hjR = hjL, and their value is determined by the local potential. Thus, there is a jump in the value of hjL at z = −L/2
and of hjR at z = L/2, and this jump leads to the expected jump of the potentials at the contacts.

Next, we think of the cylindrical geometry with electron-electron scattering. Far from the contacts (a distance
much larger than `ee) our main-text analysis holds, leading to hjR = −hjL = 4πJx

kF

√
1− (j/kF r)2 and V = 0. At the

two contacts hjR = hjL = ±V (I)/2, and it is V (I) that we estimate now. For clarity we focus on the left contact, at
z = −L/2.

The equations satisfied by hjR,L are of the form

±νF∂zhjR,L(j, z) = − ν
j

`ee

hjR,L − ρ(z)

νF
∓ 4πJx

kF

√
1−

(
j

kF r

)2
 (D1)

These equations are equivalent to,

hjR,L = hjR,L(±L/2)e
±(z±L/2)νj

νF `ee +

∫ z

zi

dz′
νj

νF `ee

[
−ρ(z′)

νF
∓ 4πJx

kF

]
e
±(z±z′)νj
νF `ee (D2)

Here, hjR,L(±L/2) are the boundary conditions for the right- and left- moving electrons at the points where they enter

the sample. The dependence of the distribution functions hjR,L on z near the left contact is very different for the left-
and right- moving electrons. For the left-moving electrons the entry point is very far from the contact we look at,
and therefore the initial condition is long forgotten. In the bulk, the distribution of the left moving electrons does
not vary in space, and since the second term in Eq. (D2) averages over a scale of `ee, we expect the variation of hjL
to be slow even close to the contact.

For the right-moving electrons, in contrast, near the contact the solution is dominated by initial conditions. The
distribution function, that starts as a constant hjR = π2Jx/kF , decays into hjR = 4πJx

kF

√
1− (j/kF r)2, at a distance

`ee/νj from the contact.
Motivated by these considerations, we make the ansatz,

hjL ≈ −
4πJx
kF

√
1− (j/kF r)2

hjR =
π2Jx
kF

e−(z+L/2)ν
j/νF `ee + (1− e−(z+L/2)ν

j/`eeνF )
4πJx
kF

√
1− (j/kF r)2

(D3)

Within this ansatz, the voltage difference between the contact itself and the bulk is the same as it is in the ballistic
case, namely half of the Landauer-Sharvin voltage drop falls on each contact. The effect of the scattering term is
limited to distributing this voltage drop from being at the interface itself to being spread on a scale of `ee.
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We study the response of a Dirac fluid to electric fields and thermal gradients at finite wave-
numbers and frequencies in the hydrodynamic regime. We find that non-local transport in the
hydrodynamic regime is governed by infinite set of kinetic modes that describe non-collinear scat-
tering events in different angular harmonic channels. The scattering rates of these modes τ−1

m

increase as |m|, where m labels the angular harmonics. In an earlier publication, we pointed out
that this dependence leads to anomalous, Lévy-flight-like phase space diffusion [1]. Here, we show
how this surprisingly simple, non-analytic dependence allows us to obtain exact expressions for the
non-local charge and electronic thermal conductivities. The peculiar dependence of the scattering
rates on m also leads to a non-trivial structure of collective excitations: Besides the well known
plasmon, second sound and diffusive modes, we find non-degenerate damped modes corresponding
to excitations of higher angular harmonics. We use these results to investigate the transport of
a Dirac fluid through Poiseuille-type geometries of different widths, and to study the response to
surface acoustic waves in graphene-piezoelectric devices.

I. INTRODUCTION

In many instances transport properties can be de-
scribed in terms of a local relationship between forces
and currents. Examples are Fourier’s law of heat con-
duction jε = −κ∇T , Fick’s law of diffusion jc = −D∇µ,
or Ohm’s law of electrical conduction jc = σE. Here
the thermal conductivity κ, the diffusion coefficient D,
or the electrical conductivity σ establish a relationship
between the value of the forces, such as a temperature
gradient or electric field, and the corresponding current
density at the same location. Such local relations break
down when the electron propagation is almost ballistic.
Important examples worked out in particular by Brian
Pippard are the nonlocal current-field relations to de-
scribe the Meissner effect in clean superconductors or
the anomalous skin effect in clean metals[2–4]. However,
non-local transport relations are not limited to the bal-
listic transport regime. Another example for non-local
transport occurs when hydrodynamic flow of charge or
heat sets in. Indeed, hydrodynamic flow patterns are fre-
quently identified by complex “non-local” flow lines. It
is therefore necessary to find closed expressions for the
nonlocal heat conductivity καβ (r− r′, t− t′), electrical
conductivity σαβ (r− r′, t− t′) or even non-local shear
viscosities η(r− r′, t− t′) of many-body systems in the
hydrodynamic regime. In this regime collisions between
partices are not weak, it merely holds that momentum
relaxing collisions are weak while momentum-conserving
collisions are not. A formulation in terms of non-local
transport coefficients allow for a microscopic description
of hydrodynamic flow pattern and goes beyond the usual
description in terms of the linear Navier-Stokes equation.
The latter corresponds to the leading gradient expansion
of the theory. In addition, the inclusion of dynamical
phenomena - here expressed in terms of the dependency
on the time difference t− t′ between force and current –

allows to determine the system’s collective modes.

In this paper we develop the theory of non-local trans-
port in Dirac systems at charge neutrality in the collision-
dominated hydrodynamic regime and find closed ex-
pressions for the frequency and wave-vector-dependent,
charge and electronic thermal conductivities as well as
the non-local viscosity. Remarkably, the calculations of
this paper are exact in the limit of a small graphene fine
structure constant α in the regime of linear response.
This is made possible by the peculiar ∝ |m| dependence
of the scattering rates of collinear zero modes in higher
angular momentum channels m > 2 - a behavior that
was shown to lead to a super-diffusive Lévy-flight-like
phase space dynamics in an earlier work [1]. Collinear
zero modes do not decay due to the strong collinear scat-
tering that give rise to rapid equilibration and there-
fore dominate the long-time dynamics. We make specific
predictions for measurements such as the velocity shift
of surface acoustic waves, determine the flow of charge
and heat in finite geometries, and determine the col-
lective mode spectrum of the system including plasma
waves and second-sound-ike thermal waves. The disper-
sion relations of collective modes can be derived from
the poles of transport coefficients, or found from the so-
lutions of the homogeneous quantum Boltzmann equa-
tion. Here, focusing on the charge neutrality point, we
go beyond the phenomenological treatment of electron-
electron interactions of Refs. [5, 6]. Our detailed analysis
reveals a complex structure of damped collective excita-
tions. These excitations are similar to the so-called “non-
hydrodynamic” modes that were shown to be relevant for
the equilibration of unitary fermi gases [7] and QCD plas-
mas [8–10]. In fact, the term non-hydrodynamic is some-
what misleading. What is meant is that these modes cor-
respond to excitations of high angular momentum com-
ponents of the kinetic distribution function, which are
not captured by the Navier-Stokes equations.
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Transport in a Dirac fluid is in many respects dif-
ferent from the archetypical example of the Fermi liq-
uid. One important difference is that electric currents
in a Dirac fluid are not protected by momentum con-
servation, and therefore decay even in a perfectly clean
system. Negatively charged electrons and positive holes
flowing in opposite directions sum up to a finite elec-
tric current with zero momentum. Thus, even in the
absence of impurities, pristine graphene – the prime ex-
ample of a Dirac fluid – has a finite conductivity that is
induced by electron-electron interactions [11, 12]. On
the other hand, the energy current is proportional to
the momentum density, and therefore propagates bal-
listically [13, 14]. Both phenomena, the interaction in-
duced conductivity and the ballistic transport of energy,
are relevant in the broader context of quantum critical-
ity [15–17]. Several experiments addressed the unique
transport properties of graphene at the charge neutrality
point. A violation of the Wiedemann-Franz law was ob-
served in Ref. [18], indicating the ballistic transport of
energy. The interaction induced resistivity was recently
measured at finite frequencies [19] and showen to be in
good agreement with the theoretical prediction of Ref.
[11]. Graphene has become one of the most important
host systems for electron hydrodynamics in general, ex-
tensively studied in both experiment [20–24] and theory
[25–40].

An important experimental prerequisite for the realiza-
tion of hydrodynamic electron flow is the dominance of
electron-electron scattering over any momentum relaxing
scattering mechanism. Besides graphene, materials such
as delafossite metals [41, 42] and Weyl semimetals [43]
show non-local transport patterns and have been iden-
tified as potential candidates for the realization of hy-
drodynamic electron flows - a development that boosted
experimental and theoretical work on the subject [44–64].

In a clean system, hydrodynamics prevails when the
electron-electron scattering rate lee is much smaller than
the system size lgeo. The ratio between these two lengths
is the Knudsen number Kn = lee/lgeo. In a Poiseuille-like
geometry lgeo corresponds to the width of the sample.
The geometry of the system then sets a finite wavenum-
ber q ∼ 2π/lgeo. Therefore, for finite Knudsen numbers,
the wave-vector dependence of transport coefficients de-
termines the behavior of the fluid. Thinking in real space,
this means that higher-order spatial derivatives have to
be included into the equations of motion of the fluid, and
the flow becomes highly non-local. A very similar situ-
ation occurs when the system is subjected to spatially
modulated force fields, e.g. an electric field of the form
Eq = E0e

iq·xe−iωt (see Fig. 1). The response of the
fluid is then determined by a non-local conductivity ten-
sor σαβ (q, ω). An important example that is treated in
Sec VI are surface acoustic waves (SAWs) in piezoelec-
tric materials, which produce spatially modulated electric
fields and can be used to study the longitudinal part of
the non-local charge conductivity.

Figure 1: Charge (upper row) and energy currents (lower row)
excited by wavelike longitudinal electric fields and tempera-
ture differences.

II. MAIN RESULTS

In this paper, we focus on the non-local transport prop-
erties and collective excitations of graphene electrons at
the charge neutrality point - prime example for a Dirac
fluid. The quantum Boltzmann method developed in Ref.
[11] is used. This method relies on the fact, that at low
temperatures the graphene fine structure constant α is
renormalized to small values. Thermally excited elec-
trons and holes therefore appear as sharply-defined quasi-
particles, whose transport properties can be studied by
means of a kinetic equation. The solution of this equa-
tion is facilitated by the presence of so-called collinear
modes, whose scattering rates are enhanced by a large
factor of log (1/α). Here, the velocities of the interact-
ing particles are parallel to each other. Due to the lin-
ear graphene spectrum, all particles travel at the same
speed, regardless of their momentum. Particles traveling
in parallel have a particularly long time to interact with
each other, hence the strong enhancement. Transport
in the hydrodynamic regime, however, is dominated by
processes, which have the smallest scattering rates (for
details see Eq. (27) and below). Such “slow” processes
are represented by collinear zero modes – functions that
set the collinear part of the collision operator to zero
[11, 12].

We solve the kinetic equation by reducing it to a
matrix equation in the space of collinear zero modes
χ

(m,s)
k,λ = λmeimθ {1, λ, λβv~k} (see Sec. III B). Here, θ

is the polar angle and k the modulus of the momentum
variable k, λ = ±1 is the band index, m labels the an-
gular harmonics exp (imθ), and s ∈ {1, 2, 3} labels the
three basis functions written in curly brackets. To an
excellent approximation, it is sufficient to retain only the
s = 1 and s = 3 modes. These modes describe charge
(c) and energy (ε) excitations, respectively. A numeri-
cal evaluation of the collision integral’s matrix elements
with respect to the modes χ(m,s)

k,λ (see Fig. 2) shows, that
the relaxation rates of these modes grow linearly with
increasing m:

τ−1
ε/c,m ∼ |m| , (1)
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Figure 2: The matrix elements of the collision operator C of
Eq. (24) with respect to the collinear zero modes χ(m,s)

k,λ =

λmeimθ {1, λ, λβv~k} of Eq. (32) grow linearly with increas-
ing angular harmonic numbersm. The linear fits of Eqs. (45),
(47) are plotted as solid red and green lines. The linear be-
havior of the matrix elements and scattering rates allows to
solve the quantum Boltzmann equation exactly.

for large m (see sections III B and IVB). This unusual
behavior allows us to solve the (linearized) Boltzmann
equation exactly in the limit of a small α. The details of
this solution are given in Sec. IVC.

It is an important feature of graphene at the neutral-
ity point, that the hydrodynamic modes excited by elec-
tric and thermal fields decouple in linear response, and
in the absence of magnetic fields [13, 65]. The modes
are characterized by the distinct scattering, with all of
them following Eq. (1). Using our full solution of the
Boltzmann equation, the non-local, i.e. wave-vector-
dependent, charge and thermal conductivities as well as
the non-local viscosity were calculated. The longitudinal
and transverse non-local charge conductivities as func-
tions of wave-vector q and frequency ω are given by

σ‖ =
σ0

1− iτc,1ω + 1
4v

2τc,1q2
(

2i
ω + 1

Mc(q,ω)−iω

) ,
σ⊥ =

σ0

1− iτc,1ω +
1
4v

2τc,1q2

Mc(q,ω)−iω

, (2)

where σ0 =
2e2 log(2)kBTτc,1

π~2 is the conductivity at vanish-
ing wave-numbers and frequencies [11]. Mc is a memory
function containing information on scattering in high an-
gular momentum channels m ≥ 2:

Mc (q, ω) = τ−1
c,2 +

1

2
vq

I3+ ηc
γc
−iωτc (τcvq)

I2+ ηc
γc
−iωτc (τcvq)

. (3)

This result is a direct consequence of the depence of the
scattering rate τ−1

c,m ∼ α2kBT |m| on the angular momen-
tum state of the Dirac electron. A similar τ−1

c,m ∼ |m|
behavior was found in Ref.[66] for scattering off a ran-
dom magnetic field and gives rise to similar expressions

for the nonlocal conductivities, caused by rather differ-
ent microscopic mechanism. In Eq. (3), τc, γc and ηc
determine the slopes and the offset in Eq. (1) (see Sec.
IVB). The results for the non-local thermal conductivity
and viscosity are given in Eqs. (65), and (70). The trans-
port coefficients show pronounced resonance features at
vq ≈ ω where q and ω are the wavenumber and fre-
quency of the applied electric field or thermal gradient
(see Figs. 3, 4) and v is the electron group velocity. The
longitudinal charge conductivity can be measured in ex-
periments with surface acoustic waves (SAWs) [67–72].
The transverse conductivity determines the skin effect,
which is however not a feasible measurement for a two-
dimensional graphene sheet. In section VI we consider a
simple device consisting of a graphene sheet laid on top
of a piezoelectric crystal. We calculate the velocity shift
and damping of SAWs induced by the graphene sheet and
find that, while damping effects are small, a substantial
velocity shift can be expected. The damping and the
velocity shift measured as functions of temperature can
give important insights into the nature interaction effects
in a Dirac fluid.

Non-local transport coefficients also determine in con-
fined geometries. The latter case is illustrated in Sec.
VII for the electric conductivity, using the Poiseuille ge-
ometry as an example. The constitutive relation linking
the electric current to the electric field along the channel
is interpreted as a differential equation (Eq. (87)) and
solved with the appropriate boundary conditions (Eq.
(88)). We find, that the flow profiles strongly depend
on the channel width w as compared to the electron-
electron scattering lengths in the m = 1 and m = 2
channels: lc,1 = vτc,1, lc,2 = vτc,2. While lc,1 governs the
decay of charge currents, lc,2 determines the effectiveness
of current transfer from regions with high current density
to regions with low current density. This latter mecha-
nism is analogous to viscous momentum transfer. The
flow profiles in dependence on w can be separated into
three regimes. For w � lc,1 > lc,2, the samples are in
the Ohmic regime, where the current is dissipated uni-
formly across the sample. The flow profile is flat. For
lc,1 < w < lc,2, the profile curvature is maximal, since on
the one hand the current decay due to electron-electron
scattering in the m = 1 channel becomes inefficient, on
the other hand the current transfer to the boundaries of
the sample, where the flow is slowed down, is sufficiently
strong. For even smaller widths w < lc,2, the profile turns
flat again, because the current transfer mechanism asso-
ciated with lc,2 ceases to be efficient. This characteristic
pattern is shown in Fig. 12. Current profiles are ac-
cessible experimentally, e.g. through the scanning single
electron transistor technique of Refs. [20, 73].

Finally, we calculated the dispersions of the collective
modes of a Dirac fluid. As do the transport coefficients,
the collective modes separate into a sector of charge exci-
tations and a sector of energy and imbalance excitations
(s = 2). These two sectors are decoupled and can be
studied separately. We find, that while the plasmon mode
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is gapped out at small wave-numbers due to the interac-
tion induced resistivity (see Fig. 6), a so-called second
sound mode, corresponding to a wavelike propagation of
energy, appears (Fig. 9). Diffusive modes, correspond-
ing to the diffusion of charge, heat and quasiparticles
were found (see Figs. 5, 7). Their dispersion relations
were calculated and showed to agree with known results
[6, 26, 74]. Besides these well studied modes, an infinite
set of damped modes connected to excitations in higher
angular harmonic channels was found (see Figs. 5, 8).
The dispersions of these modes are purely imaginary at
vanishing wave-numbers and approach in the long wave-
length limit the values ωm (q = 0) = −i/τε/c,m for the
m-th angular harmonic in the energy (ε) or the charge
(c) channels. At finite wave-numbers, these modes show
a complex structure of merging branches. Similar modes
play an important role in the equilibration of unitary
fermi gases [7] and the QCD plasma [8–10]. They also
determine the unusual phase space dynamics of graphene
electrons which was the subject of an earlier work [1].

Regime of validity

Transport in graphene is of interest to researchers with
diverse backgrounds. Here we want to discuss the valid-
ity of our results in the context of other graphene related
research. Our paper is concerned with the hydrodyn-
mic regime, where electron tranport is governed by mo-
mentum conserving electron-electron collisions and the
electron-electron mean free path is the smallest length
scale [75]. In particular, momentum relaxing scattering
off impurities and phonons must be weak. This demand
sets serious limitations on sample sizes and on the tem-
perature range.

1. The Dirac fluid of graphene at the charge neutrality
point

Throughout the paper we are interested in the low en-
ergy effective behavior of graphene electrons near the
Dirac point. Here, to a very good approximation,
the electron dispersion is given by the massless two-
dimensional Dirac Hamiltonian of Eq. (9) [76]. At T = 0,
the lower Dirac cone is fully occupied and the upper Dirac
cone is empty. At finite temperatures, electrons and holes
in a region of size kBT around the Dirac cone are created.
These quasiparticles are carriers of electric and thermal
currents. Since their density is determined by temper-
ature, kBT is the only energy scale in the system. We
call this regime the Dirac fluid regime. The chemical po-
tential is vanishingly small: µ � kBT . For the opposite
case of a large chemical potential µ � kBT , the system
enters the Fermi liquid regime. Here, the scattering rate
is given by τ−1~ ∼ T 2/µ [77–79] (up to logarithmic cor-
rections in 2D[80]). For the quantum critical Dirac fluid,
on the other hand, the electron-electron scattering rate

is determined by the temperature alone:

τ−1 ∼ α2kBT/~ (4)

where α = e2/ (εv~) is the graphene fine structure con-
stant. v is the electron group velocity and ε the dielectric
constant. Higher order interaction effects can be treated
in terms of the renormalization group. Integrating out
high energy states above the thermal cut-off kBT results
in a logarithmic increase of the electron’s group velocity
[11, 17]:

v = v0

(
1 +

α0

4
log

(
Λ

kBT

))
. (5)

Here, v0 ≈ 106 m/s and α0 are the unrenormalized, bare
electron velocity and the fine structure constant. Λ is
an energy on the eV scale at which the electronic bands
begin to deviate from the linear Dirac-like shape. It is
essential to our theory, that the fine structure constant
α (T ) is renormalized to small values when the temper-
ature is lowered. The system is gradually approaching
the free Dirac fermion fixed point, thus ensuring the va-
lidity of the quasiparticle picture and the Boltzmann ap-
proach chosen here to study the transport of electrons.
Eq. (5) is a perturbative result valid to lowest order
in α. However, experiments show that the logarithmic
increase of the Fermi velocity at low energies is quite ro-
bust and holds even in the case of suspended graphene
where α0 ≈ 2 as well as at intermediate temperatures
[81]. Thus, there is good reason to believe that even sus-
pended graphene is located sufficiently near the free Dirac
fermion fixed point, such that weak coupling results are
physically meaningful; much more so for graphene grown
on substrates with larger dielectric constants.

2. The quantum Boltzmann method

The quantum Boltzmann method is well established for
systems with sharply defined quasiparticles [82, 83], the
prime example being the Fermi liquid [79]. Here, ther-
mally excited quasiparticles have energies of the order of
εqp = kBT , such that the ratio εqp/

(
~τ−1

)
∼ µ/kBT �

1 is large at temperatures below the Fermi temperature.
This condition, which is based on phase-space arguments
rather than the interaction strength, ensures the validity
of the quasiparticle picture and the Boltzmann equation.

In the case of the Dirac fluid, the ratio of the charac-
teristic qusiparticle energy and the scattering rate is

εqp

τ−1
∼ α2 (T ) . (6)

Thus, the quasiparticle picture is valid only at small cou-
pling strengths. However, as discussed in the preced-
ing section, for small temperatures α (T ) decreases, and
the Dirac fluid asymptotically approaches the free Dirac
fermion limit. In this regime, the Boltzmann equation
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provides a powerfull tool for the study of transport phe-
nomena. Coulomb interactions between electrons enter
through a long-range Vlasov term which describes elec-
trostatic forces due to an inhomogeneous charge distri-
bution, as well as through the collision operator describ-
ing short-range electron-electron collisions. We use the
collision operator derived in Ref. [11], which includes all
scattering processes to second order in the fine sctructure
constant (Born approximation). While this approach is
formally exact in the small α (T ), low temperature limit,
we believe, as argued above, that it should also provide
reasonable results for larger values of the fine structure
constant.

In this paper, we consider the linear response of the
Dirac fluid to electric fields and thermal gradients at fi-
nite frequencies. The Boltzmann approach limits our dis-
cussion to small frequencies:

ω � kBT

~
. (7)

At small frequencies, the system’s response is governed by
intra-band processes which take place within one of the
two Dirac cones. Inter-band processes, on the other hand,
involve the creation of electron-hole pairs and therefore
can only be excited at energies comparable to kBT [84].
This means that the off-diagonal elements of the den-
sity matrix

〈
ψ†λ,kψλ′,k

〉
,where ψ†λ,k, ψλ,k are electron

creation and anihilation operators and the band index
λ labes the two Dirac cones, are strongly suppressed.
Allowing us to interpret the diagonal components as a
distribution function

fkλ =
〈
ψ†λ,kψλ,k

〉
which can be found by solving the Boltzmann equation
[82, 83]. For further details on the quantum Boltzmann
approach we refer to Sec. III, Appendix A and Ref. [11].

3. Impurities and Phonons

At the temperature of ∼ 50 K, and assuming ε ≈ 5,
we estimate the electron-electron mean free path as
lee = vτ ∼ 2µm. In clean graphene samples, impurity
mean free paths of more than 10µm can be achieved [85],
such that tranport indeed will be dominated by electron-
electron scattering. A major concern in experiments with
graphene near the charge neutrality point are small vari-
ations of the local chemical potential µ (x) which have
been dubbed electron-hole puddles [86, 87]. While the
origins and properties of electron puddles and their influ-
ence on transport are the subject of many studies (see e.g.
[88–91]), we choose not to include them in the present
theory, which is concerned with interaction effects in a
clean Dirac fluid. Our results are relevant for experi-
ments with graphene sheets in the hydrodynamic regime.
Here, the dominance of electron-electron scattering over

any impurity induced effects was clearly demonstrated
in Ref. [19] by showing that the electron scattering rates
grow linearly in accordance with Eq. (4) above a trash-
hold temperature.

Electron-phonon scattering is a significant disturbance
for hydrodynamic electron flows at high temperatures,
unless one is in a regime governed by phonon drag, see
e.g. [92]. In graphene, the scattering of electrons by
2D graphene lattice phonons is limited by the small size
of the Fermi-surface [93], as well as by the high Debye
temperature which loweres the phonon density of states
[93]. These limitations are even more pronounced at the
Dirac point, where due to momentum conservation only
phonons with momenta kph < kBT/v participate in scat-
tering events. However, scattering with surface optical
phonons of the substrate can lead to a significant in-
crease of the sheet resistance at higher temperatures. In
Ref. [94] this mechanism was reported to set in above
150 K for graphene grown on SiO2. To a large extend,
scattering on surface acoustic photons determines the de-
cay rates of graphene plasmons at finite charge densities
[95, 96]. Experiments on the hydrodynamics of Dirac
fluids have been carried out with graphene sheets encap-
suled in hexagonal boron nitride [18, 19]. Here electron-
phonon scattering is also reported to set in at the rela-
tively high temperatures of 70 K [18], or even to be in-
significant up to room temperatures [19].

4. Sample sizes

Currently, high quality graphene sheets have sizes on
the order of tenth of micrometers. On the one hand side
this means that the effects of boundary scattering can be
important [97]. On the other hand, it has been demon-
strated that such samples are sufficiently large to go well
beyond the ballistic regime and to observe hydrodynamic
behavior [18–24].

In graphene nanoribbons, gaps opening at the Dirac
point can significantly influence the behavior of collec-
tive modes [96, 98]. These gaps can be estimated as
∆ ≈ t/N , where t is a characteristic tight-binding hop-
ping amplitude on the 1eV scale and N is the number of
unit cells over which the ribbon extends. For hydrody-
namic samples N ≈ 105, and therefore the gaps are much
smaller than quasiparticle energies at experimental tem-
peratures.

Boundary effects on collective mode propagation will
give a larger correction of order lee/w, where w is the
sample size (see e.g. [99]).

III. THEORETICAL FRAMEWORK

A. Kinetic equation

In order to clarify our notation, in this section we
sketch the derivation of the quantum Boltzmann formal-
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ism for the Dirac fluid, which was developed in Ref. [11].
We begin with the Hamiltonian of graphene electrons at
the charge neutrality point:

H = H0 +Hint, (8)

where the free part is given by

H0 = v~
ˆ
k

∑
a,b,i

ψ†a,i (k) (k · σ)ab ψb,i (k) , (9)

and the interaction part reads

Hint =
1

2

ˆ
k,k′,q

∑
a,b,i,j

V (q)ψ†k+q,a,iψ
†
k′−q,b,jψk′,b,jψk,a,i.

(10)
V (q) = 2πe2

ε|q| is the 2D Coulomb potential. The indices
i, j = 1, 2 ..., N = 4 refer to the spin and valley quantum
numbers of an electron, whereas the two sub-lattices are
labelled by the indices a, b. The free particle Hamiltonian
H0 is diagonalized by the unitary transformation

Uk =
1√
2

[
1 o∗k
1 −o∗k

]
, (11)

where ok = (kx + iky) /
√
k2
x + k2

y.
For the derivation of the quantum Boltzmann equa-

tion, it is convenient to use the band representation of
Dirac spinors ψλ,k = Uk,λaψk,a with λ = ±1 labeling the
upper and lower Dirac cones. In this way, one can easily
distinguish between processes that involve the creation of
particle-hole pairs and those which do not. The thermally
excited electron-hole pairs occupy states in a window of
kBT around the Dirac point. Thus, if the applied fields
have frequencies ω < 2kBT/~, which is true in the hydro-
dynamic regime, processes that create electron-hole pairs
are unlikely and can be neglected. This translates to ne-
glecting the off-diagonal components of the distribution
function in the band representation, which is then given
by its diagonal elements:

fkλ =
〈
ψ†λ,kψλ,k

〉
.

The quantum Boltzmann equation then reads

(∂t + vkλ · ∇r − (e∇ϕtot) · ∇k + C) fkλ (r, t) = 0. (12)

Here, vkλ = ∂εkλ/∂k is the group velocity and

ϕtot (r, t) = ϕext (r, t) + ϕind (r, t) (13)

is the sum of the external electrostatic potential and the
induced potential which is the result of an inhomogeneous
distribution of charges. The term associated with ϕtot

was first introduced by Vlasov[100]. It will be dealt with
at the end of this section. C represents the central part
of the kinetic theory - the Boltzmann collision operator
describingelectron-electron Coulomb scattering. Details

on the derivation of C are summarized in Appendix A,
based on Refs. [1, 11].

Studying the linear response to ϕtot, we expand the
distribution function around the local equilibrium distri-
bution f (0)

kλ

fkλ (r, t) = f
(0)
kλ + wkψkλ (r, t) . (14)

where f0
k,λ is given by

f
(0)
kλ =

1

eβ(εkλ−u·k) + 1
. (15)

The product wk ≡ f
(0)
k

(
1− f (0)

k

)
, that will soon play

the role of a weight function in the scalar product, does
not depend on λ, and the corresponding index is dropped
in Eq. (14) and in the following.

Performing a Fourier transformation ψkλ (r, t) →
ψkλ (q, ω) to frequency and momentum space, we obtain
the linearized Boltzmann equation

(L+ C)ψkλ (q, ω) = Skλ (q, ω) . (16)

L is the Liouville operator and given by

L = −iω + iq · vkλ (17)

The linearization of the collision operator can be ex-
pressed in the form

Cψkλ ≈
1

wk

∑
λ′

ˆ
k′

δ (Cψ)kλ
δψk′λ′

ψk′λ′ , (18)

where the weight function wk was introduced above.
Let the ψk be element of a function space with inner

product

〈φ | ψ〉 =
∑
λ

ˆ
k

wkφ
∗
kλψkλ, (19)

such that

〈φ |C|ψ〉 =
∑
λ

ˆ
k

wkφ
∗
kλCψkλ

=
∑
λλ′

ˆ
kk′

φ∗kλ
δ (Cψ)kλ
δψk′λ′

ψk′λ′ . (20)

One can show that the entropy production in the ab-
sence of external driving terms is ∂S∂t = kB 〈ψ |C|ψ〉 which
ensures that the collision operator is positive definite.
In fact, C is Hermitian under the above scalar product.
Therefore its eigenvalues are real and its eigenfunction
form an orthonormal basis of the function space.

The right hand side of Eq. (16) is determined by the
forces acting on the system. The three force terms stud-
ied here are due to electric fields, thermal gradients and
viscous forces. For an electric field oriented along the
x-axis, E = E0êx, the force term reads

SE = −eE0 cos θ (λvβ) , (21)
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where θ is the polar angle of the momentum k. It is
important to notice, that

E = −∇ϕtot.

The corresponding term for a thermal gradient ∇T is
given by

ST = −k |∇T | cos θkB (vβ)
2
. (22)

A viscous force is present if the drift velocity u in the lo-
cal equilibrium distribution function (15) is a function of
the coordinate x. Then the drift term of the Boltzmann
equation (12) can be thought of as a force term

SS = −vkX0,αβ

(
kαkβ
k2
− 1

2
δαβ

)
λβ

= −1

2
kX0 sin (2θ) (λvβ) , (23)

where the stress tensor is given by

X0,αβ =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

− 2δαβ∇ · u
)
.

In the following, we consider a flow with u (y) = u (y) êx
and therefore only include the component X0,xy, which
is relevant for the calculation of the shear viscosity.

The collision operator is given by

(Cψ)kλ =
2π

~

ˆ
k′q

δ (k + k′ − |k + q| − |k′ − q|) (24)

×
(

1− f (0)
k

)(
1− f (0)

k′

)
f

(0)
|k+q|f

(0)
|k′−q|

×
{
γ

(1)
k,k′,q (ψk+q,λ + ψk′−q,λ − ψk′,λ − ψk,λ)

+ γ
(2)
k,k′,q

(
ψk+q,λ − ψ−k′+q,λ̄ + ψ−k′,λ̄ − ψk,λ

)}
.

The matrix elements γ(1)
k,k′,q, γ

(2)
k,k′,q can be found in Ap-

pendix A.
Another important term in the kinetic equation de-

scribes the electrostatic forces that arise due to an in-
homogeneous distribution of charges. These forces are
mediated by a self consistent potential ϕind, first intro-
duced by Vlasov [100]. It reads

eϕind (r, t) = αvN

ˆ
d2r′

∑
λ

ˆ
d2k

(2π)
2

δfkλ (r′, ω)

|r− r′|
,

(25)
where we have used the abbreviation δfkλ (r, ω) =
wkψk,λ (r, ω) and multiplied the potential by e for no-
tational convenience. A derivation of the term can be
found in Ref. [82] (Eqs. (7-3) and (9-16)). Applying a
Fourier transform to Eq. (25) one finds

eϕind (q, t) = αvN
∑
λ

ˆ
d2k

(2π)
2

2πδfkλ (q, ω)

q
.

In Sec. V we will not be interested in the response to the
total electric field E = −iqϕtot, but rather in solutions
of the homogeneous Boltzmann equation

(L+ V + C)ψkλ (q, ω) = 0.

Here, the Vlasov term

Vψkλ = −iq · vkλeϕind. (26)

has to be included explicitely.

B. Collinear zero modes

In this section, we summarize how Eq. (16) is solved
in the limit of a small fine structure constant. A stan-
dard way to deal with an integral equation like (16) is
to expand the function ψk,λ into a set of suitable basis
functions. The choice of this basis is facilitated by the
fact that for small values of the graphene fine structure
constant α, the collision operator (24) logarithmically di-
verges if the velocities of involved particles are parallel to
each other. This is a consequence of the linear single par-
ticle spectrum, and the resulting momentum independent
velocity of massless Dirac particles. Intuitively speaking,
the scattering is enhanced, because particles traveling in
the same direction interact with each other over a partic-
ularly long period of time. A more mathematical picture
of this so-called collinear scattering anomaly is presented
in Appendix (B). It is convenient to write the collision
operator as a sum of the collinear part Cc and the non-
collinear part Cnc:

C = log (1/α)Cc + Cnc. (27)

The factor log (1/α) is large at small α. Both operators,
Cc and Cnc, are hermitian with respect to the scalar prod-
uct of Eq.19. Let ϕnk,λ be the orthogonal eigenfunctions
of Cc such that

(Ccϕn)k,λ = bnϕ
n
k,λ. (28)

ψk,λ is expanded in terms of these functions:

ψk,λ =
∑
n

γnϕ
n
k,λ. (29)

Suppose, some of the orthogonal basis functions ϕn,
namely those with n < n0, set the collinear part of the
collision operator to zero, i.e.

Ccϕn<n0 = 0. (30)

Then, inserting the expansion (29) into Eq. (16) and
projecting it onto the basis functions ϕn

′
, one finds

γn′>n0 =

〈
ϕn
′
∣∣∣S〉− 〈ϕn′ ∣∣∣ (L+ Cnc)ψ

〉
bn′ log (1/α)

. (31)
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Hence, zero modes of Cc are enhanced by factor
log (1/α)[11]. These colinear zero modes can be found
from the collision operator given in Eq.24:

χ
(m,s)
k,λ = λmeimθ {1, λ, λβv~k} . (32)

Here, m labels the angular momentum, s ∈ {1, 2, 3} the
modes {1, λ, λβvk}, and θ is the polar angle of the mo-
mentum vector k. All modes set the integral (24) to zero
for collinear processes (see Appendix B).

From Eq. (31) follows that for small values of α, only

the collinear zero modes have to be retained in the ex-
pansion of the entire collision operator Eq. (29), i.e. the
kinetic equation (12) can be solved using the restricted
subspace of basis functions of Eq. (32). The stronger
colinear scattering processes give rise to a rapid equili-
bration to the subset of modes given in Eq. (32) which
then dominate the long-time dynamics.

In order to proceed, the matrix elements of Eq. (16)
in this basis must be calculated. The matrix elements of
the Liouville operator L are given by

〈
χ

(m,s)
k,λ |L|χ(m′,s′)

k,λ

〉
=

(
−iωδm,m′ +

1

2
ivq
(
e−iϑqδm,m′+1 + eiϑqδm,m′−1

))
(vβ~)

−2
Ls,s′ , (33)

where ϑq is the polar angle of the wave-vector q and

L =

 log(2)
π 0 0

0 log(2)
π

π
6

0 π
6

9ζ(3)
2π

 . (34)

The rows and columns of the matrix notation refer to the
mode index s of Eq. (32).

We calculate the matrix elements of the collision op-
erator C numerically (some values are given in Appendix
C). Due to the rotational invariance of the low-energy
Dirac Hamiltonian (8), they are diagonal in the angular
harmonic representation. Most importantly, the matrix
elements rapidly approach a linear behavior for large |m|:〈

χ
(m,s)
k,λ |C|χ(m′,s′)

k,λ

〉
=

δm,m′

v2β3~3
(|m| γs,s′ − ηs,s′) . (35)

γs,s′ and ηs,s′ are numerical coefficients that are listed
below Eqs. (45) and (47). This surprising result is due
to the linear Dirac spectrum of the system. It allows
to solve the Boltzmann equation exactly, as will be seen
later. The linear behavior of the scattering rates is also
shown in Fig. 2. To find closed expressions for the non-
local transport coefficients, the scattering rates are ap-
proximated by Eq. (35) for m > 2. In principle, the nu-
merically exact scattering rates up to an arbitrary m can
be included. Here, the rates for m > 2 will be assumed
to follow Eq.35 in order to keep the algebraic efforts at
a minimum. The projections of the force terms (21)-(23)
onto collinear zero modes read

〈SE |χk,λ〉 = − eE0

2~2βv
δ|m|,1

 log(2)
π
0
0

 , (36)

〈ST |χk,λ〉 =
|∇T | kBπ4

vβ~2
δ|m|,1

 0
π
6

9ζ(3)
2π

 , (37)

〈SS |χk,λ〉 = − iX0

4 (vβ~)
2 sign (m) δ|m|,2

 0
π
6

9ζ(3)
2π

 . (38)

For the Vlasov term (26) one finds

〈
ψ

(m,s)
k,λ |V|ψ

(m′,s′)
k,λ

〉
= iαN

(
e−iϑqδm,1 + eiϑqδm,−1

)
×δ1,sδ1,s

′δm′,0
2v2β3~3

 log(2)2

π2

0
0

 .(39)

The non-equilibrium part of the distribution function ex-
panded in the subset of colinear zero modes becomes

ψk,λ =

∞∑
m=−∞

3∑
s=1

am,s (ω,q)χ
(m,s)
k,λ . (40)

Together, the expressions (16), (33), (35), (36)-(38), (39)
and (40) provide a linearized kinetic equation restricted
to the basis of collinear zero modes that becomes exact
for small values of the fine structure constant α. Since
no assumptions on the spatial dependencies were made,
except that they are be within the limits of the appli-
cability of the kinetic equation, this expansion can be
used to derive the non-local transport coefficients in the
linear-response regime, as well as the dispersion relations
of collective excitations.
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IV. NON-LOCAL TRANSPORT

A. Effects of electron-hole symmetry, momentum
conservation and thermal transport

Within the kinetic approach, the charge current jc and
the heat current jε are given by

jc = e
∑
λ

ˆ
k

λv
k

k
fk,λ, (41)

jε =
∑
λ

ˆ
k

v2~kfk,λ. (42)

In these expressions intra-band processes that create
particle-hole pairs are neglected (see Appendix A). It
follows from Eqs. (41) (42), that the even in λ part of
the distribution function fk,λ contains information about
thermal transport, whereas the odd part governs the
transport of charge. Since the electric field contribution
to the kinetic equation (21) is odd in λ, and the thermal
gradient leads to a term that is even in λ (Eq. (22)), the
phenomena of thermal and charge transport are decou-
pled to linear order in the external fields at the neutrality
point. This can be traced back to particle-hole symme-
try and is the ultimate reason why the Wiedemann-Franz
law is dramatically violated in a Dirac fluid[18]. The dis-
tribution function shows a similar decoupling ocf charge
and heat modes for higher m: The collinear modes of
Eq. (32) are proportional to λm for s = 1 and to λm+1

for s = 2, 3. Consequently the kinetic equation in the
subspace of collinear zero modes is block diagonal in the
s = 1 and s = 2, 3 modes, as can be seen from Eqs. (24),
(33), (36)-(38). In the following this will further simplify
the calculation of transport coefficients.

Another important consequence of the linear graphene
spectrum is that the heat current jε is proportional to
the momentum density g =

∑
λ

´
k
~kfk,λ and is there-

fore conserved. The charge current, unlike in Galilean
invariant systems, is not conserved, and decays due to
interactions, giving rise to a finite restistvity in the clean
system.

B. Scattering times

The matrix elements of the collision operator deter-
mine the scattering rates of the three collinear zero modes
in different angular harmonic channels. In the absence of
spatial inhomogeneities and external forces, the kinetic
equation in the basis of collinear zero modes (32) reads∑

s′

(
∂tδs,s′ + Γs,s

′

m

)
am,s′ = 0, (43)

where the am,s are the coefficients of the expansion (40).
Posed as an initial value problem, this equation describes
the exponential decay of collinear zero modes. This decay
governs the behavior of the system at long time scales,

because modes that do not set the collinear part of the
collision integral to zero decay faster by a factor log (1/α)
(see Eq. (27)).

The scattering rates Γs,s
′

m are given by

Γs,s
′

m = (vβ~)
2
L−1
s,s′

〈
χ

(m,s)
k,λ |C|χ(m′,s′)

k,λ

〉
. (44)

Because of the definition of the scalar product in Eq.
(19), the matrix elements have dimension length2/time.
Vanishing scattering rates indicate conservation laws,
and the corresponding modes are zero modes of the full
collision operator as well as its collinear part. These
modes reflect the conservation of particle density, imbal-
ance density, energy density and momentum density:

χ
(s=1,m=0)
k,λ = 1, χ

(s=2,m=0)
k,λ = λ,

χ
(s=3,m=0)
k,λ = λβv~k, χ

(s=3,m=1)
k,λ = λeiθβv~k.

The imbalance density is conserved only to order α2, as
it decays due to higher order interaction processes. An
important simplification stems from the fact that all scat-
tering rates, for large |m|, share the asymptotic behavior
Γm ∼ |m|. This becomes a reasonable approximation for
the scattering rates with m ≥ 2. In the next section it is
shown, how this behavior allows us to obtain closed form
expressions for the non-local transport coefficients. As
discussed in the previous section, the matrix of scatter-
ing rates Γs,s

′

m is block diagonal in the modes describing
charge (s = 1) and thermal excitations (s = 2, 3), i.e.
Γ1,2
m = Γ2,1

m = Γ1,3
m = Γ3,1

m = 0. Therefore, the scattering
times determining the non-local electric conductivity are
given by τc,m = 1/Γ1,1

m : τc,0 → ∞, τc,1 = 1
α2

~
kBT

log 2
0.804π ,

τc,2 = 1
α2

~
kBT

log 2
2.617π as well as

τc,m ≈
1

α2

~
kBT

log 2

π
(γc · |m| − ηc)−1

if m > 2, (45)

where γc = 2.57 and ηc = 3.45 (see Appendix C for
more numerical values). It is also convenient to define an
effective scattering time for the Vlasov term:

τV =
2π2β~

αN log (2)
. (46)

Notice, that τV /τc,m ∼ 1/α is large for small α.
In the thermal sector, there are two relevant modes.

However, the s = 3 mode is physically more important,
because the vanishing of the corresponding scattering
rates for the m = 0 and m = 1 channels indicate the
conservation of energy and momentum. In the follow-
ing, it is shown that the neglecting of the s = 2 imbal-
ance mode in the calculation of the thermal conductivity
and viscosity, while significantly simplifying the analysis,
does only result in a small numerical error. Therefore,
for the purpose of calculating the transport coefficients,
only the s = 3 energy mode will be considered. The
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scattering times are then given by τε,m = 1/Γ3,3
m . Be-

cause of energy and momentum conservation, we have
τε,m=0,1 →∞, and for m = 2, it is τε,2 = 1

α2
~

kBT
9ζ(3)

3.341·2π .
For m > 2 the linear approximation can be used:

τε,m ≈
1

α2

~
kBT

9ζ(3)

2π
(γε · |m| − ηε)−1

m > 2, (47)

with γε = 5.18 and ηε = 11.3.

C. Non-local transport coefficients

The linear, non-local response of a system to external
forces F (r) is characterized by constitutive relations of
the form

J (r, t) =

ˆ
ddr′dt′ ν (r− r′, t− t′)F (r′, t′) , (48)

where J (r, t) is a current sourced by the field F (r′, t′)
and ν (r− r′, t− t′) is the corresponding transport co-
efficient. F can be a scalar potential, a vector field (an
electric field or a thermal gradient), or a tensor. Eq. (48)
takes a much simpler form in Fourier space:

J (q, ω) = ν (q, ω)F (q, ω) . (49)

If the system is confined to a geometry of a characteristic
size lgeo, the relevant wave vectors q in Eq. (49) will
be of the order of qgeo ≈ 2π/lgeo. On the other hand
ν (q, ω) varies on scales of the inverse mean free path
qmf ≈ 2π/lmf , where lmf = vτ and τ is the relevant
relaxation time. Thus if lgeo � lmf , we can approximate
ν (qgeo, ω) ≈ ν (q = 0, ω). We then have

ν (r− r′, ω) ≈ ν0 (q = 0, ω) δ (r− r′) (50)

and the constitutive relation (48) reduces to its local form
J (r, ω) = ν0 (ω)F (r, ω). The non-locality of Eq. (48)
matters if lgeo . lmf . On scales comparable to the mean
free path, transport is intrinsically non-local, because
particles loose their memory of previous events through
collisions with other particles or impurities - a mecha-
nism that ceases to be efficient. A good example is the
Poiseuille flow through narrow channels described in Sec.
VII. We proceed with the calculation of the non-local,
i.e. wavenumber dependent electric conductivity, ther-
mal conductivity and viscosity using the kinetic equation
(12) and the collinear zero mode expansion summarized
in Sec. III B.

1. Electric conductivity

As mentioned in Sec. IVB, only the first collinear
mode s = 1 is involved in the calculation of the electric
conductivity. Inserting the expansion of the distribution
function in terms of collinear zero modes (40) into the
kinetic equation (16) using its matrix representation of
Eqs. (33), (35), (36)-(38) and (39), the left hand side of
(16) can be transformed into a recurrence relation for the
coefficients a1,m, where, for the rest of this section, the
s = 1 index is dropped. A similar analysis for electrons in
a random magnetic field was performed in Ref.[66]. For
m > 2, Eq. (45) can be used, and the recurrence relation
reads

am+1 =
2ie−iϑq

vq

(
iω − τ−1

c,m

)
am − e−2iϑqam−1. (51)

This recurrence relation has the form

am+1 = (α′m+ β′) am − eiδam−1 (52)

with α′ = − 2ie−iϑq

vq
kBT
~

π
log 2γc, β′ =

2ie−iϑq

vq

(
iω − ηc kBT~

π
log 2

)
and δ = −2ϑq. It has

two solutions that can be given in terms of modified
Bessel functions. The physically interesting solution is

am = c · ei
δ
2

(
m+ β′

α′

)
I
m+ β′

α′

(
−2eiδ/2

α′

)
, (53)

where Iν (z) is the modified Bessel function of the first
kind. Another solution that diverges for m→∞ is given
by

cm = c · ei
δ
2

(
m+ β′

α′

)
K
m+ β′

α′

(
2eiδ/2

α′

)
.

Kν is the modified Bessel function of the second kind.
Making use of the coefficients am for m > 2 as given by
Eq. (53), the kinetic equation can be reduced to a 5× 5
component matrix equation:
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−iω +Mc (q, ω) 1

2 ivqe
iϑq 0 0 0

1
2 ivqe

−iϑq −iω + τ−1
c,1

1
2 ivqe

iϑq 0 0

0 1
2 ivqe

−iϑq −iω 1
2 ivqe

iϑq 0
0 0 1

2 ivqe
−iϑq −iω + τ−1

c,1
1
2 ivqe

iϑq

0 0 0 1
2 ivqe

−iϑq −iω +Mc (q, ω)



a−2

a−1

a0

a1

a2

 =


0

eE0βv
2
0

eE0βv
2
0

 , (54)

where Mc (q, ω) = τ−1
c,2 + a3 (q, ω) /a2 (q, ω) is a memory

function containing information on scattering channels
with higher angular momentum numbers. Using the Eqs.
(52) and (53), the memory function is written

Mc (q, ω) = τ−1
c,2 +

1

2
vq

I3+ ηc
γc
−iωτc (τcvq)

I2+ ηc
γc
−iωτc (τcvq)

, (55)

with the abbreviation τc = ~
kBT

log 2
π γ−1

c . It is now
straightforward to calculate the electric conductivity
from the relation

jc,x (q, ω) = σxx (q, ω)Ex (q, ω) . (56)

The non-local conductivity can be decomposed into a lon-
gitudinal part σ‖ (ω, q) and a transverse part σ⊥ (ω, q),
both depending on the modulus of q. The longitudinal
and transverse parts describe currents that flow in the
direction of q, or orthogonal to q, respectively:

σαβ =
qαqβ
q2

σ‖ (q, ω) +

(
δαβ −

qαqβ
q2

)
σ⊥ (q, ω) . (57)

We assumed that the electric field is parallel to the x-
axis. According to Eq. (57), σ‖ (q, ω) can be read off from
the x-component of the current density jc,x by letting q
be parallel to ex, and σ⊥ (q, ω) by considering the case
q ‖ ey. The conductivities are then given by

σ‖ =
σ0

1− iτ1,cω + 1
4v

2τc,1q2
(

2i
ω + 1

Mc(q,ω)−iω

) ,
σ⊥ =

σ0

1− iτc,1ω +
1
4v

2τc,1q2

Mc(q,ω)−iω

, (58)

where σ0 = N
e2 log(2)τc,1

2πβ~2 is the quantum critical
conductivity calculated in Ref. [11]. Note that
σ‖ (q 6= 0, ω = 0) = 0 holds, which also follows from for-
mula (60). If this was not the case, static currents with
a finite wave-vector q would lead to an infinite accumu-
lation of charge at certain points, which is forbidden by
the conservation of charge. In Fig. 3 the charge conduc-
tivities are plotted as functions of ω for different values
of q.

The electric conductivity tensor σαβ (q, ω) of Eq. (58)
gives access to different electric response functions. The
current-current correlation function is given by

χJαJβ (q, ω) = −iωσαβ (q, ω) , (59)

where α, β denote the components of the current vector
(see e.g. Ref. [84]). With the help of the continuity
equation, the charge density-density correlation function
is obtained from Eq. (59):

χρρ (q, ω) =
qαqβ
ω2

χJαJβ (q, ω) .

=
q2

iω
σ‖ (q, ω) . (60)

The non-local conductivity is related to the dielectric
constant ε (q, ω) which is defined as (see Eq. (13))

ε =
ϕext

ϕtot
. (61)

Observing that ϕind (q, ω) = V (q) δρ (q, ω), where δρ is
the induced charge density, we find

ε = 1− V (q)
δρ

ϕtot
. (62)

In linear response it is δρ = χρρ (q, ω)ϕtot, so that we
can write

ε = 1− V (q)χρρ. (63)

Taking the divergence of Ohm’s law jα (q, ω) =
σαβ (q, ω)Eβ (q, ω), and using the continuity equation
iωδρ = iqαjα to express the electric current in terms of
the induced charge density, we obtain

ϕtot =
iωδρ

q2σ‖
.

Inserting in Eq (62) we have

ε (q, ω) = 1− V (q)
iq2

iω
σ‖ (q, ω) ,

which is in accordance with Eq. (60). Notice, that both
the longitudinal conductivity σ‖ and the charge suscep-
tibility χρρ describe the response to the total potential
ϕtot. Hence the Vlasov term does not enter these quanti-
ties explicitely (for an in-depth discussion see Ref. [101],
Chapter 3, in particular Eq. (3.56)) Finally, the charge
compressibility K = ∂ρ/∂µ is given by

K (q) = χρρ (ω = 0) . (64)
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Figure 3: Longitudinal (upper row) and transverse (lower row) electric conductivities of charge neutral graphene as functions of
the electric field frequency ω as given by Eqs (58). Different colors indicate different values of the wavenumber q. Frequencies
and wave-numbers are normalized to the characteristic scattering times and lengths τc,1, lc,1 = vτc,1. σ0 is the interaction
induced conductivity at the neutrality point [11, 12]. The graphs show distinct resonant features at frequencies ω ∼ q/v,
where v is the electron group velocity. Whereas the real part of the longitudinal and the imaginary part of the transverse
conductivities are peaked around ω ∼ q/v, the imaginary part of the longitudinal conductivity exhibits a sign change indicating
an abrubt phase change of the current response. The real parts approach σ0 for q → 0, ω → 0. For q 6= 0, ω = 0 the longitudinal
conductivity vanishes. This general property of the charge conductivity follows from the conservation of charge (see Eq. (60)).

The role of interaction effects for the compressibility were
discussed in Ref.[17].

2. Thermal conductivity

Next we presemt our analysis for the non-local thermal
conductivity. Since momentum conservation implies for a
Dirac fluid the conservation of the heat current, thermal
transport is expected to display classical hydrodynamic
behavior, i.e. one expects non-local effects to be even
more important than for charge transport.[14, 84].

As pointed out in Sec. IVB, the s = 3 energy mode
must be kept in the calculation of the thermal conductiv-
ity, whereas the s = 2 imbalance mode can be neglected,
contributing only a small correction to the overall re-
sult. With only a single mode involved, the calculation
is formally analogous to the calculation of the electrical
conductivity in Sec. IVC1, even though there are crucial
differences in the actual result, given the distinct role of
momentum conservation. The relaxation time τc,m must

be replaced by τε,m as given by Eq. (47). The conserva-
tion of momentum is incorporated via τε,1 →∞, whivch
follows from the Boltzmann approach. The resulting lon-
gitudinal and transverse thermal conductivities read

κ‖ (q, ω) =
κ0

iωτε,2 − 1
4v

2q2τε,2

(
2i
ω −

1
Mε(q,ω)+iω

)
κ⊥ (q, ω) =

κ0

iωτε,2 +
1
4 v

2q2τε,2
Mε,2(q,ω)+iω

, (65)

with the memory function

Mε (q, ω) = τ−1
ε,2 +

1

2
vq

I3+ ηε
γε

+iωτε (τεvq)

I2+ ηε
γε

+iωτε (τεvq)
.

The abbreviation τε,2 = 1
α2

~
kBT

9ζ(3)
3.341·2π is used. For con-

venience κ‖/⊥ is given in units of a thermal conductivity
κ0 = 9Nπ3kBζ(3)τε,2/2β

2~2, however, τε,2 is the relax-
ation time in the |m| = 2 channel, and should not be
confused with an alleged relaxation time of the energy
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Figure 4: The figure shows the longitudinal (upper row) and transverse (lower row) thermal conductivities (58) as functions of
the electric field frequency ω. Different colors indicate different values of the wavenumber q. The conductivities are normalized
to κ0 = 9Nπ3kBζ(3)τε,2/2β

2~2. For small ω and vanishing q, the imaginary part of κ‖/⊥ diverges as 1/ω, whereas the real part
vanishes - a behavior indicating that thermal transport in the system is ballistic. The solid lines show the analytical result of
Eq. (65), the dashed lines show the full numerical result including all modes and the exact scattering times.

current, which is infinite due to the conservation of mo-
mentum.

In Fig. 3 the thermal conductivities are plotted as
functions of ω for different values of q. The fact that

thermal currents are protected by momentum conserva-
tion leads to a divergence of the thermal conductivity at
small frequencies: for q = 0, κ is purely imaginary and
shows the characteristic 1/ω Drude behavior.

3. Non-local shear viscosity

The non-local viscosity is defined through a constitu-
tive relation of the form of Eq. (49), linking the shear
force X0,αβ (r′) to the momentum-current tensor ταβ :

ταβ (r, t) =

ˆ
d2r′
ˆ
dt′ ηαβγδ (r− r′, t− t′)X0,γδ (r′, t′) .

(66)
Since the system is isotropic, the shear force can be cho-
sen such that the flow velocity is aligned with the x-
axis, and its gradient shows in the y direction. It is
assumed that the shear force is wavelike: X0,xy (r) =
X0,xye

iq·r−iωt. The wave-vector q can have an arbitrary
direction in the xy-plane, introducing a preference direc-
tion to the system’s response. In addition to τxy, this
gives rise to nonzero components τxx, τyy, if q does not

align with the x or the y-axes. The viscosity tensor ηαβxy
can be decomposed into transverse and longitudinal parts
(see Eq. (57)) analogously to the electric and charge con-
ductivities. Because ηαβxy is a fourth rank tensor the
decomposition is slightly more involved and the reader
is referred to Appendix D for details. The general q-
dependent viscosity tensor can be constructed with the
help of three rank two tensors:

e
(1)
αβ =

qαqβ
q2

e
(2)
αβ = δαβ −

qαqβ
q2

e
(3)
αβ =

1√
2

(qαpβ + pαqβ) / (pq) , (67)

where

pα = qγεγα. (68)
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The viscosity tensor is parameterized by two fre-
quency and momentum dependent functions, η‖ (q, ω)
and η⊥ (q, ω), which we will call longitudinal and trans-
verse viscosities:

ηαβγδ (q, ω) = η1 (q, ω)
(
e

(1)
αβe

(1)
γδ + e

(2)
αβe

(2)
γδ

)
+ η2 (q, ω) e

(3)
αβe

(3)
γδ .

Let the flow be in x-direction: u (y) = u (y) êx,
and let the wave-vector be parameterized by q =

q (cos (ϑq) , sin (ϑq))
T , where θ is measured with respect

to the x-axis. For ϑq = 0 or ϑq = π/2 follows e(1,2)
αβ = 0,

ηxxxy = ηxxyx = 0 and ηxyxy = η2/2. This corre-

sponds to the familiar shear flow in e.g. a Poiseuille
geometry where τxx = τyy = 0. The momentum cur-
rent flows orthogonal to the direction of the momentum
density. For ϑq = π/4, the viscosity is determined by η1:
ηxyxy = η1/2.

As in the case of thermal conductivity, dropping the
s = 2 imbalance mode produces only a small numerical
correction in the final result for the viscosity. With an
external shear force of the form of Eqs. (23), (38) applied
to the system, the kinetic equation can be written as
5 × 5 component matrix equation, similar to the case of
an applied electric field (see Eq. (54)). The force acts in
the |m| = 2 channels, and the equation reads


−iω +Mε (q, ω) 1

2 ivqe
iθ 0 0 0

1
2 ivqe

−iθ −iω 1
2 ivqe

iθ 0 0
0 1

2 ivqe
−iθ −iω 1

2 ivqe
iθ 0

0 0 1
2 ivqe

−iθ −iω 1
2 ivqe

iθ

0 0 0 1
2 ivqe

−iθ −iω +Mε (q, ω)



a−2

a−1

a0

a1

a2

 =


− iX0

4
0
0
0
iX0

4

 . (69)

Solving the matrix equation (69) for a±2, the vis-
cosity is calculated with the help of Eq. (66)
which takes the form τxy = N

∑
λ

´
k
vxkyfk,λ =

ηxyxyX0,xy. As explained above, the viscosity compo-
nents η1 and η2 can be read off from the general result
ηxyxy

(
q = q (cos (ϑq) , sin (ϑq))

T
, ω
)
by setting ϑq = 0

and ϑq = π/2:

η1 (q, ω) =
2η0

−iτε,2ω − q2v2 iτε,2ω
2q2v2−4ω2 + τε,2Mε (q, ω)

,

η2 (q, ω) =
2η0

−iτε,2ω − q2v2τε,2
4iω + τε,2Mε (q, ω)

.

(70)

Here, η0 is the viscosity at q = 0, ω = 0, η0 =
N (kBT )

3
τε,2/

(
8~2v2

)
, as it was first calculated in Ref.

[13] including both modes, s = 2 and s = 3.

V. COLLECTIVE MODES

Collective modes are solutions to the homogeneous
part of the kinetic equation (12), (16) (see e.g. [39]).
Consider Eq. (16). With the force terms set to zero it
holds

(L+ V + C)ψ = 0.

Here, L and C have are the matrix operators of Eqs. (33)
and (35). Solutions to this equation exist only if

det (L+ V + C) = 0 (71)

holds. This is only the case for certain values of the vari-
able pairs ω, q. Eq. (71) is an eigenvalue problem where
the eigenvalues ω (q) determine the dispersion relations
of the collective modes. On the other hand, collective
modes can be found from poles of response functions
for an external force S. The two methods are equiva-
lent. Within the kinetic equation formalism, response
functions are calculated as averages over the distribution
function ψ = (L+ V + C)−1

S. If the condition (71) is
fulfilled, the operator (L+ V + C)−1 is singular and thus
singularities in the response to S appear. We will use Eq.
(71) to study the collective modes of a Dirac fluid on an
infinite domain.

As in the previous sections, the kinetic equation will be
expanded in terms of collinear zero modes (32): χ(m,s)

k,λ =

λmeimθ {1, λ, λβv~k}. For m = 0 these modes corre-
spond to excitations of the charge, imbalance and energy
densities; for |m| = 1 they correspond to the associated
currents. At the end of this section it will be shown that
including non-collinear zero modes in the calculation does
not change the result as long as the fine structure con-
stant α is kept small.

To get a feeling for the structure of collective modes in
the system, it is useful to begin with the case q = 0. In
the subspace of collinear zero modes, the kinetic equation
reduces to Eq. (43) and the condition (71) reads

det
(
−iωδs,s′ + Γs,s

′

m

)
= 0. (72)

This is an eigenvalue equation for the frequencies of col-
lective modes that can be solved independently for any
m. Since, as pointed out in Sec. IVA, Γs,s

′

m is block-
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diagonal in the subspaces of electric (s = 1) and imbal-
ance/energy (s = 2, 3) excitations, the above equation,
as well as its extension to q 6= 0, can be solved indepen-
dently in these two sectors. For s = 1, the eigenfrequen-
cies are ωm (q = 0) = −i/τc,m. Since in this scenario
the time evolution of the modes is given by the factor
e−iωmt, all but the m = 0 mode, which is protected by
charge conservation, exponentially decay at a rate in-
versely proportional to their scattering time. The m = 0
zero mode corresponds to the charge density, which is
conserved, and therefore does not decay. In the following
two sections, the collective charge, as well as energy and
imbalance excitations will be described at finite q. Figs.
5, 6, 7, 8, 9 show the dispersion relations of these modes.

A. Collective charge excitations

In general, conserved modes do not decay at q = 0,
and therefore their dispersion relations must vanish in
a spatially homogeneous system. The only conserved
mode in the charge sector is the charge density mode
χ

(m=0,s=1)
k,λ = 1. In the limit q � vτc,1, the memory ma-

trix (55) reduces to Mc (q, ω) ≈ τ−1
c,2 and Eq. (71) can

be solved analytically. The dispersions of the two lowest
modes are

ωcharge diff. ≈ ω± = − i

2τc,1
±
√
vq

τV
− 1

4τ2
c,1

. (73)

The conserved charge density mode is described by ω−.
The dispersion relations of Eq. (73) have a non-vanishing
real part for

q > q∗pl =
τV

4vτ2
c,1

. (74)

For wave-vectors below q∗pl, the plasmon is over-damped
(see Fig. 5). However, we have vq∗pl ∼ α3kBT/~ such
that the plasmon mode becomes more and more pro-
nounced at low temperatures.

The plasmon mode is gapped out due to the intrinsic
interaction induced resistivity. At q = 0 it has a vanish-
ing real part and its decay rate is given by the scattering
rate in the m = 1 channel:

ωpl (q → 0) = −i/τc,1 (75)

(see also [26]). It is the most weakly damped of an infinite
set of modes corresponding to higher angular harmonics
(see Fig. 5). It is clearly seen, that the modes relate to
different angular harmonic channels m. For q = 0 their
dispersions approach ωm (q = 0) = −i/τc,m. Such modes
play a crucial role in the relaxation mechanism of focused
current beams in graphene [1]. Similar collective modes
have been argued to influence the relaxation behavior of
unitary fermi gases [7] and QCD plasmas [8–10].

Figure 5: The imaginary parts of the dispersion relations
of collective charge excitations in different angular harmonic
channels m are shown. The wave-vector q is given in units
of the inverse scattering length vτ−1

c,1 . The grey symbols cor-
respond to the numerical solution of Eq. (71). The purely
imaginarym = 0 diffusive mode is the only mode approaching
zero for small q - a behavior necessitated by charge conserva-
tion. Modes with a higher m are damped and approach the
values −i/τc,m for q → 0. The corresponding excitations de-
cay even in the absence of spatial inhomogeneities. At a value
q = q∗pl (Eq. 74), the dispersions of the diffusive mode and
the m = 1 excitation merge, giving rise to a plasmon mode,
which has a finite real part (see Fig 6). This value is slightly
overestimated by the simplified expression of Eq. (74).

Figure 6: The figure shows the real parts of the dispersion
relations of collective charge excitations in different angular
harmonic channels m. The wave-vector q is given in units of
the inverse scattering length vτ−1

c,1 . The grey symbols corre-
spond to the numerical solution of Eq. (71). The plasmon
mode is gapped out by the interaction induced conductivity
and only obtains a finite real part around q = q∗pl (the sim-
plified value of q∗pl given in Eq. (74) (red dashed line) over-
estimates the branching point). At higher q, other, strongly
damped modes corresponding to higher angular harmonics
appear. The dampings of these modes are given by the m > 1
modes of Fig. 5.
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B. Collective energy and imbalance excitations

In the energy sector spanned by the modes s =
2, 3, the Eqs. (71) and (72) give rise three zero
eigenvalues. These correspond to the conserved en-
ergy (χ(m=0,s=3)

k,λ = λβv~k) and quasiparticle (imbal-

ance) densities (χ(m=0,s=2)
k,λ = λ), as well as momentum

(χ(m=1,s=3)
k,λ + (−)χ

(m=−1,s=3)
k,λ = 2 (i)βv~kx(y)). The

first two conservation laws lead to two diffusive modes.
The conservation of momentum gives rise to second
sound - ballistic thermal waves propagating through the
two dimensional graphene plane [74]. This mode is the
analogue of the density modes of a clean neutral Galilean
invariant system.

Truncating the mode expansion of Eq. (71) at m = 2,
which is a good approximation for low wave-numbers,
yields the dispersions

ωheat diff. ≈
1

4
v2q2τε,2,

ωqp diff. ≈
1

8
v2q2τε,2, (76)

for the heat and quasiparticle (imbalance) diffusion
modes, respectively. The second sound dispersion is
given by

ωsec. sound ≈
vq√

2
+ iτε,2

v2q2

8
. (77)

Second sound mediated by phonons has been previously
observed in solids [102] and had a velocity comparable to
the velocity of sound. Here, the second sound is carried
by electrons and propagates with a velocity v0/

√
2. The

above dispersion relations are shown in Figs. 7 and 9.
The dispersion of the quasiparticle diffusion mode and

the imaginary part of the second sound dispersion merge
at low wave-numbers. As in the case of charge excita-
tions, there exists an infinite number of damped modes
associated with scattering in higher angular harmonic
channels. These modes are depicted in Figs. 8 and 9.
Note, that modes associated with imbalance excitations
(s = 2) are damped stronger by an order of magnitude
as compared to energy excitations (s = 3).

C. Validity of the collinear zero mode
approximation for collective modes

The discussion so far was carried out in the restricted
subspace of collinear zero modes. In this section it is
shown that the results for collective excitations obtained
within the restricted subspace remain valid, if this restric-
tion is lifted, and non-collinear zero modes are added.
These modes introduce large corrections to the matrix of
scattering rates Γs,s

′

m , and it is not obvious that they can
be neglected. It is sufficient to consider the q = 0 case.
The extension to finite wave-numbers is straightforward.

Figure 7: The figure shows the imaginary part of the disper-
sion relations of second sound, heat diffusion, and quasipar-
ticle (imbalance) diffusion excitations. The wavevector q is
given in units of the inverse scattering length vτ−1

c,2 . The grey
symbols correspond to the numerical solution of Eq. (71).
The damping of second sound is due to scattering in them = 2
channel and follows the dispersion Im (ωsec. sound) ≈ 1

8
v2q2τε,2

(red curve). For small q the imaginary part of the second
sound dispersion and the dispersion of the quasiparticle diffu-
sion mode merge. A third diffusive mode corresponds to the
diffusion of heat (orange curve).

Figure 8: The imaginary part of the dispersion relations of col-
lective charge excitations in different angular harmonic chan-
nels m are shown. The wave-vector q is given in units of the
inverse scattering length vτ−1

c,2 . The grey symbols correspond
to the numerical solution of Eq. (71). For small q, the modes
approach values given by the scattering rates −i/τc,m and are
thus strongly damped. At larger values of q, the dispersions
tend to merge in a complex fashion. Fig. 7 shows the weakly
damped modes (second sound and diffusive modes) for small
values of q.

The scattering rate matrix Γs,s
′

m of Eq. (44) is extended
to include modes that are not collinear zero modes, which
are labeled with indices s > 3. It is useful to define the
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Figure 9: The real parts of the dispersion relations of collec-
tive energy and imbalance excitations are depicted. The grey
symbols correspond to the numerical solution of Eq. (71).
The linear dispersion of the second sound mode given by
vq/
√

2 for small q is shown in orange color. The wave-vector
q is given in units of the inverse scattering length vτ−1

c,2 .

following matrices

S = (vβ~)
2

〈
χ

(s<3)
k,λ |C|χ(s′<3)

k,λ

〉
P = (vβ~)

2

〈
χ

(s>3)
k,λ |C|χ(s′<3)

k,λ

〉
Q = (vβ~)

2

〈
χ

(s<3)
k,λ |C|χ(s′>3)

k,λ

〉
R = (vβ~)

2

〈
χ

(s>3)
k,λ |C|χ(s′>3)

k,λ

〉
.

Here, χ(s<3)
k,λ are the familiar collinear zero modes (32).

χ
(s>3)
k,λ are modes with a different |k|-dependence, such

that the full set of modes forms a complete basis. Since
C is Hermitian, we have Q = PT . The mode expansion
of the Liouville operator Ls,s′ of Eq. (33) also has to be
enlarged by the s > 3 modes. However, we do not need
to know the precise values of the corresponding elements
of L. The eigenvalue equation (72) reads

det (−iωL− F ) = 0, (78)

where F is the composite matrix

F =

[
S P
PT R

]
.

In the following, the Liouville matrix L will also be sep-
arated into blocks corresponding the same subspaces:
L =

(
(LS , LP ) ,

(
LTP , LS

))
. It follows from Eq. (27) and

the Hermiticity of the collinear part of the collision op-
erator Cc that

S ∼ P ∼ 1

R ∼ log (1/α) ,

meaning that non collinear zero modes are scattered
faster by a factor of log (1/α). The determinant can be
found using the block matrix identity

det

[
A B
C D

]
= det (D) det

(
A−BD−1C

)
. (79)

Applying this identity to Eq. (78) and noticing that for
α → 0 the inverse matrix in the last determinant van-
ishes, one has

det (iωL+ F ) ≈ det (iωLR +R) det (iωLS + S) .

Eq. (78) therefore separates into two independent parts:
det (iωLR +R) = 0 and det (iωLS + S) = 0. The sec-
ond equation is equivalent to the eigenvalue equation
(72). In the limit of a small fine structure constant, the
weakly damped collective modes can therefore be found
by solving the kinetic equation in the restricted subspace
of collinear zero modes, even if there is significant cou-
pling between all modes.

VI. SURFACE ACOUSTIC WAVES

The longitudinal electrical conductivity σ‖ is accessible
through experiments with surface acoustic waves (SAWs)
[70]. The simplest setup to measure σ‖ is a sheet of
graphene placed on top of a piezoelectric material. Using
interdigital transducers, SAWs are induced in the piezo-
electric. The real part of σ‖ then determines the damping
of the SAWs, while the imaginary part changes the SAW
velocity vs. Overall, for a small piezoelectric coupling the
change of the SAW velocity ∆vs, where the imaginary
part describes the damping, can be written as [67, 68]

∆vs
vs,0

= pe
1

1 + i
σ‖
σM

. (80)

Here pe < 1 is an effective coupling constant, and a σM a
reference conductivity. Both pe and σM depend on ma-
terial parameters of the piecoelectric. A rough estimate
for σM is given by σM ≈ vsεeff [67, 68], where εeff is
the effective permittivity at the surface of the piezoelec-
tric. There has been experimental work on the coupling
between SAWs and graphene [103, 104]. LiNbO3 seems
to be a suitable piezoelectric for such experiments[103],
because it provides a relatively large coupling parame-
ter pe ≈ 0.03 [71]. While there might be better choices
for the piezoelectric material, here we consider LiNbO3,
since the feasibility of a graphene-LiNbO3 device has
been demonstrated in Ref. [103]. The SAW velocity
is vs ≈ 4 · 103 m/s and the effective dielectric constant
is given by εeff ≈ 0.5ε0

(√
εTxxε

T
zz + 2

)
≈ 24ε0 (assuming

that the dielectric constant above the graphene sheet is
ε0). One then has

σM ≈ 10−6 S.
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Figure 10: The Figure shows the damping coefficients and velocity shifts of LiNbO3 surface acoustic waves induced by a graphene
sheet laying on top of the crystal. Due to the ∼ 1/T dependence of the scattering times τc,m, changing the temperature alters
the quantity vτc,mq, where q is the SAW wave-vector, such that the functional dependence of σ‖ (q, ω = vsq) can be investigated
without switching the SAW frequencies. Here, vs is the SAW velocity. Left figure: Damping coefficients of SAWs for three
distinct frequencies. The induced damping is small (of the order of 1/cm). Middle figure: The damping coefficients at low
temperatures depend sensitively on the scattering in higher angular harmonic channels. Setting Mc = τ−1

c,2 , thus neglecting
the scattering times τc,m>2, raises the damping by an order of magnitude. Right figure: Upper right pannel: Relative velocity
shifts ∆vs/vs. The velocity shifts are large (on the order of 1%). This is a consequence of the mainly capacitive behavior of
the graphene sheet at small frequencies (see main text).

The fine structure constant is small due to the large di-
electric constant and renormalization effects. We esti-
mate α ≈ 0.1. Here and in the following estimations, we
assume a temperature of 50 K.

Interdigital transducers induce SAWs with sharply de-
fined wave-vectors q0. The frequency of the SAW ω0 is
given by

ω0 = vsq0.

ω0 is much smaller than the characteristic hydrody-
namic frequency for a wave-vector of the same magnitude
ωhydro ≈ vq0, where v ≈ 106 m/s. It is

ω0

ωhydro
≈ 0.005. (81)

As shown in Fig. 3 the longitudinal conductivity σ‖ is
peaked around ωhydro and vanishes in the limit ω = 0,
q → 0. Therefore, SAW experiments are confined to a
highly “off-resonant” regime due to the small ratio (81)
and therefore cannot be large.

The damping coefficient is given by

Γ = −ωIm

(
∆vs
vs

)
= ωpe

Re
(
σ‖
)
/σM

1 +
∣∣∣ σ‖σM ∣∣∣2 . (82)

The relative velocity shift is

Re

(
∆vs
vs

)
= pe

1 + Im
(
σ‖
)
/σM

1 +
∣∣∣ σ‖σM ∣∣∣2 . (83)

Since interdigital transducers excite SAWs of a fixed
wavelength, altering q0 is difficult. Instead, the q de-
pendence of σ‖ can be tested by varying the tempera-
ture, and thus the product of the wave vector and the
scatterng length and q0lc,m. Fig 10 shows the damping
and the velocity shift induced by the graphene sheet as a
function of temperature, according to Eqs. (82) and (83).
As expected, the damping coefficients are very small, on
the order of 105 Hz, corresponding to damping lengths
of 1/cm. Such small damping are measurable in GaAs
2DEG structures [72], however they might be hard to ob-
serve with the more unconventional LiNbO3 device. On
the other hand the low temperature (large q) behavior
of the conductivity sensitively depends on the scattering
rates in the higher angular harmonic channels (see lower
left panel of Fig. 10), although the specific dependence
τ−1
m>c,2 ∼ |m| will be very hard to distinguish from e.g.
constant scattering rates.. Finally we note, that here
we considered the SAW response in the hydrodynamic
regime lc,1 � w, where w is the sample size. For small
sample sizes, the results will differ due to boundary scat-
tering.

VII. POISEUILLE PROFILES

The wave-vector-dependence of transport coefficients
is of importance when the currents in a system are spa-

tially inhomogeneous, either because the applied fields
are inhomogeneous, or because the inhomogeneity is im-
posed by the geometry of the system. The simplest exam-



19

ple for the latter case is the Poiseuille flow. In undoped
graphene, the energy current is conserved due to the con-
servation of momentum, however it is dissipated by the
uneven boundaries of the sample [1]. In a Poiseuille ge-
ometry, which consists of an infinitely long, straight sam-
ple of width w, the boundaries slow down the current
flow. The current profile becomes parabolic across the
sample. On the other hand, charge currents decay in
the bulk of undoped graphene due to the interaction in-
duced resistivity. In this case, there exists a crossover
from an almost flat current profile if w � vτc,1 to a more
parabola-like shape at w < vτc,1. However, as shown in
Ref. [1], the slowing down of the flow by the boundaries
becomes inefficient when w . vτc,2, again changing the
profile. In this section we investigate the Poiseuille pro-
files of charge currents in undoped graphene using the
full non-local conductivity (58).

A. Flow equations and boundary conditions

The thermal and charge flow is governed by the con-
stitutive relations

κ−1 (q, ω)αβ jε,β = −∂αT (84)

and

σ−1 (q, ω)αβ jc,β = Eα, (85)

where jε,β is the thermal current and jc,β the electric cur-
rent. With the thermal and electric conductivities κ and
σ depending on the wave vector q, these equations can be
seen as Fourier transforms of differential equations. Simi-
lar equations have been studied to describe non-localities
induced by vortices in type II superconductors [105]. The
temperature gradient −∂αT and the electric field Eα act
as source terms. In a Poiseuille geometry, the force fields
act perpendicular to the gradient of the flow velocity, i.e.
it is E ⊥ q, ∇T ⊥ q. Therefore, the currents are deter-
mined by the transverse conductivities. Let the sample
be oriented in y-direction and centered around x = 0.
The equations then read

κ−1
T (qx, ω) jε,y (qx, ω) = −∂yT, (86)

σ−1
T (qx, ω) jc,y (qx, ω) = Ey. (87)

To solve the above equations, boundary conditions at the
sample boundaries at ±w/2 are needed. As discussed in
Ref. [97], partial slip boundary conditions are appropri-
ate:

jε/c,y (x = ±w/2, ω) = ∓ζ
∂jε/c,y

∂x

∣∣∣∣
x=±w/2

. (88)

ζ is the so called slip length parameterizing the momen-
tum charge (current) dissipation at the sample bound-
aries. If the boundaries are sufficiently rough, ζ is of the
order of the mean free path associated with the m = 2

scattering time: ζ ∼ vτε/c,2. In principle, the Eqs. (86),
(87) represent infinite order differential equations and re-
quire infinitely many boundary conditions. However, this
problem does not appear explicitly in the calculation.
The finite width of the sample w sets a natural cut-off
for the wave-numbers q, and therefore only the low pow-
ers of q are relevant on the right hand side of Eqs. (86),
(87). For simplicity, the boundary condition (88) is used,
which is reasonable for not too small widths.

The Eqs. (86), (87) now can be solved by performing
a Fourier transform. To fix the boundary conditions two
point-like delta-function inhomogeneities are positioned
at ±w. In real space the equations take the form

κ−1
T (∂x, ω) jε,y (x, ω) = −∂yT − αδ (x− w)− βδ (x+ w)

(89)

σ−1
T (∂x, ω) jc,y (x, ω) = Ey − αδ (x− w)− βδ (x+ w) .

(90)

If the constants α, β are chosen such that Eq. (88) is
satisfied, the solution inside the sample will be identical
to the solution of the homogeneous equations with the
matching boundary conditions.

Here, the profiles of electric current flows through sam-
ples of different widths will be calculated. Solving the Eq.
(89) in Fourier space one obtains

jc,y (qx, ω) =(
2πEyδ (qx)− αe−iwqx − βeiwqx

)
σT (qx, ω) . (91)

Inserting this result into Eq. (88) gives two algebraic
equations, from which α and β can be determined:

ζ

ˆ
dqx
2π

(iqx)
(
αe−iqx

3w
2 + βeiqx

w
2

)
σT (qx, ω) =

ˆ
dqx
2π

(
αe−iqx

3w
2 + βeiqx

w
2

)
σT (qx, ω)−

EyσT (0, ω)

ζ

ˆ
dqx
2π

(iqx)
(
αe−iqx

w
2 + βeiqx

3w
2

)
σT (qx, ω) =

−
ˆ
dqx
2π

(
αe−iqx

w
2 + βeiqx

3w
2

)
σT (qx, ω) +

EyσT (0, ω) .

The above integrals are calculated with the FFT algo-
rithm. Once α, β are found, a Fourier transform the of
the solution (91) gives the desired flow profiles.

Figs. 11 and 12 show the results for different widths
w. For demonstration purposes no-slip boundary con-
ditions (ζ = 0) were assumed in Fig. 11. Here, for
w > vτc,1 the flow profile turns flat in the middle of the
sample and steeply descends to zero at the boundaries (as
necessitated by the no-slip boundary conditions). This
behavior is due to the interaction-induced conductivity
that dissipates current uniformly across the sample - at
a distance d > vτc,1 away from the boundary, a uniform
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Figure 11: Poiseuille profiles of charge currents in undoped
graphene samples of different widths w. Although physically
incorrect, no-slip boundary conditions were assumed for clar-
ity. The profiles are normalized to the current at x = 0. At
large widths w > vτc,1, the flow profiles turn flat. In the
bulk they resemble Ohmic flow. For small widths w < vτc,1,
the momentum non-conserving scattering becomes inefficient.
The electrons travel a distance corresponding to several width
before loosing their momentum. Consequently, the profiles
take a parabolic form, resembling classical Poiseuille flow.
The profiles were calculated from Eq. (91).

flow is restored. On the other hand, for w < vτc,1 the
current-relaxing scattering processes in the m = 1 chan-
nel become less and less important. The scattering in the
m = 2 channel dominates. It acts in the same way vis-
cous forces act in ordinary flows. Current is transported
from the middle of the sample, where it is maximal, to the
sample edges, where it is dissipated. A finite slip length
(as discussed, ζ = vτc,2 was chosen for simplicity) alters
these results (see Fig. 12): Whereas for widths w > vτc,1
the finite slip gives the current a non-negligible velocity
at the sample boundary, for small widths w < vτc,2, the
flow profiles are rendered flatter, and the boundary effects
become negligible. In the crossover region w ∼ vτc,1, the
profiles are curved and resemble a parabola. This takes
place around w ∼ 0.5vτc,2 and is in accordance with the
general expectations [97]: for w < vτc,2 the quasi-viscous
transport of currents from the middle of the sample to-
wards the boundaries becomes inefficient, and the bound-
ary does efficiently dissipate the current.

An interesting question is how the collective modes
investigated in Sec. V are changed when the Dirac fluid
is confined to a Poiseuille type sample with the boundary
conditions of Eq. (88). For large sample sizes one can
expect that e.g. the charge modes will exhibit a small
correction of the order of lc,1/w. The effects for small w
should be more interesting. They are, however, beyond
the scope of the present study.

Figure 12: Poiseuille profiles of charge currents in undoped
graphene samples of different widths w, normalized to the
current at x = 0. Partial slip boundary conditions with a slip
length ζ = vτc,2 were applied. At very small widths w �
ζ, boundary scattering ceases to be an efficient mechanism
for the dissipation of electric current. The profiles turn flat,
as they do in the nearly Ohmic regime w > vτc,1. In the
crossover regime at widths w ∼ 0.5vτc,1, profile curvature is
most pronounced. The profiles were calculated from Eq. (91).

VIII. CONCLUSION

In conclusion we have developed a kinetic theory of
non-local charge and thermal transport in a clean Dirac
fluid in the hydrodynamic regime. We obtained closed
analytic expressions for the frequency and wave-vector-
dependent, charge and thermal conductivities as well as
the non-local viscosity due to electron-electron Coulomb
interactions. Our solution is possible due to the domi-
nance of so-called colinear zero modes. In the limit os a
small fine-structure constant of graphene, all other mode
relax more rapidly, limiting the phase space of the collec-
tive excitations that dominate the long-time dynamics.
One aspect of the same physics, that was discussed pre-
viously by us in Ref.[1], is the onset of superdiffusion
in phase space, where Lévy-flight behavior on the Dirac
cone emerges. Frequent small angle scattering events are
interrupted by rate large-angle scattering processes. We
made specific predictions for measurements such as the
velocity shift of surface acoustic waves and for inhomo-
geneous flow pattern. Those become identical to the one
that follow from the solution of the Navier-Stokes equa-
tions in the long wavelength limit, but include higher or-
der gradients that come into play as the sample geometry
becomes smaller. In particular, we have demonstrated
how the non-local transport coefficients determine the
profiles of a hydrodynamic flow through narrow chan-
nels. In addition we determined the collective mode spec-
trum of the system including plasma waves and second
sound like thermal waves. We find a complex structure
of damped collective excitations. These excitations are
similar to the so-called “non-hydrodynamic” modes that
were shown to be relevant for the equilibration of other
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collission-domuinated quantum fluids [7] [8–10].
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Appendix A: The collision operator

Transformed to the band basis, the interaction part of the Hamilton operator (8) reads

Hint =
1

2

ˆ
k,k′,q

∑
αβ

Tλµµ′λ′
(
k,k′,q

)
ψ†λ′ (k + q, t)ψ†µ (k′ − q, t)ψµ′ (k

′, t)ψλ (k,t) (A1)

where the matrix elements Tλµµ′λ′
(
k,k′,q

)
Tλµµ′λ′

(
k,k′,q

)
= V (q)

(
Uk+qU

−1
k

)
λ′λ

(
Uk′−qU

−1
k′

)
µµ′

. (A2)

U is the usual transformation from sub-lattice space to the band space (see Eq. 11). For the derivation of the quantum
Boltzmann equation, the self energies Σ

≷
λ and the Green’s functions g≷λ′ are of interest (the small g is used for the

Green’s function transformed to the band basis g≷ (X, T ;k, ω) = UkG
≷ (X, T ;k, ω)U†k, where (X, T ) are the center

of mass coordinates, and (k, ω) are the relative coordinates after the Wigner transform). For details on the Wigner
transform and the definitions of G≷, Σ≷ see e.g. [82, 83, 106]). The off diagonal elements of greens functions in
band space can be neglected if the frequencies of interest are smaller than the energies of thermally excited particles:
ω � kBT . In the following, only the weak space and time dependencies induced by external forces and represented
by the center of mass coordinates will be of interest. For simplicity, the dependence on (X, T ) will be suppressed.
The Green’s functions g≷λ′ (k, ω) can be related to the distribution function:

g>λ (k, ω) = −i2πδ (ω − ελ (k)− Upot) (1− fλ,k (ω))

g<λ (k, ω) = i2πδ (ω − ελ (k)− Upot) fλ,k (ω) . (A3)

To second order in perturbation theory, for the self-energies

Σ
≷
λ (k,ω) = N

∑
µµ′λ′

ˆ
d2qd2k′dω1dω2

(2π)
6

∣∣Tλµµ′λ′ (k,k′,q)∣∣2
× g

≷
λ′ (k + q,ω1) g≷µ (k′ − q,ω2) g

≶
µ′ (k

′,ω1 + ω2 − ω)

−
∑
µµ′λ′

ˆ
d2qd2k′

(2π)
4

ˆ
dω1dω2

(2π)
2 Tλλ′µ′µ

(
k,k′,k′ − q− k

)
Tλµµ′λ′

(
k,k′,q

)∗
× g

≷
λ′ (k + q,ω1) g≷µ (k′ − q,ω2) g

≶
µ′ (k

′,ω1 + ω2 − ω) (A4)

holds. N = 4 accounts for the spin-valley degeneracy.
The collision operator, as it appears in Eq. (12), can now be determined from the self energies Σ< and Σ>. It can

then be written in terms of the distribution function fλ (k):

Cλ (k) = −iΣ<λ (k, ελ (k)) (1− fλ (k))− iΣ>λ (k, ελ (k)) fλ (k) . (A5)

The delta function δ (ω − ελ (k)− Upot (x)) sets the left hand side of the quantum Boltzmann equation to zero and
therefore cancels out. Inserting Eqs. (A3) into the self energies, parameterizing the deviations of fλ (k) from the
equilibrium distribution function as shown in Eq. (14), and linearizing in ψkλ (x, t) leads to the collision operator of
Eq. (24). The matrix elements γ(1,2)

k,k′,q of Eq. (24) are given by:

γ1

(
k,k′,q

)
= (N − 1)

∣∣TA (k,k′,q)∣∣2 +
1

2

∣∣TA (k,k′,k′ − q− k
)
− TA

(
k,k′,q

)∣∣2
−
∣∣TA (k,k′,k′ − q− k

)∣∣2
γ2

(
k,k′,q

)
= (N − 1) |TB (k,k′,k′ − k− q)|2 + (N − 1) |TA (k,k′,q)|2

+ |TA (k,k′,q)− TB (k,k′,k′ − q−k)|2 , (A6)
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with

TA
(
k,k′,q

)
= T++++

(
k,k′,q

)
= T−−−−

(
k,k′,q

)
= T+−−+

(
k,k′,q

)
= T−++−

(
k,k′,q

)
=

V (q)

4

(
1 +

(K +Q)K∗

|k + q| k

)(
1 +

(K ′ −Q)K ′∗

|k′−q| k′

)
and

TB
(
k,k′,q

)
= T++−−

(
k,k′,q

)
= T−−++

(
k,k′,q

)
=

V (q)

4

(
1− (K +Q)K∗

|k + q| k

)(
1− (K ′ −Q)K ′∗

|k′−q| k′

)
(A7)

Upper-case letters like K = kx + iky etc. combine the two components of the momentum vector onto a complex
variable.

Since the quantum Boltzmann equation only accounts for the diagonal in λ components of the distribution function,
the currents also have to be decomposed into contributions that involve particle-hole pair creation (jinter) and those
who do not (jintra). Here, the identity

UkσU
−1
k =

k

k
σz −

k× ez
k

σy (A8)

is useful. The charge current

jc = ev

ˆ
k

ψ† (k)σψ (k) (A9)

can be written as

jc = jc,intra + jc,inter, (A10)

where the two contributions are given by

jc,intra = ev

ˆ
k

∑
λ=±

λk

k
γ†k,λγk,λ

jc,inter = iev

ˆ
k

k× ez
k

(
γ†k,+γk,− − γ

†
k,−γk,+

)
. (A11)

The energy current jε and the momentum current tensor τxy can be decomposed in a similar manner. This leads to
the expressions (41) and (42) of the main text and the expression that is used for τxy in Sec. IVC3. As discussed
above, in the hydrodynamic regime, it is legitimate to focus on the intra-band contributions, which dominate the
transport behavior of the system.

Appendix B: Collinear scattering and collinear zero modes

Here, the logarithmic divergence of the collision operator for collinear processes is demonstrated following Ref. [11].
We then show, that the m-dependent collinear zero modes are those given in Eq. (32).

The essential mathematics behind the divergence is contained in phase space density available for two particle colli-
sions. The phase space is restricted by the delta function ensuring energy conservation: δ (k + k1 − |k + q| − |k1 − q|).
This can be seen from power counting in Eq. (24) using Eqs. (A6), (A7).

Choosing k = (k, 0) with k > 0, and writing k1 = (k1, k⊥) , q = (q, q⊥), collinear scattering occurs when k1 > 0,
k + q > 0, k1 − q > 0 and q⊥ ≈ 0, k⊥ ≈ 0. For small q⊥, k⊥ the argument of the delta function can be approximated
as

k + k1 − |k + q| − |k1 − q| ≈ k2
⊥

2k1
− q2

⊥
2 (k + q)

− (k⊥ − q⊥)
2

2 (k1 − q)
. (B1)

The right hand side of this equation is a polynomial in q⊥, and can be written in terms of linear factors as

k2
⊥

2k1
− q2

⊥
2 (k + q)

− (k⊥ − q⊥)
2

2 (k1 − q)
= − k1 + k

2 (k + q) (k1 − q)
(q⊥ − ζ1k⊥) (q⊥ − ζ2k⊥) .
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It is then easy to see by performing the q⊥ integration thatˆ
dk⊥dq⊥δ

(
− k1 + k

2 (k + q) (k1 − q)
(q⊥ − ζ1k⊥) (q⊥ − ζ2k⊥)

)
∝
ˆ
dk⊥
k⊥

.

This behavior leads to a logarithmic divergence. The divergence is however cut off by the screening of the Coulomb
potential [65]

V (|q|)→ V (|q|+ qTF ) ,

where qTF is the Thomas Fermi screening length. In the case of charge neutral graphene qFT = αkBT/v. If the
screening is included, the integral of (24) vanishes in the infrared. Thus, the contribution of collinear processes to the
scattering rates is enhanced by the large factor

log (1/α) .

It was demonstrated in sec. III B of the main text, that relaxation processes in the hydrodynamic regime are
dominated by collinear zero modes. As demonstrated above, these modes describe scattering events in which all
particle velocities show in the same direction. Examining the delta function responsible for energy conservation
δ (k + k1 − |k + q| − |k1 − q|), we see that, if all momenta are parallel to each other, energy is only conserved, if the
above conditions k > 0, k1 > 0, k + q > 0, k1 − q > 0 apply (except for unimportant isolated points in phase space).
The exchange momentum q, however, can be positive or negative. To find those ψkλ that correspond to collinear zero
modes, two terms in the collision operator Eq. (24) have to be considered:

A
(1)
k,k1,q,λ

= ψk+qλ + ψk1−qλ − ψk1λ − ψkλ

A
(2)
k,k1,q,λ

= ψk+qλ − ψ−k1+qλ̄ + ψ−k1λ̄ − ψkλ. (B2)

Using the parameterization

ψk,λ = aλ,m (k) eimθk (B3)

yields

A
(1)
k,k′,q,λ = (aλ,m (k + q) + aλ,m (k1 − q)− aλ,m (k1)− aλ,m (k)) eimθk

A
(2)
k,k′,q,λ =

(
aλ,m (k + q)− (−1)

m
aλ̄,m (k1 − q) + (−1)

m
aλ̄,m (k1)− aλ,m (k)

)
eimθk . (B4)

For collinear zero modes

A
(1)
k,k′,q,λ = 0

A
(2)
k,k′,q,λ = 0

has to hold. A(1)
k,k′,q,λ is set to zero by aλ,m (k) = {1, λ, βv~k, λβv~k}. A(2)

k,k′,q,λ is more restrictive. For even m its
zero modes are given by aλ,m (k) = {1, λ, λβv~k}, for odd m the zero modes are aλ,m (k) = {1, λ, βv~k}. Summing
up, the collinear zero modes are given by

aλ,m = λm {1, λ, λβv~k} eimθk .

Appendix C: Matrix elements of the collision operator

The values of some matrix elements are shown in Table I. For m ≥ 2 the values can be approximated by〈
χ

(m,s=1)
k,λ |C|χ(m,s=1)

k,λ

〉
= 2.574 · |m| − 3.456〈

χ
(m,s=2)
k,λ |C|χ(m,s=2)

k,λ

〉
= 1.825 · |m| − 2.741〈

χ
(m,s=3)
k,λ |C|χ(m,s=3)

k,λ

〉
= 5.184 · |m| − 11.37〈

χ
(m,s=2)
k,λ |C|χ(m,s=3)

k,λ

〉
= 2.042 · |m| − 4.398.

(C1)

All values are given in units of 1
v2β3~3 .
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m s s′
〈
χ
(m,s)
k,λ |C|χ(m,s′)

k,λ

〉
m s s’

〈
χ
(m,s)
k,λ |C|χ(m,s′)

k,λ

〉
m s s’

〈
χ
(m,s)
k,λ |C|χ(m,s′)

k,λ

〉
0 1 1 0 2 1 1 2.617 4 1 1 6.988
0 1 2 0 2 1 2 0 4 1 2 0
0 1 3 0 2 1 3 0 4 1 3 0
0 2 2 0 2 2 2 1.745 4 2 2 4.722
0 2 3 0 2 2 3 1.243 4 2 3 4.122
0 3 3 0 2 3 3 3.341 4 3 3 10.456
1 1 1 0.804 3 1 1 4.728 5 1 1 9.345
1 1 2 0 3 1 2 0 5 1 2 0
1 1 3 0 3 1 3 0 5 1 3 0
1 2 2 0.463 3 2 2 3.167 5 2 2 6.351
1 2 3 0 3 2 3 2.573 5 2 3 5.800
1 3 3 0 3 3 3 6.647 5 3 3 14.610

Table I: Matrix elements of the collision operator (24) with respect to the collinear zero modes χ(m,s)
k,λ = λmeimθ {1, λ, λβv~k}.

The index m labels the angular harmonic and s one of the modes in curved brackets.

Appendix D: Decomposition of the viscosity tensor into longitudinal and transverse parts

Consider a system with a preference direction introduced by the wave-vector q. It is useful to define the orthogonal
tensor basis

e
(1)
αβ =

qαqβ
q2

e
(2)
αβ = δαβ −

qαqβ
q2

e
(3)
αβ =

1√
2

(qαpβ + pαqβ) / (pq) , (D1)

which is normalized according according to ∑
αβ

e
(i)
αβe

(j)
αβ = δij .

Here it is

pα = qγεγα.

In this basis, the symmetric shear force tensor X0,αβ can be written

X0,αβ = X(1)e
(1)
αβ +X(2)e

(2)
αβ +X(3)e

(3)
αβ . (D2)

The same holds for the momentum current (stress) tensor

ταβ = τ (1)e
(1)
αβ + τ (2)e

(2)
αβ + τ (3)e

(3)
αβ . (D3)

Since the system is fully isotropic, except for the preference direction set by q, the response of the system to different
components of X0,αβ can only be distinct as far as these components relate differently to the direction of q. Eqs (D2)
and (D3) are decompositions of the shear force and momentum current tensors into such components. The fourth
rank viscosity tensor ηαβγδ is defined through the constitutive relation

ταβ = ηαβγδX0,γδ.

In general, such a tensor connecting the quantities ταβ and X0,αβ as given by Eqs. (D2), (D3) can be written as
ηαβγδ =

∑
ij e

(i)
αβe

(j)
γδ η

(ij). However it follows from an Onsager reciprocity relation that ηαβγδ has to be symmetric
with respect to an interchange of the first and last pairs of indices:

η(αβ)(γδ) = η(γδ)(αβ).
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This condition further restricts the form of ηαβγδ to

ηαβγδ =
∑
i

e
(i)
αβe

(i)
γδη

(i). (D4)

Calculating the scalars η(i) using the quantum Boltzmann equation, one finds η(1) = η(2) 6= η(3). For reasons explained
in the main text, we call η(1) = η(2) = η⊥ the transverse, and η(3) = η‖ the longitudinal viscosity. In the sense that
ηαβγδ is spanned by projection operators onto the tensorial subspaces which span the force and current tensors and
are given in Eqs. (D1), the decomposition (D4) is completely analogous to the decomposition of a conductivity tensor
into transverse and longitudinal parts (see Eq. (57)).
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Lévy flights and hydrodynamic superdiffusion on the Dirac cone of Graphene
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We show that hydrodynamic collision processes of graphene at the neutrality point can be de-
scribed in terms of a Fokker-Planck equation with fractional derivative, corresponding to a Lévy
flight in momentum space. Thus, electron-electron collisions give rise to frequent small-angle scat-
tering processes that are interrupted by rare large-angle events. The latter give rise to superdiffusive
dynamics of collective excitations. We argue that such superdiffusive dynamics is of more general
importance to the out-of-equilibrium dynamics of quantum-critical systems.

The kinetics of large gravitational systems such as
globular clusters in galaxies or of a classical charged
plasma are governed by continuous collisions with small-
angle scatterings. The origin for this behavior is the
long-range character of the Newton or Coulomb force,
respectively. Such small-angle collisions behave in veloc-
ity space like drag and diffusion events, where a Fokker-
Planck equation offers an efficient description[1–3]. Col-
lisions can thus be seen as a Gaussian random walk in
phase space. The velocity of a plasma or gravitational
dust particle undergoes ordinary Brownian motion.

Quantum many-body systems that are near a
quantum-critical point are governed by soft modes that
will also induce effective long-range interactions[4]. This
begs the question whether such quantum-critical systems
also allow for an effective Fokker-Planck description of
the non-equilibrium kinetics; in the collision-dominated
hydrodynamic regime and in the crossover regime from
hydrodynamic to ballistic dynamics. Candidate sys-
tems are itinerant electrons near magnetic or nematic
quantum phase transitions[5–14], the superconductor-
insulator phase transition[15], or graphene near the Dirac
point[16]. Anomalous diffusion was even shown to be
present in two-dimensional Fermi liquids[17–22].

In this paper we analyze the quantum kinetics of
graphene near the Dirac point with electron-electron
Coulomb interaction. We show that the kinetic theory
at charge neutrality[23–27] can be expressed in terms of
a Fokker-Planck equation, yet with fractional derivative
with respect to the momentum direction. The underlying
random processes are Lévy flights[28–30], non-Gaussian
random walks whose step widths are distributed accord-
ing to a powerlaw. The slowly decaying tail of the step-
width distribution makes it impossible to define a dif-
fusion constant or to use a conventional Fokker-Planck
equation. However, a diffusion equation of the form

∂ρ

∂t
+Dµ |4|

µ
2 ρ = 0, (1)

with appropriately generalized fractional derivative[31,
32] can be used to describe such random walks. Lévy
flights have been discussed to model the migration
pattern of animals as they search for resources[33,

Figure 1: a) A wrapped Gaussian flight (upper circle)
and a wrapped Cauchy flight (lower circle) with rare large
momentum-transfer processes. b) Illustration of the Lévy
flight in momentum space for graphene at the Dirac point.
Electrons and holes that are thermally excited collide into
each other. Most of the time the momentum transfer due
to the electron-electron Coulomb interaction leads to small-
angle scattering. However, those processes are interrupted
by rare processes with large momentum transfer. The latter
change the dynamics of the system qualitatively, leading to
an accelerated or superdiffusive dynamics.

34], the high-frequency index dynamics of the stock
market[35], or to describe durations between consecutive
earthquakes[36]. In our system they correspond to ran-
dom walks in momentum space with powerlaw weight
for large momentum-transfer processes. We demonstrate
that the collision operator due to electron-electron inter-
actions in graphene takes the form of a fractional deriva-
tive. Then the Boltzmann equation becomes a fractional
Fokker-Planck equation, similar to Eq.1 with exponent
µ = 1:(

∂t + vkλ · ∇x − τ−1
L

(
∂2

∂θ2

)1/2
)
fkλ = Skλ, (2)

where θ determines the electron momentum direction:
k = k (cos θ, sin θ). The precise definition of the frac-
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tional derivative is given below. This result implies that
the out-of-equilibrium dynamics of graphene in the hy-
drodynamic regime is governed by a wrapped Cauchy
flight[37, 38], a specific Lévy flight on the Dirac cone. In
Fig. a we show a simulation of ordinary Brownian motion
on a ring and of the wrapped Cauchy flight. Details of
this simulation are summarized in[39]. The occurrence
of rare large-angle jumps is clearly visible. The corre-
sponding phase-space dynamics is sketched in Fig. b.
While the direction of k undergoes anomalous diffusion,
its magnitude k ≡ |k| is of the order of kBT/v0 with the
graphene group velocity v0 ≈ 108cm/s. The characteris-
tic time of the process is τL with

~τ−1
L ≈ 11.66α2kBT, (3)

where the fine-structure constant of graphene is α =
e2/ (~εv0). τL agrees up to a numerical coefficient with
the collision time for the hydrodynamic transport behav-
ior of graphene at the Dirac point[23–25]. Below we dis-
cuss how τL is determined. Such a time scale was re-
cently observed experimentally in THz spectroscopy of
graphene at charge neutrality[40].

Lévy flights in graphene have been discussed in
Ref.[41], where an egineered distribution of adatoms was
shown to result in a superdiffusive behavior of charge
carriers, and in Ref.[42] in the context of highly photo-
excited carriers that relax according to a cascade of
processes - a behavior with interesting implications for
pump-probe experiments. This can be seen as a superdif-
fusion in energy space far from equilibrium. It affects
the magnitude of the momentum. Here we focus on the
low-energy hydrodynamic regime and find a very differ-
ent behavior for the directional diffusion in momentum
space. Nevertheless, these results strongly suggest that
superdiffusive phase-space dynamics is a more common
phenomenon in quantum-critical systems.

We start from the Boltzmann equation

(∂t + vkλ · ∇x + F (x, t) · ∇k + C) fkλ (x, t) = 0 (4)

for the electron distribution function fkλ (x, t) where k
refers to the momentum and λ = ±1 labels the upper
and lower cone of the Dirac spectrum εkλ = λv0 |k|.
vkλ = ∂εkλ/∂k is the velocity vector and F (x, t) some
external force, e.g. due to an external electric field. C is
the Boltzmann collision operator due to electron-electron
interactions and was derived to order α2 in Ref.[23] from
a Keldysh-Schwinger approach; see also in[39]. It takes
the usual form of a two-body interaction:

Cf1 = −
∑
2,3,4

W12,34 [f1f2 (1− f3) (1− f4)|

− |(1− f1) (1− f2) f3f4] . (5)

The transition probability W12,34 is due to the electron-
electron Coulomb interaction e2/ε of Dirac fermions that
are confined to a two-dimensional system. ε is the di-
electric constant determined by the substrate. For free

standing graphene ε = 1 and the fine-structure constant
α ≈ 2.2 is of order unity. A renormalization group anal-
ysis shows that α flows towards weak coupling, justifying
our perturbative approach[16].

As usual, the kinetic distribution function fλ,k is ex-
panded around the local equilibrium distribution f0

kλ =(
eβ(ελ,k−µ) + 1

)−1
and parametrized as (f (0)

k = f
(0)
k+ ):

fkλ (x, t) = f
(0)
kλ + f

(0)
k

(
1− f (0)

k

)
ψkλ (x, t) . (6)

We linearize the Boltzmann equation with respect to
ψkλ (x, t). With the Liouville operator

L = (∂t + vkλ · ∇x) f
(0)
k

(
1− f (0)

k

)
(7)

we obtain a compact formulation of the Boltzmann equa-
tion: (L+ C)ψ = S. Skλ (x, t) contains external pertur-
bations, such as those due to a space and time dependent
electric field or flow-velocity gradient. The operators L
and C act on the momentum and band indices k and λ, re-
spectively. Taking into account the kinematic constraints
of the linear Dirac spectrum, the collision operator be-
comes:

(Cψ)kλ =
2π

~

ˆ
k′q

δ (k + k′ − |k + q| − |k′ − q|) (8)

×
(

1− f (0)
k

)(
1− f (0)

k′

)
f

(0)
|k+q|f

(0)
|k′−q|

×
{
γ

(1)
k,k′,q (ψk+qλ + ψk′−qλ − ψk′λ − ψkλ)

+ γ
(2)
k,k′,q

(
ψk+qλ − ψ−k′+qλ̄ + ψ−k′λ̄ − ψkλ

)}
,

where the matrix elements γ(1,2)
k,k′,q are given in Ref.[39]

and
´
k
· · · =

´
d2k

(2π)2
· · · . One easily finds the zero modes

that correspond to the conservation laws[23]. Eq.4 was
obtained by projecting the distribution function onto
the helical eigenstates of the problem. The same pro-
jection was performed in the derivation of the collision
operator[23, 39].

The usual analysis of the Boltzmann equation proceeds
as follows: One performs a Fourier transformation from
(x, t) to (q, ω) and introduces a complete set of states χ(s)

kλ
to evaluate the matrix elements 〈s |L+ C| s′〉 with scalar

product 〈s|s′〉 =
∑

kλ χ
(s)∗
kλ χ

(s′)
kλ . The Liouville operator

becomes L = (−iω + ivkλ · q) f
(0)
k

(
1− f (0)

k

)
. The dis-

tribution function then follows as ψ = (L+ C)−1
S. For

finite ω or q the operator L + C is nonsingular. This
program is somewhat simplified for graphene at charge
neutrality. As shown in Refs.[23–25, 27], scattering pro-
cesses where all momenta are collinear are enhanced by
a factor log (1/α). This can be used to identify the dom-
inant modes, derived in the supplementary material:

χ
(m,s)
kλ = λmeimθ {1, λ, λv0k/ (kBT )} , (9)



3

wherem ∈ Z is the angular momentum quantum number
while s = 1 · · · 3 labels the collinear modes for given m.
We solve the kinetic equation by projecting it onto the
dominant collinear modes χ(m,s)

kλ , but checked that our
key conclusions are unchanged if we chose a larger set of
basis functions. Also, if we restrict our considerations to
the transport of charge due to external electric fields, it
suffices to consider the modes χ(m,1)

kλ = λmeimθ of Eq.
(9). For simplicity we confine ourselves to electric-field
source terms and only discuss this mode. The general-
ization to other modes is straightforward.

The low-energy Dirac Hamiltonian is rotationally in-
variant such that the collision operator becomes diagonal
in the angular momentum representation

〈m |C|m′〉 =
ln 2

π
δm,m′τ

−1
m . (10)

The diagonal elements are, besides a convenient prefac-
tor, the scattering rates of the corresponding angular mo-
mentum channel. τ−1

0 = 0 due to charge conservation,
while the collision rate

~τ−1
1 = 3.646α2kBT (11)

for m = 1 was determined in Ref.[23] to yield the opti-
cal conductivity σ (ω) = e2

h 4 ln 2kBT
(
−i~ω + ~τ−1

1

)−1
.

τ−1
1 was recently observed in Ref.[40] using a waveg-
uide setup; a demonstration of quantum-critical hy-
drodynamic transport. The dramatic violation of the
Wiedemann-Franz law at charge neutrality is another
important indication for electronic hydrodynamics at
charge neutrality[44].

We evaluated the matrix elements 〈m |C|m〉 and obtain

τ−1
m = τ−1

1 (κ |m| − κ′) , (12)

where the two numerical constants are given as κ ≈ 3.199
and κ′ ≈ 4.296, see also Fig. . This behavior is asymp-
totically exact at large m but valid with good accuracy
already for m > 2. The most important aspect of this
result is that the dependence of the scattering rate on the
angular momentum m is non-analytic. To simplify the
analysis we assume in the following that τ−1

m = τ−1
L |m|,

where τ−1
L = κτ−1

1 is the characteristic time of the of the
Lévy flight process, given in Eq. (3).

The implication of the |m|-dependence of τ−1
m becomes

evident if we consider the scattering between two dis-
tinct momentum directions. Fourier transformation of
τ−1
m yields:

〈θ |C| θ′〉 = −
ln 2τ−1

L

(2π)
2

sin2
(
θ−θ′

2

) . (13)

Thus, we obtain a slowly-decaying powerlaw ∼ (θ − θ′)−2

for scattering processes away from forward scattering.
Using this result for 〈θ |C| θ′〉 we can rewrite the Boltz-
mann equation in the form Eq. (2) with characteristic

Figure 2: Upper panel: Angular momentum dependence of
the matrix elements of the collision operator 〈m, s |C|m, s′〉
where s = 1 · · · 3 refers to the collinear eigenmodes of Eq.9.
In the text we discuss, for simplicity, only 〈m |C|m〉 ≡
〈m, 1 |C|m, 1〉. Lower panel: log-log plot of the matrix
element to demonstrate that we can distinguish the |m|-
dependence from, e.g. |m| log |m|.

time τL of Eq. (3) for the Lévy flight. To arrive at
Eq. (2) we used that the convolution of the distribution
function with 〈θ |C| θ′〉 can be expressed as a fractional
derivative(

∂2g (θ)

∂θ2

)1/2

=
∂

∂θ

ˆ 2π

0

g (θ′)

tan
(
θ−θ′

2

)dθ′, (14)

a special case of the Riesz-Feller derivative 4µ/2[31, 32].

There are some profound implications that this frac-
tional Fokker-Planck formulation immediately reveals.
For example, we consider a scenario where we inject a
highly directed excitation[22]. To this end we consider a
source term in the Boltzmann equation that causes this
excitation:

Skλ (t) = δ (t) f
(0)
k

(
1− f (0)

k

)∑
m

δhλme
imθ. (15)

We assumed that we will only inject excitations in a
window ±kBT near the Dirac point, hence the factor
f

(0)
k

(
1− f (0)

k

)
. In addition we decomposed the source
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Figure 3: Upper panel: Post-injection distribution function
that follows from the fractional Fokker-Planck equation, Eq.2,
with external perturbation of Eq.15. Notice the superdiffu-
sive dynamics at short times. Lower panel: Comparison of
superdiffusive and diffusive dynamics at short times. At an-
gles away from the peak at θ = 0 superdiffusion leads to a
faster growth of the distribution function. Inlet: the initial
peak at θ = 0 decays as 1/t for superdiffusion and 1/

√
t for

ordinary diffusion. This behavior dominates the heating of
the system (see main text).

term into its angular momentum modes. The linearized
Boltzmann equation is applicable if |δhλm| � 1. To de-
scribe an excitation that is peaked along an axis given
by a certain momentum direction, we use δhλ,m = δhλm,
which has a λ-dependence of the s = 1 mode of Eq. (9).
The solution of the fractional Fokker-Planck equation for
a homogeneous case q = 0 is then given as

ψλ (θ, t) = δhΘ (t)
sinh (t/τL)

cosh (t/τL)− λ cos (θ)
. (16)

This function is known as wrapped Cauchy distribution
with circular variance 1−e−t/τL [37, 38]. Θ (t) is the step
function. ψ+ (θ, t) is shown in the upper panel of Fig. .

For t = 0, ψλ (θ, t) corresponds to two delta functions
due to particle and hole flows in opposite directions. Let
us concentrate on the particle channel λ = +1. For short
times t � τL, the peak in the initial current direction

decays as

ψ+ (t, θ = 0) ≈ δhτL
πt
, (17)

while the distribution function grows linearly for all non-
zero angles:

ψ+ (t, θ 6= 0) ≈ δh

4π sin2 (θ/2)

t

τL
. (18)

The same behavior occurs for λ = −1 if we shift θ →
θ + π. This behavior in contrast to the one that follows
from usual Fokker-Planck diffusion. The latter we ob-
tain for example from collision rates τ−1

m ∼ m2. Then the
usual spreading of a Gaussian wave package occurs with
ψ+ (t, θ = 0) ∝ t−1/2 and ψ+ (t, θ 6= 0) ∝ t2 (lower panel
of Fig. ). While the forward direction of a Levy flight
decays more slowly than in usual diffusion, the growth at
larger angles is much faster, hence the name superdiffu-
sion.

A tangible implication of this superdiffusive charge mo-
tion is the heating of the system after the injection. To
this end we determine the time dependence of the entropy
density

∂s (t)

∂t
= 4kB

∑
λ

ˆ
k

log

(
1− fkλ
fkλ

)
∂fkλ
∂t

. (19)

The heat density caused by the injection is given by
δq (t) = T (seq − s (t)) . Inserting the distribution func-
tion of Eq. (16) we obtain

∂s (t)

∂t
=

4 log 2

9ζ (3)

seq

τL

(δh)
2

sinh2 (t/τL)
, (20)

where seq is the equilibrium entropy density. In order to
stay within the regime of linear response, we are confined
to t > δhτL. For t→∞ one finds s→ seq, and we obtain
s (t) = seq

(
1− (δh)

2 4 log(2)
9ζ(3)

(
coth

(
t
τL

)
− 1
))

. Thus,
initial heating occurs according to

δq (t) ∝ Tseqδh
2 τL
t
. (21)

This result is a direct consequence of the superdiffu-
sive behavior, in particular of the slow decay along the
forward direction. In case of ordinary diffusion follows
δq (t) ∝ t−1/2 which is much faster (see Fig. ). The m-
dependence of τ−1

m that is responsible for the Lévy flight
behavior can also be seen in non-local transport coeffi-
cients since the conductivity at finite momentum q cou-
ples the different harmonics of the distribution function.
As an example we show in the supplementary material
the transverse optical conductivity at finite q. Never-
theless, experiments with directed electron beams [46],
which in the past have been used to investigate electron-
electron scattering effects [45], seem to offer a more direct
way of testing the short time behavior of Eq. (21).
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The occurrence of Lévy flights to describe scattering
processes in momentum space is a more general phe-
nomenon and not restricted to graphene at the neutral-
ity point. In two-dimensional Fermi liquids with char-
acteristic rate ~τ−1

FL ∼ kBT
2/TF , it holds for |m| <

M ∼
√
TF /T that τm−1 ∼ τ−1

FL
mp

Mp log |m| with p =

2 (1 + (−1)
m

), while τ−1
m ∼ τ−1

FL for |m| > M [18, 22].
TF is the Fermi temperature. This yields superdiffu-
sive behavior in a wide time window. Another system
that also shows τ−1

m ∝ |m| for arbitrarily large m con-
sists of electrons in a random magnetic field, important
for the description of composite fermions in the frac-
tional quantum Hall regime[47]. Our analysis implies
that this system should also undergo a wrapped Cauchy
flight in momentum space. Large classes of quantum-
critical systems, discussed e.g. in Refs.[5–15] are gov-
erned by long-ranged soft-mode interactions. An anal-
ysis of collision processes along the lines discussed here
may reveal a non-analytic dependence of the scattering
rates on angular momentum quantum number according

to τ−1
m ∝ |m|µ/2. This would give rise to a more gen-

eral class of wrapped Lévy flights, a consequence of the
power-law behavior 〈θ |C| θ′〉 ∝ |θ − θ′|−1−µ2 near forward
scattering. This could occur on the Fermi surface for itin-
erant quantum critical systems or near a soft momentum
in critical bosonic systems. If a fractional Fokker-Planck
formulation, along the lines of our Eq. (2), can be de-
rived, it will be significantly easier to draw conclusions
about the out-of-equilibrium dynamics of the system such
as a focussed injection of collective excitations. Finally
we mention that the formulation of the Boltzmann equa-
tion presented here can also be used to study the non-
local electric and thermal conductivities and viscosities,
allowing insight into the diffusive and sound excitations
in the hydrodynamic regime[48].
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Supplementary material
I. SUMMARY OF THE SIMULATIONS SHOWN IN FIG.1

Superdiffusion on the Dirac cone can be seen as a random walk of particles, where the step sizes are distributed
according to a wrapped Cauchy distribution. This distribution solves the fractional Fokker-Planck equation (2) of the
main text (see [1, 2]). The anglular distance on the Dirac cone travelled by an electron during a time interval ∆t is
therefore distributed according to

ψ̃ (θ,∆t) =
sinh (∆t/τL)

cosh (∆t/τL)− cos (θ)
. (22)

To generate Figs. 1 a) and b) of the main text we created a sequence of random angles ∆θi using the distribution
(22). The position of the particle after N steps, i.e. after a time intervall N∆t, then is

θN =

N∑
i=0

∆θi. (23)

Fig. 4 depicts a wrapped Cauchy random walk with N = 500 steps. In the case of ordinary diffusion, the step size
distribution of Eq. (22) must be replaced by a wrapped normal distribution, which is written in terms of the Jacobi
theta function, but can be closely approximated by the van Mises distribution (see e.g. Ref. [3]):

ψ̃normal (θ,∆t) =
ecos(θ)/∆t

2πI0 (1/∆t)
.

Using the described procedure we obtain the wrapped Gaussian random flight shown in Fig. 5.
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Figure 4: 500 steps of a superdiffusive wrapped Cauchy random walk of an electron on the Dirac cone.

Figure 5: 500 steps of a wrapped Gaussian random walk. The wrapped normal distribution was approximated by the von Mises
distribution.

II. COLLISION OPERATOR DUE TO ELECTRON-ELECTRON COULOMB INTERACTION

We briefly summarize the main steps in deriving the collision operator of the Boltzmann equation used in this
paper. The collision operator is determined from the larger and smaller self energies on the Keldysh contour. For
further details, see Ref. [4].

The non-interacting part of the Hamiltonian is

H0 = v~
ˆ
k

∑
αβ

ψ†α (k) (k · σ)αβ ψβ (k) (24)

which is diagonalized by the unitary transformation

Uk =
1√
2

(
kx+iky

k 1

−kx+iky
k 1

)
(25)

with

Ukv~k · σU−1
k =

(
v~k 0

0 −v~k

)
. (26)

The eigenvalues of the Hamiltonian are ±v~k. Thus we obtain quasiparticle states for the two bands: γk = Ukψk

with

H0 = v~
ˆ
k

∑
λ=±

λkγ†k,λγk,λ. (27)
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The electron-electron Coulomb interaction is

Hint =
1

2

ˆ
k,k′,q

∑
αβ

V (q)ψ†α (k + q, t)ψ†β (k′ − q, t)ψβ (k′, t)ψα (k,t) (28)

with V (q) = e2

2πε|q| . Transforming the interaction into the band, or helical representation, which takes into account
the locking between momentum and pseudo-spin that originates from the two sub-lattice structure of graphene. It
follows

Hint =
1

2

ˆ
k,k′,q

∑
αβ

Tλµµ′λ′
(
k,k′,q

)
γ†λ′ (k + q, t) γ†µ (k′ − q, t) γµ′ (k

′, t) γλ (k,t) (29)

where

Tλµµ′λ′
(
k,k′,q

)
= V (q)

(
Uk+qU

−1
k

)
λ′λ

(
Uk′−qU

−1
k′

)
µµ′

. (30)

Within second order perturbation theory it holds for the self energies for occupied and unoccupied states, respec-
tively.

Σ
≷
λ (k,ω) = N

∑
µµ′λ′

ˆ
d2qd2k′dω1dω2

(2π)
6

∣∣Tλµµ′λ′ (k,k′,q)∣∣2
× G

≷
λ′ (k + q,ω1)G≷

µ (k′ − q,ω2)G
≶
µ′ (k

′,ω1 + ω2 − ω)

−
∑
µµ′λ′

ˆ
d2qd2k′

(2π)
4

ˆ
dω1dω2

(2π)
2 Tλλ′µ′µ

(
k,k′,k′ − q− k

)
Tλµµ′λ′

(
k,k′,q

)∗
× G

≷
λ′ (k + q,ω1)G≷

µ (k′ − q,ω2)G
≶
µ′ (k

′,ω1 + ω2 − ω) . (31)

N combines the valley and spin degrees of freedom and takes the value N = 4. Next we use the fact that within
a quasiparticle description the upper and lower propagators are expressed in terms of the distribution functions
fλ (k, r, t) as

G>λ (k,r, ω, t) = −i2πδ (ω − ελ (k)) (1− fλ (k, r, t))

G<λ (k,r, ω, t) = i2πδ (ω − ελ (k)) fλ (k, r, t) (32)

As usual, k and ω stand for the Fourier-transformed variables of the relative coordinates and times while r and t
stand for the center of gravity or mean time.

The collision operator can now we determined from the self energies Σ< and Σ>:

Cλ (k) = −iΣ<λ (k,ελ (k)) (1− fλ (k))− iΣ>λ (k,ελ (k)) fλ (k) . (33)

For simplicity we only keep the momentum k and band index λ. Inserting G> and G< into the self energies yields
with the linearization Eq.(6) of the main paper the result for the collision operator given in Eq.(8) of the main paper.
The matrix elements γ(1,2)

k,k′,q of that equation are given as:

γ1

(
k,k′,q

)
= (N − 1)

∣∣TA (k,k′,q)∣∣2 +
1

2

∣∣TA (k,k′,k′ − q− k
)
− TA

(
k,k′,q

)∣∣2
−
∣∣TA (k,k′,k′ − q− k

)∣∣2
γ2

(
k,k′,q

)
= (N − 1) |TB (k,k′,k′ − k− q)|2 + (N − 1) |TA (k,k′,q)|2

+ |TA (k,k′,q)− TB (k,k′,k′ − q−k)|2 , (34)

with

TA
(
k,k′,q

)
= T++++

(
k,k′,q

)
= T−−−−

(
k,k′,q

)
= T+−−+

(
k,k′,q

)
= T−++−

(
k,k′,q

)
=

V (q)

4

(
1 +

(K +Q)K∗

|k + q| k

)(
1 +

(K ′ −Q)K ′∗

|k′−q| k′

)
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and

TB
(
k,k′,q

)
= T++−−

(
k,k′,q

)
= T−−++

(
k,k′,q

)
=

V (q)

4

(
1− (K +Q)K∗

|k + q| k

)(
1− (K ′ −Q)K ′∗

|k′−q| k′

)
(35)

Upper-case letters like K = kx + iky etc. combine the two components of the momentum onto a complex variable.
From the same unitary transformation also follows that

UkσU
−1
k =

k

k
σz −

k× ez
k

σy. (36)

This can be used to analyze the current

j =ev

ˆ
k

ψ† (k)σψ (k) (37)

of Dirac particles which consists of intra- and inter-band contributions:

j = jintra + jinter. (38)

The two terms are given as

jintra = ev

ˆ
k

∑
λ=±

λk

k
γ†k,λγk,λ

jinter = iev

ˆ
k

k× ez
k

(
γ†k,+γk,− − γ

†
k,−γk,+

)
. (39)

Thus, the velocity used in our Eq. (4) of the main paper is precisely the expression vkλ = v λkk of the intraband
current jintra. Spin-momentum locking is included naturally, if one goes to the helical states of the upper and lower
Dirac cone. The hydrodynamic response is governed by strong collisions of intraband excitations.

III. IDENTIFICATION OF THE COLLINEAR MODES AT FINITE ANGULAR MOMENTUM

In this section we determine the zero modes of the collision operator of Eq.(8) if we confine ourselves to collinear
collision processes. To this end we need to find under what conditions the two expressions

A
(1)
k,k′,q,λ = ψk+qλ + ψk′−qλ − ψk′λ − ψkλ

A
(2)
k,k′,q,λ = ψk+qλ − ψ−k′+qλ̄ + ψ−k′λ̄ − ψkλ, (40)

that occur in Eq.(8), vanish. Here we have to include the additional constrain

|k + q|+ |k′ − q| = |k|+ |k′| (41)

that follows from energy conservation.
By collinear modes we mean that all involved momenta are either parallel or antiparallel. As discussed in Ref.[4]

we consider such zero modes of collinear processes because all other processes are suppressed by 1/ log (1/α) where α
is the fine-structure constant. Of course, the analysis allows for scattering processes that are not collinear; the issue
is merely that distribution functions that become zero modes for collinear scattering are enhanced relative to those
that are no such zero modes. Finally we comment that the main conclusion of our paper, namely that the scattering
rate depends on angular momentum like τ−1

m ∝ kBT |m|, is unchanged if we go beyond the collinear mode regime.
One immediately finds that A(1) = B(1) = 0 subject to Eq.41 is obeyed by ψk,λ = 1, ψk,λ = k, and ψk,λ = λ |k|,

regardless of whether we confine ourselves to collinear modes. These modes correspond to the conservation of charge,
momentum, and energy, respectively. In addition to these modes one also finds ψk,λ = λ is a zero mode. It corresponds
to the fact that second order perturbation theory does not relax a charge imbalance between the upper and lower
Dirac cone.

Next we consider distribution functions

ψk,λ = aλ,m (k) eimθk , (42)
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where k = |k| is the magnitude of the momentum and θk its polar angle: k = k (cos θk, sin θk). Collinear scattering
corresponds to

θk = θk′ + s1π = θk+q + s2π = θk′−q + s3π, (43)

where even or odd si correspond to parallel and antiparallel momenta relative to k. We first show that all si are even
due to energy conservation. To this end we assume without restriction that k = (k, 0) with k > 0. Then k′ = u (k, 0)
and q = w (k, 0), where we do not assume that u and w are positive. Energy conservation now implies

1 + |u| = |1 + w|+ |u− w| . (44)

We need to fulfill this condition for an extended set of variables, not just for an isolated point in momentum space.
This implies that 1 + w > 0 so we can cancel the “1” on both sides. Then, to be able to cancel w it must hold that
u > w, which in turn implies u > 0 to cancel u. Thus, we find that the momenta k′, k + q, and k′ − q point in the
same direction as k even though q is allowed to point in the opposite direction. It follows that we can assume without
restriction that

θk = θk′ = θk+q = θk′−q. (45)

If we use that eimθ−p = (−1)
m
eimθpwe obtain

A
(1)
k,k′,q,λ = (aλ,m (|k + q|) + aλ,m (|k′ − q|)− aλ,m (k′)− aλ,m (k)) eimθk

A
(2)
k,k′,q,λ =

(
aλ,m (|k + q|)− (−1)

m
aλ̄,m (|k′ − q|) + (−1)

m
aλ̄,m (k′)− aλ,m (k)

)
eimθk . (46)

It is now easy so find that there are the following solutions that yield A(1) = B(1) = 0 subject to Eq.41:

aλ,m (k) = 1

aλ,m (k) = λ. (47)

In addition one finds aλ,m (k) = λ |k| if m is even and aλ,m (k) = |k| if m is odd.
Thus, we can write that the following modes are zero modes in the collinear scattering limit

ψk,λ = λmeimθk (1, λ, λ |k|) (48)

which is Eq.(9) of the main paper.

IV. SUPERDIFFUSION AND NON-LOCAL TRANSPORT

The Fokker-Planck equation (2) of the main text(
∂t + vkλ · ∇x − τ−1

L

(
∂2

∂θ2

)1/2
)
fkλ = Skλ (49)

can be used to calculate the response of graphene electrons to an external perturbation, such as for example an electric
field. In this case the force term is given by

Skλ = −eE (q, ω) · ∂fkλ
∂k

,

where E (q, ω) = E0e
i(q·x−ωt)ex is the electric field. To first order in the electric field it is

Skλ = −eE0e
iq·x cos θ (λ~vβ) f

(0)
k

(
1− f (0)

k

)
.

We perform a Fourier transform t→ ω, x→ q and project the equation (49) onto the collinear zero modes (48) using
the scalar product 〈φ |χ〉 =

∑
λ

´
d2k

(2π)2
φk,λχk,λ. The result is a simplified version of the Boltzmann equation:

− iωδm,m′ +
1

2
ivq
(
e−iϑqδm,m′+1 + eiϑqδm,m′−1

)
+

1

τL |m|
= −1

2
eE0vβδ|m|,1, (50)
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Figure 6: Real part of the transverse conductivity σ⊥ (ω, q) for different dependecies of the scattering times τm on m. This
result was obtain by solving Eq. (50) numerically.

where m labels the angular harmonic of the collinear zero mode and ϑq is the angle of the wave vector q with respect
to the x-axis. This equation is exact in the limit of a small coupling constant α, where collinear events dominate
the electron-electron scattering [4]. Notice, that the electric field only couples to angular harmonics with |m| = 1,
however for a spatially inhomogeneous field with q 6= 0, the second right hand side term of Eq. (50) couples all angular
harmonics. Therefore, information on the m-dependence of the scattering times can be extracted from the non-local
(i.e. q-dependent) electric conductivity σαβ (q, ω), which is defined through

jα (q, ω) = σαβ (q, ω)E (q, ω) .

The conductivity tensor σαβ (q, ω) can be decomposed into longitudinal and transverse parts according to

σαβ =
qαqβ
q2

σ‖ (ω, q) +

(
δαβ −

qαqβ
q2

)
σ⊥ (ω, q) ,

where σ‖/⊥ (ω, q) only depend on the magnitude of q. Fig 6 shows the influence of the m-dependence of the scattering
time τm on the real part of the transverse conductivity σ⊥ (ω, q). We conclude that the non-local conductivity,
playing an important role in experiments on surface acoustic waves [5, 6], provides a possibility to detect the peculiar
dependence of the scattering times τm on m, and to confirm the Lévy flight behavior predicted in the main text.
For completeness, we mention that the Boltzmann equation (50) can be solved exactly, and the expressions for the
non-local conductivities can be written down in closed form [7]:

σ‖ (q, ω) =
σ0

1 + iτ1ω − 1
4v

2τ1q2
(

2i
ω −

1
M(q,ω)+iω

) ,
σ⊥ (q, ω) =

σ0

1 + iτ1ω +
1
4 v

2τ1q2

M(q,ω)+iω

. (51)

Here, σ0 = N
e2 log(2)τσ,1

2πβ~2 is the quantum critical conductivity calculated in Ref. [4] and M (q, ω) is the memory
function summerizing the effects of higher angular harmonics:

M (q, ω) = τ−1
2 +

1

2
vq

I3+iωτL (τLvq)

I2+iωτL (τLvq)
,

where Iν (z) is the modified Bessel function.
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We study the electron temperature profiles for an inhomogeneous electron flow in the hydrodynamic regime.
We assume that the inhomogeneity is due to a weakly non-uniform distribution of the momentum relaxation time
within a spherically constricted area. We show that the temperature profile dramatically depends on the drive
strength and the viscosity of the electron liquid. In the absence of viscosity, a Landauer-dipole-like temperature
distribution, asymmetrically deformed along the current by the inelastic electron-phonon scattering, emerges
around the inhomogeneity. We find that both the Landauer-dipole temperature profile and its asymmetry in
the direction of the driving electric field exist in all dimensionalities and are, therefore, universal features of
inhomogeneous hydrodynamic electron flow. We further demonstrate that the electron viscosity suppresses the
thermal Landauer dipole and leads to the appearance of a “hot spot” exactly at the center of the constriction. We
also calculate the phonon temperature distribution, which can be directly measured in experiments on thermal
nanoimaging.

I. INTRODUCTION

The study of low-dimensional electronic systems is a
key direction in the condensed matter physics in the last
few decades. This is dictated by the general trend in
the reduction of the sizes of the electronic devices, and
is supported by significant advances in modern technology.
The semiconducting heterostructures [1] and graphene [2] are
among these technological developments, through which the
two-dimensional (2D) electron gas has been experimentally
realized and employed for designing nanoelectronic devices.

One of the most important properties of an electronic
circuit is its ability to cool efficiently and operate
under a sufficiently strong drive, when transport becomes
substantially nonequilibrium. Under the non-equilibrium
conditions, effects related to overheating, dissipation, and
thermalization become decisive for the device functioning.
The variety of setups in which such phenomena define the
physical properties of the system is quite wide, and surprises
arise even when studying more conventional structures subject
to the drive. The need of developing a comprehensive
theory of heat transfer in nanosystems has become particularly
evident in recent years. Indeed, miniaturization of electronic
devices down to the nanoscale and the use of new materials
with unique properties are expected to affect the thermal
properties of nanostructures in a crucial way.

As the nanoscales are reached, new effects come into play
owing to the increased role of disorder, electron-electron
interactions, and their interplay. Further, it is now possible
to change smoothly the dimensionality of the system. For
example, through etched gates, a 2D electron gas can be
divided into multiple areas that are connected by point
contacts [3, 4]. Properly selected configuration of gates allows
one to create a contact in the form of a quasi-one-dimensional

∗ gu.zhang@kit.edu

constriction and control the number of channels responsible
for current transfer through such a constriction. By using
a selective doping, one can engineer inhomogeneous low-
dimensional gate-controllable structures to probe charge and
heat transport.

At the same time, the development of the SQUID-on-tip
(tSOT) [5, 6] and the cryogenic quantum magnetometry [7]
techniques enables precise measurement of the temperature
profiles and electric current distributions in nanostructures.
The former technique has already been successfully applied
for the imaging of impurities [8, 9] and the quantum
Hall edges states of graphene samples [10–12]. These
modern experimental techniques can be applied to the
analysis of the influence of various types of nanoscale
inhomogeneities (intrinsic, geometrical, artificial) on heat
balance in nanodevices.

Recently, a new direction in the physics of low-dimensional
systems has emerged—electronic hydrodynamics, which was
discussed for many decades [13–16], but was scarcely studied
because of the lack of experimental realization at that time.
Now this direction is booming thanks to the technological
advances in the production of ultraclean ballistic systems, and
a number of new hydrodynamic regimes were theoretically
predicted (for review, see, e.g., Refs. [17–20]) and
experimentally discovered [7, 21–42]. In particular, with the
use of modern nanoimaging techniques, it became possible to
visualize hydrodynamic flows in 2D materials [7, 27, 32–34].

Despite the experimental advances in the thermal detection,
the studies of the hydrodynamic phenomena and transition
regimes between hydrodynamics, in which the electron-
electron scattering is the fastest, and the drift-diffusion
regime, where scattering by disorder dominates, mostly focus
on the charge transport. The heat transport features, however,
are comparatively less visited [43–45] and overheating of
the sufficiently small electron devices—the issue of crucial
importance for possible applications—in fact, remains very
poorly understood. Importantly, as was pointed out more than
twenty years ago [43], the local Joule heating approximation
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does not work for the description of small devices like
point contacts. The heat generation there can be governed
by nonlocal dissipation processes. However, nonlocality is
not the only specific feature of the heat dissipation at the
nanoscales.

A recent analysis [46] shows a great variety of different
overheating regimes in a quasi-one-dimensional (quasi-
1D) constriction [see Fig. 1(a)] with an inhomogeneous
distribution of transport scattering rate. One of the
distinguishing features of all these regimes is the presence
of strongly asymmetric temperature profiles [see Fig. 1(b)].
The heat transfer in 2D graphene with local defects was
addressed theoretically in Refs. [47, 48] within the concept
of supercollisions—the impurity-stimulated electron-phonon
scattering [49, 50] applied to resonant scatterers, as suggested
by experimental observations [9]. The spatial distribution
of dissipation power was linked there to the formation of
Landauer dipoles [51] around the local defect [cf. Fig. 1(d)].
However, only the total dissipation power was calculated in
Ref. [47] (in the linear-response regime), without exploring
the spatial structure of the local temperature profiles.

In this paper, we study in detail the thermal characteristics
of an inhomogeneous 2D sample in the hydrodynamic
regime, focusing on the temperature profiles induced by
inhomogeneities. We also discuss the thermal properties
of 3D inhomogeneous systems within a simplified model.
The inhomogeneity is introduced by the presence of a
constricted area, where the impurity scattering rate is different
from its uniform value (i.e, its value far away from the
constriction). We consider a circular-shape constriction
[Fig. 1(c)], where the constriction has a higher impurity
scattering rate. Similarly to the quasi-1D case, we predict a
strong asymmetry in the electronic temperature profiles, even
for a perfectly symmetric constriction.

We assume that the inhomogeneity is weak, and study
the dc-current-induced variation of temperature, density and
drift velocity distributions. One of our main results is
the prediction of a the Landauer-dipole character of the
temperature distribution (similar to the distribution of the
electric field in the original Landauer’s consideration [51]).
This Landauer-dipole temperature profile is further shifted
asymmetrically with increasing the driving current, as in the
quasi-1D setting [46]. Remarkably, this Landauer-dipole
asymmetric feature universally exists in all dimensionalities
[see Fig. 1]. Our second key result is that the temperature
profile is dramatically modified by the viscosity of the electron
liquid. We demonstrate that the electron viscosity suppresses
the Landauer-dipole-like structure and creates a “hot spot”
exactly at the center of the constriction. We also discuss
the corresponding phonon-temperature profiles that can be
experimentally observed using the tSOT technique [5, 8].

The paper is organized as follows. In Sec. II, we describe
our model and present the basic equations. In Sec. III,
we analyze the current-induced overheating for different
dimensionalities, geometries, and interaction models within
the ideal fluid model. In Sec. IV, we discuss the viscous case.
Section V addresses the phonon temperature. Our results
are summarized in Sec. VI. The details of calculations are
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FIG. 1. (a) Quasi-1D symmetric constriction with increased
scattering rate and the corresponding asymmetric overheating profile
(b). The temperature asymmetry increases when the ratio between
the constriction size L and the drift inelastic length lin decreases (see
Ref. [46]). The circular-shape constriction with increased impurity
scattering in 2D or 3D electron gas (c) driven by the flow along the
x direction, with the homogeneous drift velocity v∞ at r → ∞. The
magnitude of the momentum relaxation time τ is shown by the color
(the lighter the color, the larger the value of τ ). (d) Constriction-
induced local heating in a 2D or 3D sample, calculated with the
local-heating approximation, see Appendix B.

discussed in Appendices A and B.

II. MODEL AND BASIC EQUATIONS

In this section, we introduce the hydrodynamic equations
of ideal electron fluid (Sec. II A) and the constriction model
(Sec. II B). The formalism adopted in the present paper closely
follows and generalizes the one of Ref. [46], where an ideal-
fluid description of a quasi-1D constriction was developed.
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A. Hydrodynamic approach

We consider a 2D spatially inhomogeneous, weakly
disordered electron system, where the inhomogeneity is
induced by the dependence of the electron transport scattering
time τ on position r. The distribution function f(r,V) obeys
the stationary kinetic equation

V
∂f

∂r
+

F

m

∂f

∂V
= Ŝtf. (1)

Here V and m are the electron velocity and mass,
respectively, F is the total local force. The right-hand side
(r.h.s.) of Eq. (1) is determined by the collision operator

Ŝt = Ŝtimp + Ŝtph + Ŝtee,

which contains three terms describing electron-impurity,
electron-phonon, and electron-electron scattering. The
impurity part of the collision integral reads

Ŝtimp =
f0 − f
τ(r)

, (2)

where f0 = 〈f〉θ is the distribution function averaged over
the velocity angle θ. Below, we assume that the transport
relaxation time τ(r) is constant everywhere except for a
certain constricted area. We model the electron-phonon
scattering by the following Fokker-Planck-type collision
integral

Ŝtph = γ
∂

∂ε

{
ε

[
f0(1− f0) + T0

∂

∂ε
f0

]}
, (3)

where γ is the electron-phonon scattering rate, ε is the single-
particle energy, and T0 is the phonon temperature. We
assume γτ � 1. The specific form of the electron-electron
collision operator, Ŝtee, is not important to us. We consider
the hydrodynamic limit where the electron-electron collision
time, τee, is much shorter than the momentum relaxation time:
τee � τ . We also assume that τee � 1/γ.

First, we consider an ideal electron liquid neglecting the
electron viscosity and the heat conductivity, which are both
proportional to τee. The viscous liquid will be discussed in
Sec. IV. In the limit τee → 0, one can use the hydrodynamic
Ansatz for the distribution function

f(r,V) =
1

exp
[
m[V−v(r)]2/2−µ(r)

T (r)

]
+ 1

, (4)

where functions µ(r), T (r), and v(r) are the local values
of chemical potential, electron temperature, and the drift
velocity, respectively. The equations governing these
collective (hydrodynamic) variables are obtained by averaging
Eq. (1) multiplied by 1, V, and mV 2, respectively, over the
velocity V (see, for example, Appendix A in Ref. [46]). After
some algebra, we get the following set of equations:

div (vN) = 0, (5)

(v∇)v +
v

τ
=

1

m

(
F0 + δF− 1

N
∇W

)
, (6)

C div(vT ) = N

[
mv2

τ
− γ (T − T0)

]
. (7)

Here, N = N(r) is the local electron concentration, related
to the local chemical potential as follows (ν is the 2D density
of states):

µ = T ln

[
exp

(
N

νT

)
− 1

]
. (8)

The total force is written as a sum of the external force
including the driving homogeneous electric force eE0 and the
Lorenz force in the external homogeneous magnetic field B,

F0 = e
(
E0 +

[v
c
×B

])
,

and the inhomogeneity-induced correction δF that depends
on the electrostatics of the problem. For the gated case, when
interaction is screened beyond the gate-to-channel distance d,
this correction reads

δF = −e
2∇N
C , (9)

where C = ε/4πd is the gate-to-channel capacitance per unit
area, and ε is the dielectric constant. For comparison, in
the case of unscreened long-range Coulomb interaction, the
correction reads:

δF = −e2∇
ˆ
d2r′

N(r′)
ε|r− r′| .

The term N−1∇W on the r.h.s. of Eq. (6) represents the
thermoelectric force, where

W = W (N,T ) =

ˆ ∞
0

dε ε fF (ε)

is the density of energy in the frame moving with flow. Here,
fF = 1/ exp[(ε−µ)/T+1] is the Fermi function and µ should
be expressed viaN by using Eq. (8). In the limiting cases, this
function is given by

W ≈


N2

2ν
+
π2νT 2

6
, for νT � N,

TN, for νT � N.

(10)

The temperature balance equation (7) contains the heat
capacity defined as

C = C(N,T ) = (∂W/∂T )N=const

≈


π2νT

3
, for νT � N,

N, for νT � N.

(11)

The term −γ(T − T0) on the r.h.s. of Eq. (7) governs the
heat transfer from the electron system with temperature T
to the phonon bath with temperature T0. Strictly speaking,
the phonon temperature T0 also depends on r. Throughout
most of the paper we neglect this dependence assuming that
T0 is fixed by fast heat exchange with the substrate. A brief
discussion of the dependence T0(r) is presented in Sec. V.
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B. Model of inhomogeneity

In this paper, we consider a simple model of
inhomogeneity, which allows for an analytical solution.
First of all, we assume that the sample inhomogeneity
is completely governed by the spatial dependence of the
momentum relaxation time, τ(r), within a certain constricted
area, while other coupling parameters and the external
fields are position-independent. We limit ourselves to the
weak-inhomogeneity limit, for which the dimensionless
parameter

ξ(r) =
τ∞
τ(r)

− 1 (12)

is small, ξ � 1, and search for solutions of Eqs. (5), (6), and
(7) perturbatively, to the leading order in ξ. In Eq. (12), τ∞ is
the momentum relaxation time far away from the constricted
area.

Recently, the quasi-1D case was analyzed in Ref. [46],
where the temperature distribution of an infinitely long stripe-
shape sample was found. In the quasi-1D geometry, the
parameter ξ only depends on the coordinate x along the strip
and is nonzero only in a limited area (see Fig. 1a). The
asymmetry of temperature distribution in a variety of different
overheating regimes, both in the hydrodynamic and in the
impurity-dominated (the so-called drift-diffusion) cases, was
predicted [see Fig. 1(b)]. This asymmetry is captured neither
by the conventional local Joule heating approximation, nor a
more advanced approach of Ref. [43]), and reveals itself in the
regime of sufficiently strong non-equilibrium.

In this paper, we consider the hydrodynamic heat transport
in higher dimensionalities, mostly focusing on 2D cases. We
study the heat flow through a spherical-symmetric constriction
characterized by the transport relaxation time τ0 at the center
of the constriction and the radius L. For definiteness, when
illustrating our results we use the Gaussian shape of the
inhomogeneity:

ξ(r) =

(
τ∞
τ0
− 1

)
exp

(
− r

2

L2

)
. (13)

III. CURRENT-INDUCED HEATING

A. Homogeneous heating

We start our analysis with the homogeneous case, τ(r) =
τ∞, ξ ≡ 0. We fix the electric field at |r| → ∞ and assume
that the magnetic field is parallel to the z axis: B = −Bez.
From Eqs. (5), (6), and (7) we find the homogeneous velocity
v∞ and the homogeneous temperature T∞

v∞ = χ
E0 − β E0 × ez

1 + β2
, T∞ = T0 +

mv2∞
τ∞γ

. (14)

Here, χ = eτ∞/m, β = ωcτ∞ = tan θ, ωc = eB/mc, θ is
the Hall angle,

v∞ =
χE0√
1 + β2

= χE‖ (15)

is the absolute value of velocity, and E‖ = E0 cos θ is the
projection of the electric field on the direction of electric
current. Following Ref. [46] we define the dimensionless
overheating parameter

α = 1− T0
T∞

=

(
1 +

mγT0
e2E2

‖τ∞

)−1
, (16)

which scales quadratically with a weak electric field and
saturates at α = 1 in strong fields.

From Eqs. (14) and (15), we realize that the application
of the magnetic field for a fixed direction of external electric
field simply introduces a rotation of all the profiles by the Hall
angle θ. In what follows, we thus focus only on the case of
zero magnetic field.

B. Inhomogeneous heating

In this section, we study the spatial profiles of the
hydrodynamic variables (density, hydrodynamic velocity, and
temperature) after the introduction of a weak inhomogeneity.
For B = 0, θ = β = 0, v∞ = µE0, and E‖ = E0. Below,
we consider the two distinct interacting models.

1. Gated 2D liquid

Let us assume that the electron-electron interaction is
screened by a gate, so that δF is given by Eq. (9) . We
introduce small inhomogeneity-induced corrections δn, δv,
and δT , which are proportional to ξ:

N = N∞(1 + δn), (17)
v = v∞ + δv, (18)
T = T∞ + δT. (19)

Linearizing Eqs. (5), (6), and (7) with respect to ξ and
taking Fourier transform we get (for the Fourier transformed
quantities):

qv∞δnq + qδvq = 0, (20)(
1

τ∞
+ iqv∞

)
δvq+iq

(
s2δnq+

δTq
M

)
= −v∞

τ∞
ξq, (21)(

γ

c∞
+iqv∞

)
δTq+

(
iqT∞−

2Mv∞
τ∞

)
δvq =

Mv2∞
τ∞

ξq.

(22)

Here

s2 =
e2N∞
mC +

1

m

(
∂W

∂N

)
T=const

(23)

is the plasma wave velocity, with the second term representing
contribution from the Fermi-liquid velocity. We also define

M =
m

c∞
(24)
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as the “thermal” mass, and

c∞ =
C∞
N∞

=
1

N∞

(
∂W

∂T

)
N=const

(25)

is the specific heat capacity.

2. Weakly compressible liquid

General solutions of Eqs. (20), (21), and (22) are rather
cumbersome. Below we present solutions for the most
interesting case, where the liquid is almost incompressible.
This case is realized for strong electron-electron interaction,
when the plasma wave velocity is large:

s�
√
T∞
M

, s� v∞. (26)

We introduce two characteristic lengths: the elastic drift
length determined by the scattering off disorder,

l = v∞τ∞, (27)

and the inelastic drift length [46] characterizing the electron-
phonon scattering,

lin =
v∞c∞
γ

. (28)

We further assume that the elastic drift length is the shortest
lengthscale,

L� l, lin � l, (29)

while the relation between the constriction size, L, and lin can
be arbitrary.

From Eq. (21) one can conclude that, in the limit s → ∞,
the correction to the electron density is small, δn ∝ 1/s2.
Then, from Eq. (20), we find that qδvq ∝ 1/s2, so that the
electron liquid is almost incompressible: divδv → 0. As a
consequence, to the zeroth order with respect to 1/s2, one can
replace Eq. (20) with

qδvq = 0. (30)

Hence, the velocity correction in the momentum space is
perpendicular to q:

δvq ∝ tq,

where tq = [ez × q/q], and ez is the unit vector in the z
direction. This correction can be found by taking the scalar
product of tq and Eq. (21). Substituting δvq into Eq. (22) and
neglecting the small term qδvq, one can find δTq. Having in
mind Eq. (29), we finally arrive at the following expressions
for the velocity and temperature corrections:

δvq = −ξqtq(tqv∞), (31)

δTq =
Mξqv∞
τ∞

q2‖ − q2⊥
q2(iq‖ + 1/lin)

. (32)

Here, q‖ and q⊥ are, respectively, the parallel and
perpendicular components of the vector q with respect to the
drift velocity v∞.

A correction to the concentration arises only in the first
order with respect to 1/s2. It can be obtained by taking the
scalar product of Eq. (21) and q:

δnq =
ξqv∞
s2τ∞q2

(
iq‖ −

q2‖ − q2⊥
iq‖ + 1/lin

)
. (33)

Importantly, although δnq approaches zero for large s, one
cannot neglect δnq from the very beginning, because δFq ∝
s2δnq remains finite for s→∞.

We see that the temperature distribution in the momentum
space is described (up to a constant coefficient) by the product
of ξq and the heating kernel

K(q) =
q2‖ − q2⊥
q2‖ + q2⊥

1

iq‖ + 1/lin
. (34)

It is worth stressing that this equation is derived in the
incompressible limit corresponding to very strong interactions
and, therefore, does not contain any specific feature of the 2D
system. One can easily show that this form of the heating
kernel universally appears in other dimensions. In particular,
for quasi-1D strips parallel to the x-axis, where ξ = ξ(x), the
transverse wave vector equals zero, q‖ = 0, and we arrive at
equations derived previously in Ref. [46]:

K(qx) = 1/(iqx + 1/lin),

see Eq. (27) in that work. By using the same calculations
as presented above, one finds that for a 3D case, the heating
kernel is also given by Eq. (34), with q2⊥ = q2y + q2z (for v∞
parallel to x axis).

3. Landauer-dipole structure of the heating kernel

Direct calculation of the Fourier transform of (34) yields

K(r) =

∞̂

0

dse−s/linQD(x‖ − s, r⊥), (35)

whereQD(r) is equivalent to the “electric field” of a Landauer
dipole [51], which can be written in the universal form for all
dimensions:

QD(r) = CD
∂

∂x‖

( x‖
rD

)
, D = 1, 2, 3, (36)

where C1 = 1/2, C2 = 1/π, C3 = 1/2π for 1D, 2D and
3D cases. Choosing x axis along the v∞ direction, we get
the explicit expressions for Landauer dipoles in the heating
kernel:

QD(r) =


δ(x), for D = 1,

y2 − x2
π(x2 + y2)2

, for D = 2,

y2 + z2 − 2x2

2π(x2 + y2 + z2)5/2
, for D = 3.

(37)
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These functions obey the following property:

Q1(x) =

ˆ
dy Q2(x, y) =

ˆ
dy dz Q3(x, y, z).

In order to illustrate the physics behind the Landauer-dipole-
like temperature distributions, we present in Appendix B the
discussion of the Joule heat distribution in a simple two-
component model within the conventional theory of local
Joule dissipation.

As seen from Eq. (35), the heating kernel is given by a
Landauer dipole that is spatially-shifted at the distance ∼ lin.
This shift induces the asymmetry of the Landauer dipole
along the direction of the current. Physically, the asymmetry
stems from “convection” described by the term div(vT ) in
the heat balance equation which is absent in the theory of
local dissipation and in the weak-drive theory of non-local
heat transport of Ref. [43]. Interestingly, the kernel Eq. (35)
remains finite in the limit lin → ∞, which means that the
temperature distribution in this case is fully determined by
convection.

The correction to the electron temperature is given in the
coordinate space by

δT (r) =
T0
lin

α

1− α

ˆ
dDr′K(r− r′)ξ(r′). (38)

The asymmetry of temperature distribution manifests itself at
distances of the order of (or smaller than) the inelastic lengths.
At larger distances, we get

K(r) ≈ linQD(r), for r � lin. (39)

Hence, away from the inhomgeneity center, for r �
max(L, lin), the temperature distribution can be considered as
symmetric and given by the Landauer-dipole profile:

δT (r) ≈ αT0
(1− α)

QD(r)

ˆ
ξ(r′)dDr′, for r →∞.

(40)
For the case of the Gaussian constriction (13), equations for

temperature distribution valid for arbitrary relation between
r, L and lin are derived in Appendix A. They can be written
as follows.

δT (r) = AD

∞̂

0

ds

lin
e−s/linQ̃D(x− s, r⊥), (41)

where

AD = πD/2LD
α

1− α

(
τ∞
τ0
− 1

)
T0, (42)

and

Q̃1 =
1√
πL

e−x
2/L2

,

Q̃2 =
y2 − x2
πr4

[
1− e−r2/L2

(1 + r2/L2)
]
,

Q̃3 =
(y2 + z2 − 2x2) Erf(r/L)

2πr5

− e−r
2/L2

[(y2 + z2)2 − x4 + L2(z2 + y2 − 2x2)]

π3/2L3r4
.

(43)

Sending L → 0 for fixed r, we reproduce Eqs. (37): Q̃D →
QD for L→ 0.

Above, we have assumed that the elastic drift length l is
much smaller in comparison to the constriction size: l � L.
The obtained results can be straightforwardly generalized to
the case of arbitrary relation between l and L. As follows
from Eqs. (20), (21), and (22), the general expression for the
heating kernel, Eq. (34), becomes then

K(q) =

(
q2‖ − q2⊥
q2‖ + q2⊥

+ iq‖l

)
1

iq‖ + 1/lin

1

1 + iq‖l
. (44)

In real space, the heating kernel is again expressed in terms of
the Landauer-dipole field:

K(r) =
lin

lin − l

∞̂

0

dρ
(
e−ρ/lin − e−ρ/l

)
QD(x‖ − ρ, r⊥)

+ δ(r⊥)θ(x‖)

(
e−x‖/l − l

lin
e−x‖/lin

)
.

(45)
Clearly, this reproduces Eq. (35) in the limit l → 0. As
another feature, similar to Eq. (35), the kernel Eq. (45)
remains finite in the limit of diverging lin:

K(r) ≈
∞̂

0

dρ
(

1− e−ρ/l
)
QD(x‖ − ρ, r⊥)

+ δ(r⊥)θ(x‖)e
−x‖/l, for lin →∞.

(46)

C. Spatial profiles of the electron temperature, velocity, and
concentration

The spatial dependences of the temperature, as well as
the velocity and concentration, are plotted in Fig. 2 for a
2D system with a Gaussian constriction [see Eq. (13)]. We
assumed that the liquid is nearly incompressible (s→∞) and
l � lin, l � L. The temperature, velocity and concentration
are measured, respectively, in the following units

T ∗ =

(
τ∞
τ0
− 1

)
α

1− αT0 =

(
τ∞
τ0
− 1

)
(T∞ − T0), (47)

v∗ =

(
τ∞
τ0
− 1

)
v∞, (48)

n∗ =

(
τ∞
τ0
− 1

)
L

l

v2∞
s2
. (49)

The profiles of δT/T ∗, δv/v∗, and δn/n∗ depend only on
the relation between characteristic lengths of the problem, L,
lin, and l. Figures 2(a),(b) show the temperature plots δT/T∗
for l� (L, lin) for the two different ratios between L and lin:
L = 2lin for Fig. 2(a) and L = 0.5lin for Fig. 2(b).

Panel (a) of Fig. 2 reproduces an almost symmetric
Landauer-dipole structure, while panel (b) is much more
asymmetric because of a larger value of lin/L. In both
panels, the electron temperature is reduced along the current
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FIG. 2. Density plots of δT/T∗ in 2D systems with a Gaussian
constriction, Eq. (13) in the incompressible limit for L = 2lin (a)
and L = 0.5lin (b), respectively; (c) and (d): corresponding density
plots of δn/n∗; (e) and (f): vector density plots of δv/v∗.

injecting direction (the x direction), and enhanced in the
direction perpendicular to the current (the y direction). The
Landauer-dipole structures are shifted by the inelastic drift
length lin, yielding the temperature asymmetry similar to the
one predicted for the quasi-1D geometry [46].

The density plots of δn/n∗ for the same values of L and
lin are shown in panels (c) and (d) of Fig. 2. We observe that
among these distributions the most asymmetric is the density
profile, which emerges in the limit of nearly incompressible
fluid only for finite values of 1/s2, in contrast to the
temperature and hydrodynamic velocity. The asymmetry of
the temperature profiles corresponds to a similar feature of
the density distributions: particles tend to gather in front of
the constricted area, where a larger impurity scattering rate is
present.

The appearance of the Landauer-dipole structure in the
temperature distribution can be understood based on the
vector density plots for the velocity distribution δv/v∗ that
are shown in panels (e) and (f) of Fig. 2. One sees that
particles tend to detour around the constricted area. Heat
current, carried by these detoured particles, thus leads to the
hot spots on the y axis, which are clearly seen in panels (a)
and (b).

IV. THE VISCOUS CASE

So far, we have considered hydrodynamics of an ideal
electron fluid characterized by zero viscosity (taking the limit
τee → 0). In the presence of a finite viscosity η, expressions
for the velocity and temperature corrections are modified as
follows:

δvq = − ξqtq(tqv∞)

1 + iq‖l + κq2
(50)

δTq =
Mξqv∞
τ∞

1

iq‖ + 1/lin

(
1− 2q2⊥

q2
1

1 + iq‖l + κq2

)
.

(51)

Here,

κ = ητ∞ = l2κ, (52)

where lκ =
√
ητ∞ is a new length scale, arising in the

presence of viscosity. It is worth noting that viscosity by itself
gives a direct contribution to the dissipation [52], so that the
term

Pvis = η

¨
dxdy

[
(∂xvx − ∂yvy)

2
+ (∂xvy + ∂yvx)

2
]
,

(53)
appears on the r.h.s. of the heat balance equation, Eq. (7).
Here vx and vy are the spatially dependent velocities
along the x and y directions, respectively. As seen from
Eq. (53), the direct viscous dissipation is present only in the
second order in the weak inhomogeneity ξ. Hence, in the
linear approximation with respect to ξ, the viscosity affects
the temperature distribution indirectly by changing velocity
distribution, thus modifying the impurity dissipation mv2/τ .
Depending on the relation between four characteristic lengths:
L, l, lin, and lκ, various regimes of dissipation are possible.
However, the main effect of viscosity is quite simple: with
increasing lκ, the Landauer-dipole structure is suppressed. It
makes sense, therefore, to start with the discussion of the high-
viscosity limit.

A. Strong viscosity, lκ → ∞

Let us assume that lκ is larger than all other length scales
in the problem. Interestingly, even in the limit lκ → ∞,
there is a finite temperature correction, which can be found by
neglecting the last term of Eq. (51). Performing the Fourier
transformation, we get

δT =
Mv2∞
l

x‖ˆ

−∞

dx′‖ ξ(r
′)e−(x‖−x′

‖)/lin . (54)

Let us comment on the physics behind this expression. For
infinitely large viscosity, all velocity gradients are suppressed,
so that v ≡ v∞. In this limit, the heat balance equation is
dramatically simplified

dδT

dx‖
=
Mv2∞ ξ(r)

l
− δT

lin
. (55)
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FIG. 3. Evolution of the 2D temperature profiles for fixed L and lin,
L = 0.2lin, with increasing lκ: (a) the limit of negligible viscosity,
lκ = 0.001lin; (b) small viscosity, lκ = 0.05lin, which is insufficient
to suppress the Landauer-dipole feature; (c) “critical” viscosity, lκ =
0.1lin, at which a hot spot appears in the center of the constriction,
which increases with further increasing viscosity, as shown in (d)
for lκ = 0.15lin and (e) for lκ = 0.25lin, gradually suppressing
the Landauer-dipole structure; (f) strong viscosity, lκ = 10lin: the
Landauer-dipole feature is suppressed.

Physically, this equation means that the heating is effectively
one dimensional, regardless of the system dimension.
Integrating Eq. (55), we reproduce Eq. (54). We also notice
that Eqs. (54) and (55) do not require linearization and are
valid for an arbitrary relation between δT and T∞.

B. Evolution of the temperature profile with viscosity

In Figs. 3 and 4, we illustrate the evolution of the
temperature distribution with increasing viscosity. We fix L
and lin such that the inelastic drift length is larger than the
size of the constriction, L = 0.2lin, and, thus, asymmetry
in the temperature distribution is sufficiently pronounced.
At the same time, the Landauer-dipole structure remains
apparent for zero and very small viscosity, as shown in
Figs. 3(a) and (b). When lκ becomes the order of L, a

-15 -10 -5 0 5 10 15
-0.5
0.0
0.5
1.0
1.5

�T/T ⇤

x = L

y/L

l = 10lin
l = lin

l = 0.25lin
l = 0.15lin
l = 0.1lin

l = 0.05lin
l = 0.001lin

y = 0

-20 -10 0 10 20
-1.0
-0.5
0.0
0.5
1.0
1.5

�T/T ⇤

x/L

l = 10lin
l = lin

l = 0.25lin
l = 0.15lin
l = 0.1lin

l = 0.05lin
l = 0.001lin

(a)

(b)

FIG. 4. Evolution of the temperature profiles of the cross-sections at
(a) x = L and (b) y = 0, corresponding to the solid and dashed lines
in Fig. 3(a). Parameters are the same as in Fig. 3.

hot spot appears in the center of the constriction, Figs. 3(c),
whose amplitude increases with increasing viscosity, see
Figs. 3(d), (e), and (f), while, simultaneously, the Landauer-
dipole structure becomes suppressed. At very large values of
lκ, Figs. 3(f), the Landauer-dipole feature is fully suppressed,
and the temperature distribution is very well described by
Eq. (54).

We also plot in Figs. 4(a), (b) the cross-sections of the
temperature distribution along the lines x = L and y = 0,
respectively. These plots clearly demonstrate the suppression
of the Landauer dipoles and the formation of the hot spot,
which is symmetric in the y direction but asymmetric in the
x direction. Evolution of the velocity profiles with viscosity
is shown in Fig. 5 for the same values of parameters as in
Fig. 3

We reiterate that, to the leading order in ξ, viscosity does
not introduce extra dissipation, but instead redistributes it. To
see this point, in Fig. 6 we present the temperature profile
(lκ = lin � L) obtained when we keep only the second
term of Eq. (51) in the parentheses [i.e, after removing the
contribution of Eq. (54)]. Apparently, the Landauer-dipole
structure survives in the strong-viscosity limit, although it
is strongly reduced and obscured by the “hot spot” at the
constriction.
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V. PHONON TEMPERATURE DISTRIBUTION

In previous sections, we have discussed the distribution
of the electron temperature. However, experimentally, the
electron temperature profiles are hard to measure directly. On
the other hand, the phonon temperature can be measured at a
very high resolution by means of the tSOT technique [5, 6, 8–
10]. Using the results obtained above, we obtain the phonon
temperature, restricting ourselves to the discussion of the 2D
case.

First, we note that the heat exchange rate between
phonons and the substrate, γ0, is typically several orders of

x/L

y/L

�T
�
0 /T

⇤�

x/L

y/L
�T

�
0 /T

⇤�
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1/2 = 2.5L

FIG. 7. The phonon temperature near the constriction that
corresponds to the electron temperature of Fig. 3(d). The phonon
temperature profile reproduces the major features of the electron one
when κph is small (a). On the contrary, the “hot spot” disappears
when κph becomes large enough (b).

magnitude larger than the electron-phonon heat transfer rate
γ (see experimental measurements [53–55] and estimates in
Ref. [47]). In the homogeneous case we have

γ(Tel − Tph) = γ0(Tph − T0), (56)

where T0 is the substrate temperature. For γ0 � γ, we
have Tph ≈ T0. It is worth noting that this estimate
justifies the approach used in the previous sections, where,
for determining the electron temperature, we assumed that the
lattice temperature is a constant.

Small deviations of the lattice temperature from T0 can be
found from the phonon heat balance equation

− κph∆Tph = γ(Te − Tph)− γ0(Tph − T0), (57)

where κph is the phonon thermal conductivity. Introducing

δTph = Tph − T0,
and making use of the inequality γ � γ0, we find

δTq
ph =

γ

γ0 + κphq2
δTq, (58)

where δTq is the inhomogeneity-induced correction to the
electronic temperature calculated above. We see that for

q < q0 =
√
γ0/κph,

the phonon temperature profile coincides with the electronic
one up to a small factor γ/γ0. Very sharp gradiends of the
electronic temperature with q > q0 are suppressed by the
phonon heat conductivity. In the coordinate representation,
Eq. (58) becomes

δTph(r) =

ˆ
dr′K(r− r′)δT (r′), (59)

where

K(r) =

ˆ
d2q eiqr

(2π)2
γ

γ0 + κphq2
=

γ

2πκph
K0(q0r), (60)

and K0 is the MacDonald function. Evolution of the
phonon temperature distribution with increasing phonon heat
conductivity is illustrated in Fig. 7.
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VI. SUMMARY

To summarize, we have studied the heat balance in
a weakly disordered system with local inhomogeneities.
Specifically, we have considered a spherical local constriction
with increased impurity scattering rate as compared to
the scattering in the uniform background. We assumed
that electron-electron interaction is strong in two senses:
firstly, fast electron-electron collisions drive the system
into the hydrodynamic regime; secondly, it guarantees the
electrical neutrality, thus making the electron liquid nearly
incommpressible.

In the absence of viscosity, the electron temperature
distribution induced by the inhomogeneity is described by a
Landauer-dipole-like structure that is shifted along the current
by the amount of the order of the inelastic drift length
(Fig. 2). The Landauer-dipole distribution stems from the
tendency of particles to travel around the inhomogeneity (in
the 2D and 3D cases). Remarkably, the thermal Landauer
dipole and its asymmetry, both induced by the current flow,
exist in systems of arbitrary dimensionality, and of genuine
constriction geometries. Thus, we have found that the heating
of inhomogeneous ideal electron fluid is universally described
by a Landauer dipole, which is deformed by the flow beyond
the linear-response regime.

Further, focusing on the 2D case, we have explored the
evolution of the electron temperature and velocity profiles
with increasing viscosity of the electron fluid (Fig. 3). Our
main conclusion is that the viscosity dramatically changes
the heat balance in the system. Specifically, we have found
that viscosity suppresses the Landauer-dipole structure and—
for sufficiently high viscosity—essentially reduces the heat-
balance problem in all dimensions to a quasi-1D problem.
Most importantly, viscosity leads to the formation of the “hot
spot” exactly in the position of the inhomogeneity. We have
also derived a relation between electron temperature and the
temperature of the phonon system (Fig. 7), which can be
directly measured in experiment.
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Appendix A: Gaussian constriction

In this Appendix, we derive the expressions for Landauer-
dipole structures in D = 1, 2, 3 dimensions. To this end,
one needs to calculate the Fourier transform of Kqξq, where
Kq and ξq are given by Eqs. (34) and (13) of the main text,
respectively. Introducing auxiliary integrals,

1

q2
=

∞̂

0

dt e−tq
2

,
1

iq‖ + 1/lin
=

∞̂

0

dse−s(iq‖+1/lin),

we findˆ
dDq

(2π)D

q2‖ − q2⊥
q2‖ + q2⊥

eiqr−q
2L2/4

iq‖ + 1/lin

=

∞̂

0

dse−s/lin
∞̂

0

dt(∂2⊥ − ∂2‖)
ˆ

dDq

(2π)D
e−q

2(t+L2/4)+iqr−iq‖s

=

∞̂

0

dse−s/linQ̃D(x− s, r⊥),

(A1)
where

Q̃D(r) =
1

πD/2
(∂2⊥ − ∂2‖)

∞̂

0

dt
e−r

2/(4t+L2)

4t+ L2
. (A2)

Applying the spatial derivatives (∂2⊥ − ∂2‖), we get

Q̃D(r) =

∞̂

L2/4

dte−r
2/4t

×



2t− x2‖
8
√
πt5/2

, for D = 1,

r2⊥ − x2‖
16πt3

, for D = 2,

r2⊥ − x2‖ − 2t

32π3/2t7/2
, for D = 3.

(A3)

Calculating the remaining integral over t and assuming that
electric field is parallel to the x-axis, we arrive at Eq. (43) of
the main text.

Appendix B: Temperature Landauer dipole in 3D and 2D
system—a local heating approximation

In this Appendix, we employ the local heating
approximation (Fig. 8), and study the constriction-induced
local heating of 2D and 3D systems. The calculation here
generalizes the one in Ref. [47].

1. Landauer dipole in 3D

Within the local heating approximation, the constriction
of radius L has the uniform conductivity σin that is smaller
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FIG. 8. Phenomenological local-conductivity model adopted for the
local Joule approximation. A constriction of radius L, located at the
origin, is characterized by the conductivity σin that is smaller than
the uniform background conductivity: σin < σout. The external field
E∞ is directed along the x-axis.

than the conductivity σout outside the constricted area. The
electrical current is driven by the field E∞ directed along the
x-axis. Under the continuity boundary condition, the electric
potential becomes

ϕ(r) =


− 3σout

σin + 2σout
rE∞ cosϑ, r < L,

−
[
r +

(σout − σin)L3

(2σout + σin)r2

]
E∞ cosϑ, r > L,

(B1)
where ϑ is the angle between the x axis and the direction of
the vector r in real space. Apparently, ϕ(r) reduces to the
uniform value −E∞r cosϑ in the r ≡ |r| � L limit.

With the electric potential from Eq. (B1), we find the local
electric field and calculate the local Joule heating σ(r)E(r)2

P (r)

σoutE2∞
=
σ(r)E(r)2

σoutE2∞

=


(1 + λ− 2λ2)σoutE

2
∞, r < L,[

1−L
3

r3
λ(1−3 cosϑ)

]2
+

9L6

4r6
λ2 sin2(2ϑ), r > L,

(B2)
where

λ ≡ σin − σout

2σout + σin
(B3)

is the parameter characterizing the inhomogeneity. It vanishes
in the homogeneous situation (σin = σout), and approaches
1/2 when the constriction is insulating (σin → 0).

To describe the effect of the constriction, we define

δP = P − σoutE
2
∞,

as the constriction-induced extra Joule heating and express it

in terms of λ:

δP

σoutE2∞

=


λ− 2λ2, r < L,

λL3[1 + 3 cos(2ϑ)]

r3
+
λ2L6[5+3 cos(2ϑ)]

2r6
, r > L.

(B4)
Clearly, δP vanishes when λ = 0. It is also non-monotonous
and approaches the peak value when λ = 1/4. Indeed, all
particles detour around the constriction in the insulating limit,
where the Joule heating vanishes.

For a more intuitive understanding, we provide the profile
of the local Joule heating (when λ = 1/3) in Fig. 1(d)
of the main text. Apparently, a Landauer-dipole heating
pattern emerges around the constriction. This heating pattern
naturally induces a shifted Landauer dipole of the electron
temperature profile. Noteworthy, this Landauer-dipole feature
is produced by the residual charges at the boundary of the
constriction. These charges also guarantee the constant
electric field in the constricted area.

2. Landauer dipole in 2D

Let us move to the 2D case with a circular-shape
constriction. To begin with, following the same method as
that of Appendix B 1, we arrive at the electric field of 2D

E(r) =

 E∞+ δEin, r < L,

E∞+δEout, r > L,
(B5)

where

(δEin)x = δE, (δEin)y = 0 (B6)

is the electric field in the constricted area, and

(δEout)x = δE
y2 − x2

(x2 + y2)2
L2,

(δEout)y = δE
−2xy

(x2 + y2)2
L2,

(B7)

refers to that outside of the constriction. In Eqs. (B6) and
(B7), the inhomogeneity-induced electric field is given by

δE = E∞
σout − σin

σout + σin
= E∞λ2 > 0, (B8)

where the parameter λ2 characterizes the strength of the
inhomogeneity in the 2D case.

In the local approximation, the drift velocity is proportional
to the electric field v(r) = σ(r)E(r)/N∞e. Following
Eq. (B5), we obtain the drift velocity profile

v(r) =

 v∞ + δvin, r < L,

v∞ + δvout, r > L,
(B9)
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FIG. 9. The vector velocity profile of the 2D local heating model.

where

(δvin)x = −δv, (δvin)y = 0 (B10)

in the constricted area, and

(δvout)x = δv
y2 − x2

(x2 + y2)2
L2

(δvout)y = δv
−2xy

(x2 + y2)2
L2

(B11)

outside of the constriction. In Eqs. (B11) and (B10), the
homogeneous velocity v∞ = σoutE∞/Ne, and

δv = v∞
σout − σin

σout + σin
≡ v∞λ2 (B12)

is the inhomogeneity-induced velocity variation, defined in
the same manner as Eq. (B8). In the momentum space, the
variation of velocity becomes

δvx(q) =
2πL

q
[J1(Lq) cos(2ϕ)− J1(Lq)]λ2

δvy(q) =
2πL

q
J1(Lq) sin(2ϕ)λ2,

(B13)

where q = |q|, the angle ϕ refers to the momentum direction,
and J1(Lq) is the Bessel function.

To better understand Eq. (B13), we Fourier transform the
circular-shape step function, ξ(r) = ξ0Θ(x2 + y2 −L2), into
the expression in the momentum space

ξ(q) = ξ0
2π

q
LJ1(Lq). (B14)

The combination of Eqs. (B13) and (B14) gives us the velocity

kernel of the local-heating model

Kux =
−2q2⊥
q2‖ + q2⊥

,

Kuy =
2q‖q⊥
q2‖ + q2⊥

,

(B15)

where q‖ and q⊥ refer to two momentum components.
Equation (B15) coincides with Eq. (31) of the main text,
except for an overall extra factor of two. This extra factor
is related to the definition of λ2: at the weak inhomogeneity
limit, λ2 ≈ (σout − σin)/2σout. Following Eq. (B12), we plot
the 2D velocity profile in Fig. 9. It captures the major feature
of that in the main text: particles tend to detour around the
constriction.

(a) (b)
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FIG. 10. The temperature profiles of the phenomenological model
when (a) l∗ = 2L; (b) l∗ = 0.5L. The temperature profiles of the
diffusive phenomenological model are completely symmetric.

With the velocity profile known, we can calculate the
temperature profile. Since this local-heating model is
diffusive, κe � v∞ (where κe is the electronic heat
conductivity), we keep only the diffusive term in the heat
diffusion equation

− κe 52 δT = neEv − γδT. (B16)

As a simple check, we focus on the weak-inhomogeneity limit
λ2 � 1. In this limit, the Fourier-transformed temperature
profile becomes

δTq = T∞
4π

q

LJ1(Lq) cos(2ϕ)

l2∗q2 + 1
λ2, (B17)

where l∗ =
√

κe/γ. In Eq. (B17), the prefactor T∞ is
the homogeneous temperature when λ2 = 0. We present
the temperature profile of Eq. (B17) in the real space, in
Fig. 10. In contrast to the hydrodynamic model of the main
text Eq. (32), the temperature kernel of Eq. (B17) strictly
corresponds to a Landauer dipole that sits exactly at the
center of the constricted area: the asymmetry thus completely
disappears in the diffusive situation.
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In nearly compensated graphene, disorder-assisted electron-phonon scattering or “supercollisions”
are responsible for both quasiparticle recombination and energy relaxation. Within the hydrody-
namic approach, these processes contribute weak decay terms to the continuity equations at local
equilibrium, i.e., at the level of “ideal” hydrodynamics. Here we report the derivation of the decay
term due to weak violation of energy conservation. Such terms have to be considered on equal
footing with the well-known recombination terms due to nonconservation of the number of particles
in each band. At high enough temperatures in the “hydrodynamic regime” supercollisions domi-
nate both types of the decay terms (as compared to the leading-order electron-phonon interaction).
We also discuss the contribution of supercollisions to the heat transfer equation (generalizing the
continuity equation for the energy density in viscous hydrodynamics).

Electronic hydrodynamics is quickly growing into a
mature field of condensed matter physics [1–3]. Simi-
larly to the usual hydrodynamics [4, 5], this approach
offers a universal, long-wavelength description of collec-
tive flows in interacting many-electron systems. As a
macroscopic theory of strongly interacting systems, hy-
drodynamics should appear to be extremely attractive
for condensed matter theorists dealing with problems
where strong correlations invalidate simple theoretical
approaches. However, electrons in solids exist in the en-
vironment created by a crystal lattice and typically ex-
perience collisions with lattice imperfections (or “disor-
der”) and lattice vibrations (phonons). The former typi-
cally dominate electronic transport at low temperatures,
while at high temperatures the electron-phonon interac-
tion takes over. In both cases the electron motion is
diffusive (unless the sample size is smaller than the mean
free path in which case the motion is ballistic) since in
both types of scattering the electronic momentum is not
conserved. On the other hand, if a material would exist
where the momentum-conserving electron-electron inter-
action would dominate at least in some non-negligible
temperature range, then one could be justified in neglect-
ing the momentum non-conserving processes and apply-
ing the hydrodynamic theory. In recent years, several ex-
tremely pure materials became available with graphene
being the most studied [1, 3].

As a manifestation of macroscopic conservation laws,
hydrodynamics is universal. Most conventional fluids are
assumed Galilean invariant and are described by the same
set of hydrodynamic equations [4]. Similar approach was
at the heart of the early theoretical work on electronic
hydrodynamics [6, 7]. Another well-known case is the rel-
ativistic hydrodynamics [4] relevant to neutron stars and
interstellar matter. Since its low-energy quasiparticles
are characterized by the Dirac spectrum, graphene at-
tracted significant theoretical attention as a possible con-
densed matter realization of relativistic hydrodynamics
[8–13]. However, due to the classical, three-dimensional

nature of the Coulomb interaction between electrons, the
emergent hydrodynamics in graphene is neither Galilean-
nor Lorentz-invariant [2].

In nearly neutral (or compensated) graphene the elec-
tron system is non-degenerate (at least at relatively high
temperatures where the hydrodynamic approach is justi-
fied) with both the conductance and valence bands con-
tributing on equal footing. Although the electron system
is not Lorenz-invariant, the linearity of the Dirac spec-
trum plays an important role. Firstly, the Auger pro-
cesses are kinematically suppressed leading to the near-
conservation of the number of particles in each band
[2, 3, 14, 15]. Secondly, the so-called collinear scattering
singularity [10–12, 15–19] allows for a non-perturbative
solution to the kinetic (Boltzmann) equation focusing on
the three hydrodynamic modes [18, 20, 21]. As a result,
one can determine the general form of the hydrodynamic
equations and to evaluate the kinetic coefficients [21–23].
To be of any practical value, the latter calculation has to
be combined with the renormalization group approach
[24] since the effective coupling constant in real graphene
(either encapsulated or put on a dielectric substrate) is
not too small, αg ≈ 0.2− 0.3 [25, 26].

Next to the conservation laws, the main assumption of
the hydrodynamic approach is local equilibrium [4, 27]
established by means of interparticle collisions. Neglect-
ing all dissipative processes, this allows (together with
the conservation laws) for a phenomenological derivation
of hydrodynamic equations [4, 5] that can be further sup-
ported by the kinetic theory, where the local equilibrium
distribution function nullifies the collision integral in the
Boltzmann equation [27]. The resulting ideal hydrody-
namics is described by the Euler equation and the con-
tinuity equations. This is where the electronic fluid in
graphene differs from conventional fluids (both Galilean-
and Lorentz-invariant): as in any solid, conservation laws
in graphene are only approximate, leaving the collision
integrals describing scattering processes other than the
electron-electron interaction to be nonzero even in local
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equilibrium. This leads to the appearance of weak decay
terms in the continuity equations.
Two such terms have already been discussed in litera-

ture. Firstly, even if the electron-electron interaction is
the dominant scattering process in the system, no solid is
absolutely pure. Consequently, even ultra-pure graphene
samples possess some degree of weak disorder. Disorder
scattering violates momentum conservation and hence a
weak decay term must appear in the generalized Euler
equation [2, 3, 20, 21]. Secondly, conservation of the
number of particles in each band is violated by a number
of processes (e.g., the Auger and three-particle scatter-
ing). While commonly assumed to be weak, they are
manifested in the decay – or recombination – term in
the corresponding continuity equation. This was first
established in [14] in the context of thermoelectric phe-
nomena (for the most recent discussion see [28]). Later,
quasiparticle recombination was shown to lead to linear
magnetoresistance in compensated semimetals [29–32] as
well as giant magnetodrag [33, 34].
In this paper, we report the derivation of the third

weak decay term in the hydrodynamic theory in graphene
due to weak violation of energy conservation. Indeed,
the electron-phonon interaction may lead not only to
the loss of electronic momentum (responsible for elec-
trical resistivity in most metals at high temperatures),
but also to the loss of energy. Although subdominant in
the hydrodynamic regime, the electron-phonon interac-
tion should be taken into account as one of the dissipative
processes. In graphene, the linearity of the Dirac spec-
trum once again plays an important role: as the speed
of sound is much smaller than the electron velocity vg,
leading-order scattering on acoustic phonons is kinemati-
cally suppressed. Consequently, scattering off the optical
branch is usually considered [35, 36]. In contrast, we ar-
gue that there is another process, the disorder-assisted
electron-phonon scattering [37] or “supercollisions” [38–
41], that is responsible for both quasiparticle recombina-
tion and energy relaxation. In the high-temperature hy-
drodynamic regime, the supercollisions are expected to
dominate both decay contributions [37]. Moreover, this
process contributes weak decay terms to the continuity
equations already at local equilibrium, i.e., at the level
of “ideal” hydrodynamics.
Our arguments are based on the kinetic theory ap-

proach to electronic transport. In the spirit of Ref. 24,
we assume the possibility of deriving the hydrodynamic
equations from the kinetic equation in the weak coupling
limit [21], αg ≪ 1, with the subsequent renormaliza-
tion of the kinetic coefficients to the realistic parameter
regime [22]. Under these assumptions, we start with the
kinetic equation

Lfλk = Stee[fλk] + StR[fλk] + Stdis[fλk], (1a)

with the Liouville’s operator (in the left-hand side)

L = ∂t + v ·∇r +
(

eE+
e

c
v×B

)

·∇k, (1b)

and the collision integrals describing the electron-electron
interaction (Stee), disorder scattering (Stdis), and quasi-
particle recombination (StR), where in this paper we fo-
cus on “supercollisions”. We employ the following no-
tations for the Dirac spectrum (the chirality λ = ±1
distinguishes the conduction and valence bands)

ǫλk = λvgk, (2a)

and velocities

vλk = λvg
k

k
, k =

λk

vg
vλk =

ǫλkvλk

v2g
. (2b)

Hydrodynamics is the macroscopic manifestation of
the conservation of energy, momentum, and the number
of particles. In a two-band system, the latter comprises
excitations in both bands. In the conductance band these
are electron-like quasiparticles with the number density
(N = 4 reflects spin and valley degeneracy in graphene)

n+ = N

∫

d2k

(2π)2
f+,k, (3a)

while in the valence band the quasiparticles are hole-like

n
−
= N

∫

d2k

(2π)2
(1− f

−,k) , (3b)

with the total “charge” (or “carrier”) density being

n = n+ − n
−
. (3c)

Assuming the numbers of particles in the conduction and
valence bands are conserved independently, we can also
define the total quasiparticle (“imbalance” [14]) density

nI = n+ + n
−
. (3d)

Global charge conservation (or gauge symmetry) can be
expressed in terms of the usual continuity equation. This
can be obtained from Eq. (1) by performing a summation
over all quasiparticle states upon which all three collision
integrals vanish [27]

N

∫

d2k

(2π)2
Stee[fλk] = N

∫

d2k

(2π)2
StR[fλk] = (4a)

= N

∫

d2k

(2π)2
Stdis[fλk] = 0.

As a result, the continuity equation has the usual form

∂tn+∇r ·j = 0, (4b)

where the corresponding current is defined as

j=j+−j
−

=N

∫

d2k

(2π)2
[v+,kf+,k−v

−,k (1−f
−,k)] , (5)

The rest of the conservation laws in graphene are ap-
proximate as manifested in the collision integrals not van-
ishing upon corresponding summations. The continuity
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equation expressing momentum conservation (i.e. the
Euler equation) is obtained by multiplying the kinetic
equation by the quasiparticle momentum k and sum-
ming over all states. Since the electron-electron inter-
action conserves momentum, the corresponding collision
integral vanishes

N

∫

d2k

(2π)2
k Stee[fλk] = 0. (6)

Weak disorder scattering is typically described within the
simplest τ -approximation [27]

N

∫

d2k

(2π)2
k Stdis[fλk] =

nk

τdis
, (7)

where the momentum density is defined as

nk = N
∑

λ

∫

d2k

(2π)2
kfλk = v−2

g jE . (8)

The last equality represents the fact that in graphene the
momentum density is proportional to the energy density
[due to the properties of the Dirac spectrum Eq. (2)].
Supercollisions contributing to the recombination col-

lision integral also violate momentum conservation, how-
ever, in comparison to the above weak disorder scatter-
ing, this is a second-order process. Moreover, the disorder
mean free time τdis is typically determined from experi-
mental data (see e.g., Ref. 26) and hence can be assumed
to include the contribution of supercollisions as well.
The remaining two continuity equations – energy and

quasiparticle imbalance – are unaffected by the electron-
electron interaction and weak disorder scattering. In-
deed, the electron-electron interaction conserves energy
and – neglecting the Auger processes – particle number
in each band:

N

∫

d2k

(2π)2
ǫλkStee[fλk] = N

∫

d2k

(2π)2
λStee[fλk] = 0. (9)

Same applies to the (elastic) disorder scattering

N

∫

d2k

(2π)2
ǫλkStdis[fλk] = N

∫

d2k

(2π)2
λStdis[fλk] = 0.

(10)
However, supercollisions do not conserve both quantities
and hence lead to weak decay terms in the two continuity
equations.
Let us now specify the collision integral describing the

disorder-assisted electron-phonon scattering. An electron
in the upper (conductance) band may scatter into an
empty state in the lower (valence) band – effectively re-
combining with a hole – emitting a phonon (which car-
ries away the energy) and losing its momentum to the
impurity. Within the standard approach to the electron-
phonon interaction, this process is described by the col-
lision integral

StR[f+k2
] = 2π

∑

k1,q

Wqδ(ǫ+k2
− ǫ

−k1
− ωq)× (11a)

× [f
−k1

(1−f+k2
)nq − f+k2

(1−f
−k1

)(1+nq)] ,

where nq is the phonon (Plank’s) distribution function
(the phonons are assumed to be at equilibrium and play
the role of a “bath”), Wq is the effective scattering rate
that includes the Dirac factors and is averaged over the
angles [37].
Similarly, an electron in the lower band may absorb

a phonon and scatter into the upper band – effectively
creating an electron-hole pair – while still losing its mo-
mentum to the impurity

StR[f−k2
] = 2π

∑

k1,q

Wqδ(ǫ+k1
− ǫ

−k2
− ωq)× (11b)

× [f+k1
(1−f

−k2
)(1+nq)− f

−k2
(1−f+k1

)nq] .

The collision integral (11) conserves the total charge

N
∑

k

StR[fλk] = N
∑

k2

(StR[f+k2
]+StR[f−k2

]) = 0,

(11c)
[see Eq. (4)] and vanishes in global equilibrium

StR[f
(0)] = 0, (11d)

where the quasiparticle distribution is described by the
Fermi function. This should be contrasted with local

equilibrium described by

f
(le)
λk =

{

1+exp

[

ǫλk−µλ(r)−u(r)·k
T (r)

]}

−1

, (12)

where µλ(r) is the local chemical potential and u(r) is
the hydrodynamic (or “drift”) velocity. The local equi-
librium distribution function (12) allows for independent
chemical potentials in the two bands, which can be ex-
pressed in terms of the “thermodynamic” and “imbal-
ance” chemical potentials

µλ = µ+ λµI . (13)

In global equilibrium

f (0) = f
(le)
λk (µI = 0,u = 0). (14)

Now we show, that in local equilibrium, i.e. for nonzero
µI , the recombination collision integral remains finite
[unlike Eq. (11d)]. As a scalar quantity, the collision in-
tegral (11) cannot depend on the hydrodynamic velocity
u in the first (linear) order. Consequently, to the leading
order the integrated collision integral yielding the decay
terms in the continuity equations is proportional to µI .
To the leading order, we can describe the difference

between the local equilibrium distribution function f
(le)
λk

and the Fermi function f (0) similarly to the leading non-
equilibrium correction in the standard derivation of hy-
drodynamics [27]

δf = fλk−f (0) = −T
∂f (0)

∂ǫ
h = f (0)

(

1−f (0)
)

h. (15)
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Now we re-write the collision integral (11) with the help
of the relations

f1(1−f2)(1+nq)− f2(1−f1)nq =

= (1−f1)(1−f2)(1+nq)

[

f1
1−f1

nq

1+nq

− f2
1−f2

]

,

and

f
(0)
2

(

1−f
(0)
1

)

(1+nq) = −∂nq

∂ω

(

f
(0)
2 −f

(0)
1

)

,

and find (to the leading order in h)

StR[f+k2
] = −2π

∑

k1,q

Wqδ(ǫ+k2
− ǫ

−k1
− ωq)

∂nq

∂ω

×
(

f
(0)
+k2

−f
(0)
−k1

)

(h
−k1

−h+k2
), (16a)

StR[f−k2
] = 2π

∑

k1,q

Wqδ(ǫ−k2
− ǫ+k1

+ ωq)
∂nq

∂ω

×
(

f
(0)
+k1

−f
(0)
−k2

)

(h
−k2

−h+k1
). (16b)

Consider now the contribution of the recombination
collision integral to the continuity equation for the quasi-
particle imbalance

N
∑

k

λStR[fλk] = N
∑

k2

(StR[f+k2
]−StR[f−k2

]) =

= −4πN
∑

k1,k2,q

Wqδ(ǫ+k2
− ǫ

−k1
− ωq)

∂nq

∂ω

×
(

f
(0)
+k2

−f
(0)
−k1

)

(h
−k1

−h+k2
). (17)

To the leading order, the deviation hλk is proportional
to µI

hλk ≈ λµI

T
. (18)

The remaining integral has dimensions of particle density
divided by time and therefore the result can be written
in two equivalent forms

N
∑

k

λStR[fλk] ≈ −µInI,0λQ ≈ −nI−nI,0

τR
. (19)

Here nI is the imbalance density (3d) in local equilib-
rium, while nI,0 is the same quantity evaluated with the
Fermi distribution function (14), i.e. for µI = 0 and
u = 0. The first equality in Eq. (19) coincides with the
expression used in Ref. 14 and serves as the definition of
the dimensionless coefficient λQ, while the second (valid
to the leading order) was suggested in Refs. 21 and 29
and provides the definition of the “recombination time”
τR (see also Ref. 28). The two expressions are equivalent
since nI−nI,0 ∝ µI .

The same scattering process contributes a weak de-
cay term to the continuity equation for the energy den-
sity. Indeed, multiplying the collision integral (11) by the
quasiparticle energy and summing over all states, we find
after similar algebra

N
∑

k

ǫλkStR[fλk] = (20)

= N
∑

k2

(ǫ+k2
StR[f+k2

]+ǫ
−k2

StR[f−k2
]) =

= −2πN
∑

k1,k2,q

Wqδ(ǫ+k2
− ǫ

−k1
− ωq)

∂n
(0)
q

∂ω
ωq

×
(

f
(0)
+k2

−f
(0)
−k1

)

(h
−k1

−h+k2
).

Defining the decay coefficients similarly to Eq. (19)
above, we may present the result in the form

N
∑

k

ǫλkStR[fλk] = −µInE,0λQE ≈ −nE−nE,0

τRE

. (21)

Here the equivalence of the two forms of the decay term
stems from the fact that nE−nE,0 ∝ µI assuming the
electrons and holes are characterized by the same tem-
perature.
Supercollisions are not the only scattering process con-

tributing to both quasiparticle recombination and en-
ergy relaxation. Clearly, direct (not impurity-assisted)
electron-phonon interaction contributes to energy relax-
ation as well as to quasiparticle recombination (in the
case of intervalley scattering) [14, 18, 19, 34, 37]. In
addition, optical phonons may also contribute [35, 36],
although within the hydrodynamic approach these con-
tributions were discussed only at the level of dissipa-
tive (viscous) hydrodynamics [36]. The contribution of
the direct [42, 43] and impurity assisted electron-phonon
scattering to energy relaxation was compared in [37],
where it was argued that at high enough temperatures,
T & TBG (where TBG is the Bloch-Grüneisen tempera-
ture) the supercollisions do dominate. In the degenerate
regime, where TBG ∝

√
n, Ref. [37] estimates TBG as

“few tens of Kelvin”. At charge neutrality, we estimate
TBG = (s/vg)T ≪ T (where s is the speed of sound), such
that supercollisions always dominate over direct electron-
phonon coupling. Moreover, taking into account the ad-
ditional scattering processes will not change the form of
the decay terms (19) and (21), but rather change the nu-
merical values of the parameters λQ and λQE , which may
have to be considered phenomenological while interpret-
ing experimental data [34].
At charge neutrality and in the hydrodynamic regime,

the coefficients λQ and λQE are of the same order of
magnitude (both are dominated by the same supercol-
lisions), but quantitatively different. Indeed, the conti-
nuity equation for the energy density should contain one
more contribution of the similar form. “Quasiparticle re-
combination” typically refers to scattering between the
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quasiparticle states in different bands only. This is the
only type of supercollisions contributing to λQ. Simi-
lar supercollisions may also take place within a single
band [37]. While this process does not change the num-
ber of particles in the band, it does describe the energy
loss as the electron may scatter from the higher energy
state into the lower energy state (and losing its momen-
tum to the impurity along the way). Consequently, this
additional process does contribute to energy relaxation.
Given that the form of the corresponding collision inte-
gral is very similar to Eq. (11) – one only has to change
to band indices to be the same – the algebra remains
the same and thus we can treat Eq. (21) as the final re-
sult that takes this additional intraband supercollisions
into account making the numerical values of λQ and λQE

substantially different – we do not expect any accidental
cancellation or smallness should the difference λQ −λQE

appear in a particular solution of hydrodynamic equa-
tions. At the same time, at low temperatures – i.e., be-
low the hydrodynamic range – we expect the coefficients
λQ and λQE to be parametrically different: energy re-
laxation is now dominated by the direct electron-phonon
interaction [37], while the recombination is still governed
by supercollisions (together with the phonon-induced in-
tervalley scattering).

The order of magnitude of τR could be estimated based
on the calculations of Ref. [37]. Adapting the latter to
charge neutrality, we find τ−1

R ∼ D2T 2/(ρs2v2g) (where
D ≈ 20 eV is the deformation potential [42, 43] and ρ is
the mass density per unit area) yielding the correspond-
ing length scale ℓ−1

R ≈ 10µm at the top of the hydrody-
namic temperature range, T ≈ 250K. This should be fur-
ther compared to the contribution of three-particle col-
lisions [3, 36], τ−1

3 ∼ α4
gT . Assuming the common sam-

ple design where graphene is encapsulated in hexagonal
boron nitride (with the dielectric constant ǫ ≈ 4), the
effective coupling constant (taking into account renor-
malizations) is αg ≈ 0.3 − 0.4 leading to the similar es-
timate at high temperatures. On the other hand, at the
low end of the hydrodynamic range [44], T ≈ 50K, the
contribution of the three-body collisions should dominate
(accounting for the empirical value ℓR ≈ 1.2µm reported
in [34]), however preserving the functional form of the
weak decay terms in the continuity equations.

Finally, once the dissipative processes due to electron-
electron interaction are taken into account, one usually
replaces the continuity equation for the energy density
by the equivalent equation for the entropy density, the
so-called “heat transfer equation” [4]. The decay terms
discussed in this paper appear in that equation as well.
Let us briefly discuss their form.

Recall the derivation of the continuity equation for the
entropy from the kinetic equation [21]. The entropy den-
sity of a system of fermions is defined in terms of the
distribution function as

s=−N
∑

λ

∫

d2k

(2π)2
[fλk ln fλk+(1−fλk)ln(1−fλk)]. (22)

Treating this integral as

s = N
∑

λ

∫

d2k

(2π)2
S[fλk],

any derivative of s can be represented in the form

∂s

∂z
= N

∑

λ

∫

d2k

(2π)2
∂S[fλk]
∂fλk

∂fλk
∂z

.

Consider now each term of the kinetic equation mul-
tiplied by the derivative ∂S[fλk]/∂fλk and summed over
all states. Using the above relation with z → t, one finds
for the time derivative term

N
∑

λ

∫

d2k

(2π)2
∂S[fλk]
∂fλk

∂fλk
∂t

=
∂s

∂t
.

The gradient term yields similarly

N
∑

λ

∫

d2k

(2π)2
∂S[fλk]
∂fλk

vλk ·∇rfλk =

= ∇r ·N
∑

λ

∫

d2k

(2π)2
vλkS[fλk] = ∇r ·jS ,

where the quantity

jS = N
∑

λ

∫

d2k

(2π)2
vλkS[fλk], (23)

can be interpreted as the entropy current.
The electric field term vanishes as the total derivative

eE ·N
∑

λ

∫

d2k

(2π)2
∂S[fλk]
∂fλk

∇kfλk =

= eE ·N
∑

λ

∫

d2k

(2π)2
∇kS[fλk] = 0,

while the Lorentz term vanishes for rotationally invariant
systems upon integrating by parts [justified by the fact
that S(k → ∞) → 0]

e

c
N
∑

λ

∫

d2k

(2π)2
∂S[fλk]
∂fλk

[vλk×B]·∇kfλk =

=
e

c
N
∑

λ

∫

d2k

(2π)2
[vλk×B]·∇kS[fλk]

= −e

c
N
∑

λ

∫

d2k

(2π)2
S[fλk]∇k ·[vλk×B] = 0.

The last equality follows from

∂vαλk
∂kβ

=
vg
λk

(

δαβ − kαkβ

k2

)

.

Similar approach was used in Ref. 21 to derive the con-
tinuity equations (as outlined above).
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Combining all four terms, we conclude that integration
with the factor ∂S[fλk]/∂fλk turns the left-hand side of
the kinetic equation to the familiar form

N
∑

λ

∫

d2k

(2π)2
∂S[fλk]
∂fλk

Lfλk =
∂s

∂t
+∇r ·jS . (24)

Eq. (24) is valid for an arbitrary distribution function.
Denoting the integral of the right-hand side of the ki-

netic equation by

I = N
∑

λ

∫

d2k

(2π)2
∂S[fλk]
∂fλk

(Stee[f ] + StR[f ] + Stdis[f ]),

(25)
we arrive at the “continuity equation for the entropy”

∂s

∂t
+∇r ·jS = I. (26)

In the usual hydrodynamics [4] the only contribution to
the collision integral is given by particle-particle scatter-
ing, i.e. the processes assumed to be responsible for es-
tablishing local equilibrium such that at I = 0 the ideal
(Euler) hydrodynamic is isentropic. In the present case,
local equilibrium is assumed to be achieved by means of
the electron-electron interaction.
Evaluating the derivative of S explicitly, we find

∂S[fλk]
∂fλk

= − ln
fλk

1−fλk
= ln

[

1

fλk
−1

]

.

For the local equilibrium distribution function

∂S[fλk]
∂fλk

=
ǫλk−µλ−u·k

T
.

Substituting this expression into Eq. (25), we find that
the remaining integration is very similar to the above
derivation of the continuity equations.
The integral with the quasiparticle energy yields ex-

actly the above Eq. (21). The integral with λµI yields
Eq. (19) multiplied by µI . Finally, the term u ·k yields
Eq. (7) multiplied by the hydrodynamic velocity. The
integral of this term with the recombination collision in-
tegral is assumed to be included into the definition of the
mean free time, see the corresponding discussion above.
As a result, we arrive at the following form of the inte-
grated collision integral

I = − 1

T

nE−nE,0

τRE

+
µI

T

nI−nI,0

τR
+

u·nk

Tτdis
.

The decay terms (27) appear already at local equilib-
rium. To complete the heat transfer equation one has to
take into account dissipation. In graphene, this is most
conveniently done by considering the classical limit of
relativistic hydrodynamics since the form of dissipative
corrections is determined by the symmetries of the quasi-
particle spectrum. The result has been already reported
in literature, therefore we combine the dissipative correc-
tions with Eq. (27) and write the heat transfer equation

in graphene in the form (here δj and δjI are the dissi-
pative corrections to the electric and imbalance currents,
respectively).

T

[

∂s

∂t
+∇r ·

(

su− δj
µ

T
− δjI

µI

T

)

]

= (27)

= δj ·
[

eE+
e

c
u×B−T∇

µ

T

]

− TδjI ·∇
µI

T

+
η

2
(∇αuβ+∇βuα−δαβ∇·u)2

−nE−nE,0

τRE

+ µI

nI−nI,0

τR
+

u·nk

τdis
.

The obtained equation (27) should be compared to the
corresponding equations in Refs. 3, 14, and 36, where
energy relaxation due to supercollisions were not taken
into account. All other terms are present in all four equa-
tions with the following exceptions. The equation (54) of
Ref. 3 is written in the relativistic notation omitting the
imbalance mode, quasiparticle recombination, and disor-
der scattering, all of which are discussed separately else-
where in Ref. 3. Ref. 14 was the first to focus on the
imbalance mode with the equation (2.6) containing all
the terms of Eq. (27) except for the viscous term (and
energy relaxation). Finally, the equation (1c) of Ref. 36
contains all of the terms in Eq. (27) except for energy
relaxation and in addition contains a term describing en-
ergy relaxation due to electrons scattering on the optical
phonon branch that is neglected here (generalization of
the resulting theory is straightforward).
To summarize, we have considered supercollisions as a

mechanism of quasiparticle recombination and energy re-
laxation in graphene and derived the corresponding decay
terms in the hydrodynamic continuity equations. Since
the same scattering mechanism is responsible for both ef-
fects, one has to take into account energy relaxation while
considering quasiparticle recombination. The latter is
an indispensable feature of electronic hydrodynamics in
graphene in constrained geometries, where homogeneous
solutions violate the boundary conditions [29].
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We explore hydrodynamics of Dirac fermions in neutral graphene in the Corbino geometry. In
the absence of magnetic field, the bulk Ohmic charge flow and the hydrodynamic energy flow are
decoupled. However, the energy flow does affect the overall resistance of the system through viscous
dissipation and energy relaxation that has to be compensated by the work done by the current
source. Solving the hydrodynamic equations, we find that local temperature and electric potential
are discontinuous at the interfaces with the leads as well as the device resistance and argue that
this makes Corbino geometry a feasible choice for an experimental observation of the Dirac fluid.

Quantum dynamics of charge carriers is one of the
most important research directions in condensed mat-
ter physics. In many materials transport properties can
be successfully described under the assumption of weak
electron-electron interaction allowing for free-electron
theories [1]. An extension of this approach to strongly-
correlated systems remains a major unsolved problem.
The advent of “ultra-clean” materials poses new chal-
lenges, especially if the electronic system is nondegen-
erate. At high temperatures such systems may exhibit
signatures of a collective motion of charge carriers re-
sembling the hydrodynamic flow of a viscous fluid [2–14].

Electronic viscosity has been discussed theoretically for
a long time [15–20], but became the subject of dedicated
experiments [2, 9] only recently, after ultra-clean mate-
rials became available. Up until now, most experimental
efforts were focusing on graphene [2–11] where the hydro-
dynamic regime is apparently easier to achieve [21, 22].
Viscous effects manifest themselves in nonuniform flows.
In the common “linear” geometry (channels, wires, Hall
bars, etc.) this occurs in “narrow” samples where the
typical length scale associated with viscosity is of the
same order as the channel width [23–27]. In contrast, in
the “circular” Corbino geometry, see Fig. 1, the electric
current is nonuniform even in the simplest Drude pic-
ture (in the absence of magnetic field, j ∝ er/|r|, where
er = r/|r|) making it an excellent platform to measure
electronic viscosity [28–31]. In the last year, electronic
hydrodynamics in the Corbino geometry has been stud-
ied both experimentally [32] and theoretically [33–36].

In this paper we address the “Dirac fluid” [3, 9] (the hy-
drodynamic flow of charge carriers in neutral graphene)
in the Corbino geometry. Unlike doped graphene where
degenerate, Fermi-liquid-like electrons may be described
by the Navier-Stokes equation with a weak damping term
due to disorder [16, 21, 23], the two-band physics of
neutral graphene leads to unconventional hydrodynamics
[22, 37]. In the hydrodynamic approach any macroscopic
current can be expressed as a product of the correspond-
ing density and hydrodynamic velocity u (up to dissi-

FIG. 1. Corbino geometry: the annulus-shaped sample of
neutral graphene (µ = 0) is placed between the the two leads:
the inner circle of the radius r1 and the outer shell with the
inner radius r2. A current I is injected through at the center
point and a voltage U is measured between electrodes placed
at the inner and outer radius rin and rout.

pative corrections), e.g., the electric and energy current
densities are j = nu and jE = nEu, respectively. In the
degenerate regime the charge and energy densities are
proportional to each other (to the leading approximation
in thermal equilibrium nE = 2µn/3, where µ is the chem-
ical potential) and the two currents are equivalent [38].
In contrast, the equilibrium charge density vanishes at
charge neutrality, n(µ = 0) = 0, while the energy density
remains finite. The two currents “decouple”: the energy
current remains “hydrodynamic”, the charge current is
completely determined by the dissipative correction δj.

Electronic transport at charge neutrality has been a
subject of intensive research [9, 24–27, 38–46] leading to
general consensus on the basic result: in the absence of
magnetic field, B = 0, resistivity of neutral graphene is
determined by the electron-electron interaction

R0 =
π

2e2T ln 2

(
1

τ11
+

1

τdis

)
−→

τdis→∞

1

σQ
. (1)

Here τ11 ∝ α−2g T−1 describes the appropriate electron-
electron collision integral and σQ is the “intrinsic” or
“quantum” conductivity of graphene. Disorder scatter-
ing is characterized by the mean free time τdis, which is
large under the assumptions of the hydrodynamic regime,

ar
X

iv
:2

20
6.

07
41

4v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
9 

A
ug

 2
02

2



2

FIG. 2. Radial component of the hydrodynamic velocity ur.

Black lines show the drift velocity in the leads, u
in(out)
r ∝ 1/r.

Colored curves correspond to the solution Eq. (4) for the two
indicated values of `GE . The results are plotted for the two
cases of a large (main panel) and small (inset) device.

τdis � τ11 and yields a negligible contribution to Eq. (1).
Equation (1) describes the uniform bulk current and is in-
dependent of viscosity (i.e., in a channel [21, 24, 44, 46]).
In contrast, in the Corbino geometry the current flow is
necessarily inhomogeneous and hence viscous dissipation
must be taken into account.

We envision the following experiment: a graphene sam-
ple (at charge neutrality) in the shape of an annulus is
placed between the inner (a disk of radius r1) and outer
(a ring with the inner radius r2) metallic contacts (leads).
For simplicity, we assume both leads to be of the same
material, e.g., highly doped graphene with the same dop-
ing level. The electric current I is injected into the cen-
ter of the inner lead preserving the rotational invariance
(e.g., through a thin vertical wire attached to the center
point) and spreads towards the outer lead, which for con-
creteness we assume to be grounded. The overall voltage
drop U is measured between two points in the two leads
(at the radii rin < r1 and rout > r2) yielding the device
resistance, R = U/I. In most traditional measurements,
the leads’ resistance is minimal, while the contact re-
sistance is important only in ballistic systems, see e.g.,
Ref. [10]. Hence, one may interpret the measured voltage
drop in terms of resistivity of the sample material. Here
we focus on the device resistance and show that in the
hydrodynamic regime there is an additional contribution
due to electronic viscosity and energy relaxation.

Charge flow through the Corbino disk can be described
as follows. The injected current spreads through the in-
ner lead according to the Ohm’s law and continuity equa-
tion. In the stationary case, the latter determines the
radial component of the current density, jinr = I/(2πer).
This defines the drift velocity uin = jin/nin (nin is the
carrier density in the inner lead) and the energy current
jinE = ninEu

in. Reaching the interface, both currents con-
tinue to flow into the graphene sample. Here (at n = 0
and B = 0) the energy current jE = nEu is decoupled
from the electric current j = δj. Charge conservation

requires the radial component of the electric current to
be continuous at the interface, δj(r1) = jin(r1). Due to
the continuity equation, the current density in graphene
has the same functional form, δjr = I/(2πer). Does this
mean that the device resistance trivially follows if one
knows the resistivity of graphene? The answer is “no”,
since the electrochemical potential is discontinuous at the
interface! There are two mechanisms for the “jump” of
the potential: (i) the usual Schottky contact resistance
[42, 47], and (ii) dissipation due to viscosity [31] and en-
ergy relaxation [48]. Since the lost energy must come
from the current source, both contribute to R.

The energy flow in neutral graphene is described by the
set of hydrodynamic equations developed in Refs. [37, 44,
48] and most recently solved in Ref. [46] in the channel
geometry. Within linear response, the equations are

∇·δj = 0, (2a)

nI∇·u + ∇·δjI = −(12 ln 2/π2)nIµI/(TτR), (2b)

∇δP = η∆u− 3Pu/(v2gτdis), (2c)

3P∇·u = −2δP/τRE . (2d)

Here Eq. (2a) is the continuity equation; Eq. (2b) is the
“imbalance” continuity equation [37, 42] (µI is the im-
balance chemical potential, nI = πT 2/(3v2g) is the equi-
librium imbalance density, vg is the band velocity in
graphene, and τR is the recombination time); Eq. (2c)
is the linearized Navier-Stokes equation [37, 46, 49, 50];
and Eq. (2d) is the linearized “thermal transport” equa-
tion (τRE is the energy relaxation time [48]). Equi-
librium thermodynamic quantities (the pressure P =
3ζ(3)T 3/(πv2g), enthalpy density W, and energy density
are related by the “equation of state”,W = 3P = 3nE/2.
The dissipative corrections to the macroscopic currents
are given by

δj = E/(eR0), (3a)

δjI = −2γ ln 2

π
Tτdis∇µI , γ =

δI
1+τdis/(δIτ22)

, (3b)

where τ22 ∝ α−2g T−1 describes a component of the col-
lision integral that is qualitatively similar, but quantita-
tively distinct from τ11 and δI ≈ 0.28. The equations (2)
and (3) should be solved for u, δj, δjI , E, µI , and δP .

Excluding δP from Eqs. (2c) and (2d) we find a second-
order differential equation for u

η′∆u = 3Pu/(v2gτdis), η′ = η + 3PτRE/2. (4a)

In the Corbino disk, the general solution for the radial
component of the velocity has the form

ur = a1I1

(
r

`GE

)
+ a2K1

(
r

`GE

)
, `2GE =

v2gη
′τdis

3P
,

(4b)
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FIG. 3. Temperature distribution in the device. Colored
curves correspond to the solution of the hydrodynamic equa-
tions for the indicated values of `GE and `R. The results are
plotted for the two cases of a large (main panel) and small
(inset) device. In the leads δT = 0, shown by black lines.

where I1(z) and K1(z) are the Bessel functions. The
coefficients a1 and a2 can be found using the continu-
ity of the entropy current at the two interfaces (within
linear response). The resulting behavior in shown in
Fig. 2 (here we choose to show our results in graphical
form since the analytic expressions are somewhat cum-
bersome [51]; quantitative calculations were performed
for T = 100 K and experimentally relevant values of the
parameters taken from Refs. [8–10, 48]).

In the hydrodynamic regime, the electron-electron
scattering time is the shortest scale in the problem, hence
the spatial variation of u is determined by energy relax-
ation. If `GE � rout − rin, then the energy current in-
jected from the leads decays in a (relatively small) bound-
ary region while in the bulk of the sample u → 0. On
the other hand, if `GE is of the same order as (or larger
than) the system size, then ur does not vanish and ap-
proaches the standard Corbino profile, ur ∝ 1/r. At each
interface, ur exhibits a jump due to the mismatch of the
entropy densities in the sample and leads.

The nonequilibrium quantities δP and µI can now
be found straightforwardly. The former follows directly
from Eq. (2d) using the solution (4), while the differen-
tial equation for the latter can be found by substituting
Eq. (3b) into Eq. (2b) and using the solution (4). The
boundary conditions for δP and µI follow from the con-
tinuity equations for the charge and imbalance. The two
quantities can be combined to determine the nonequilib-
rium temperature variation, δT , shown in Fig. 3. For a
large sample (`GE , `R � rout − rin, `2R = γv2gτdisτR/2),
δT exhibits fast decay and vanishes in the bulk of the
sample. For larger values of `GE , `R energy relaxation is
less effective and the system exhibits an inhomogeneous
temperature profile.

The obtained solutions completely describe the hydro-
dynamic energy flow in neutral graphene. Our remaining
task is to find the behavior of the electrochemical poten-
tial at the two interfaces enabling us to determine R.

FIG. 4. Electrochemical potential (voltage drop) throughout
the device. The black line shows the Ohmic behavior in the
outer lead relative to the ground. The jumps at the interfaces
are due to dissipative effects (viscosity and energy relaxation)
in the bulk of the sample.

The standard description of interfaces between met-
als or semiconductors [47] can be carried over to neutral
graphene [42] in terms of the contact resistance. Typ-
ically, this is a manifestation of the difference of work
functions of the two materials across the interface. In
graphene, the contact resistance was recently measured
in Ref. [10], see also Refs. [32, 52, 53]. In the standard
diffusive (or Ohmic) case, the contact resistance leads to
a voltage drop that is small compared to the voltage drop
in the bulk of the sample and can be ignored. In contrast,
in the ballistic case there is almost no voltage drop in the
bulk, such that most energy is dissipated at the contacts.
Both scenarios neglect electron-electron interactions.

In the diffusive case interactions lead to corrections to
the bulk resistivity [54, 55] and the contact resistance can
still be ignored. In the ballistic case electron-electron
interaction may give rise to a “Knudsen-Poiseuille”
crossover [16] and drive the electronic system to the hy-
drodynamic regime. While the Ohmic resistivity of the
electronic fluid may remain small, the hydrodynamic flow
possesses another channel for dissipation through viscos-
ity [31]. At charge neutrality, this effect is subtle, since
the electric current is decoupled from the hydrodynamic
energy flow, see Eq. (3a). At the same time, both are
induced by the current source providing the energy dis-
sipated not only by Ohmic effects, but also by viscosity
[31] and energy relaxation processes [48] that should be
taken into account in the form of an additional voltage
drop. Since the voltage drop in the bulk of the sample is
completely determined by Eq. (3a), the additional con-
tribution takes the form of a jump in φ at the interface
corresponding to an excess electric field induced in the
thin Knudsen layer around the interface [31].

The magnitude of the jump in φ can be established by
considering the flow of energy through the interface. Fol-
lowing the standard route [31, 56], we consider the time
derivative of the kinetic energy, A = Ė , where E is ob-
tained by integrating the energy density nE(u)−nE(0)
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FIG. 5. Total resistance of the Corbino device for different
values of `GE (here r1 = 0.5µm). Inset: additional contribu-
tion to the resistance due to viscous dissipation.

over the volume. Working within linear response, we ex-
pand the latter to the leading order in the hydrodynamic
velocity. Finding time derivatives from the equations of
motion and using the continuity equation and partial in-
tegration, we then separate the “bulk” and “boundary”
contributions, A = Abulk +Aedge. We interpret the for-
mer as the bulk dissipation, while Aedge includes the en-
ergy brought in (carried away) through the boundary by
the incoming (outgoing) flow. In the stationary state
Ė = 0, dissipation is balanced by the work done by the
source. Assuming that no energy is accumulated at the
interface, we find the corresponding boundary condition.

The specific form of the equations of motion depends
on the choice of the material. Assuming the leads’ mate-
rial is highly doped graphene, the equation of motion is
the usual Ohm’s law with the diffusion term [57] coming
from the gradient of the stress-energy tensor [38], here
we include a viscous contribution due to disorder [58]
and find [31] (omitting the continuous entropy flux)

Alead
edge =

∫
dSβ

(
uLασ

′
L;αβ − uLβ δPL − ej

L
βφ
)
, (5a)

where jL = nLu
L is the current density, uL is the drift

velocity, δPL is the nonequilibrium pressure, and σ′L is
the viscous stress tensor in the lead. The first two terms
are the usual dissipative contributions to the energy flow
across the boundary [56], the last term is the Joule heat.

In neutral graphene, we obtain similar results from the
Navier-Stokes equation, except that the Joule heat is now
determined by δj

Asample
edge =

∫
dSβ

(
uασ

′
αβ − uβδP − eδjβφ

)
. (5b)

Equating the two contributions (5) and using the above
solutions for the velocity and pressure, we find the jumps
of the potential φ at the two interfaces. This allows us to
determine φ everywhere in the device, see Fig. 4, as well
as the device resistance.

The total resistance of the Corbino device is shown
in Fig. 5. Neglecting hydrodynamic effects, we find the

usual logarithmic dependence of R on the system size.
Viscosity and energy relaxation provide an additional dis-
sipation channel and hence increase R. Energy relaxation
contributes to this increase since it dominates the hydro-
dynamic energy flow, see Eq. (4). At the same time, the
boundary condition for the electric potential, Eqs. (5), is
determined by viscosity.

In this paper we have solved the hydrodynamic equa-
tions in neutral graphene. We have shown, that despite
the known decoupling of the Ohmic charge flow and hy-
drodynamic energy flow, in Corbino geometry the latter
does affect the observable behavior leading to jumps in
temperature (shown in Fig. 3) and the electric poten-
tial, see Fig. 4. The potential jump is distinct from the
usual contact resistance insofar it is a function of the sys-
tem size. Both effects are observable using the modern
imaging techniques (the local temperature variation can
be measured using the approach of Refs. [59–61], while
measurements of the local potential are at the heart of
the technique proposed in Refs. [10, 62]). Hydrodynam-
ics also affects the more conventional transport measure-
ments through the size-dependent contribution to the de-
vice resistance, see Fig. 5.

Our results highlight several particular features of the
Dirac fluid in neutral graphene. Firstly, the “linear re-
sponse” currents (3) are independent of the temperature
gradient due to exact particle-hole symmetry [42]. Sec-
ondly, in contrast to the case of doped graphene [31] the
Dirac fluid is compressible even within linear response
(due to energy relaxation, see Eq. (2d). Finally, the hy-
drodynamic flow in neutral graphene is the energy flow.
Hence, energy relaxation effectively dominates over vis-
cous effects, see Eqs. (4), complicating experimental de-
termination of η.

External magnetic field is also known to couple the
charge and energy flows in neutral graphene [37]. We
expect that our theory will yield interesting results on
Corbino magnetoresistance [52]. Another extension of
our theory is the study of thermoelectric phenomena,
which is more interesting if one moves away from the
neutrality point [34] (where the thermopower must van-
ish due to the exact particle-hole symmetry). Our results
on both issues will be reported elsewhere.
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Supplemental material

Starting with the general form of the hydrodynamic equations in graphene, we obtain the analytical results presented
graphically in the main text. In Sec. we summarize the hydrodynamic equations for graphene. In Sec. we specify
these equations within linear response in polar coordinates at charge neutrality and B = 0. In Sec. we formulate a
description of the leads followed by the relevant boundary conditions at the lead-graphene interfaces in Sec. . Next,
in Sec. we present the full analytical solution for the hydrodynamic equations in the Corbino geometry with the
above boundary conditions. In Sec. we discuss the dissipation in the system and corroborate the argument used in
the main text to obtain the device resistance. Finally, we conclude with a brief analysis in Sec. .

Electronic hydrodynamics in graphene

Following Ref. [63] we combine the chemical potentials of the two bands in graphene µ± into

µ = (µ+ + µ−)/2, µI = (µ+ − µ−)/2 (6)

and introduce their conjugate charge and imbalance densities

n = n+ − n−, nI = n+ + n−. (7)

Taking into account dissipative corrections due to electron-electron collisions we then obtain the electric (~j) and
imbalance (~jI) currents as

~j = n~u+ δ~j, ~jI = nI~u+ δ~jI , (8)

where ~u is the drift velocity. The energy current ~jE = nE~u is proportional to the momentum density and is not
relaxed by electron-electron collisions. The currents ~j and ~jI satisfy the continuity equations

∂tn+ ~∇·~j = 0, (9a)

which describes the exact conservation of charge and

∂tnI + ~∇·~jI = −nI−nI,0
τR

= −12 ln 2

π2

nI,0µI
TτR

, (9b)

where nI,0 = πT 2/(3v2g) is the equilibrium value of the total quasiparticle density (at µI = 0) and τR is the recombi-
nation time.

A similar equation can be formulated for the energy density

∂tnE + ~∇·~jE = e~j ~E − nE − nE,0
τRE

, (9c)

where τRE is the energy relaxation time. Typically this is replaced by the thermal transport equation

T

[
∂s

∂t
+ ~∇~r ·

(
s~u− δ~j µ

T
− δ~jI

µI
T

)]
= δ~j ·

[
e ~E+

e

c
~u× ~B−T ~∇µ

T

]
− Tδ~jI ·~∇

µI
T

+
η

2

(
∇αuβ+∇βuα−δαβ ~∇·~u

)2
− nE−nE,0

τRE
+ µI

nI−nI,0
τR

+
W~u2

v2gτdis
. (9d)

Within linear response the two equations coincide. Finally, the generalized Navier-Stokes equation is given by

W(∂t + ~u · ~∇)~u+ v2g ~∇P + ~u∂tP + e( ~E ·~j)~u = v2g

[
η∆~u− ηH∆~u× ~eB + en~E +

e

c
~j × ~B

]
−
~jE
τdis

. (9e)

Here η and ηH are the shear and Hall viscosity coefficients, respectively.
The expressions for the dissipative corrections can be found in the Appendix of Ref. [63].
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Charge neutral Corbino disk at B = 0

Taking into account the rotational symmetry of the Corbino disk, we express the hydrodynamic theory in polar
coordinates (r, ϑ). All quantities can only depend on the radial component r. Within linear response and at B = 0,
the hydrodynamic equations (9) can be transformed to

1

r

∂(rδjr)

∂r
= 0, (10a)

nI,0
1

r

∂(rur)

∂r
+

1

r

∂(rδjIr)

∂r
= −12 ln 2

π2

nI,0µI(r)

TτR
, (10b)

uϑ = 0, (10c)

∂δP

∂r
= η∂r

(
1

r

∂(rur)

∂r

)
− 3Pur
v2gτdis

, (10d)

3P
1

r

∂(rur)

∂r
= −2δP (r)

τRE
. (10e)

The electric field ~E does not appear in Eqs. (10) due to charge neutrality. It does however determine the dissipative
correction δ~j which at charge neutrality is the whole current. In the absence of the magnetic field, all currents are
radial. In polar coordinates, the dissipative corrections take the form

δjr =
Er(r)

eR0
, (11a)

δjϑ = 0, (11b)

δjIr = − δI

τ−1dis +δ−1I τ−122

2T ln 2

π

∂µI
∂r

, (11c)

δjIϑ = 0. (11d)

Equations (10) and (11) have to be solved together taking into account the corresponding boundary conditions see
below.

For the purposes of establishing the boundary conditions we also need to specify the stress tensor. At B = 0 (and
within linear response, meaning neglecting terms that are higher than the leading order in velocity or its derivatives),
the stress tensor is

Παβ
E = Pδαβ − σαβ . (12)

Since the Hall viscosity vanishes at charge neutrality (as well as at B = 0), the viscous stress tensor in Cartesian
coordinates is given by

σαβ = η
(
∇αuβ +∇βuα − δαβ ~∇·~u

)
, (13)

which in polar coordinates becomes

σrr = −σϑϑ = η

(
∂r −

1

r

)
ur, σrϑ = σϑr = η

(
∂r −

1

r

)
uϑ. (14)
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Description of leads

The leads, which are attached at the inner and outer radius of the Corbino disk, are assumed to be a normal
metal in the degenerate regime (µL � T ), where transport is dominated by disorder scattering characterized by the
relaxation time τL. In this case we may restrict ourselves to a single band, such that there is a single macroscopic
current satisfying the continuity equation

∂tnL + ~∇~j = 0. (15)

Within linear response, one can obtain the macroscopic equation of motion (or generalized Ohm’s law) integrating
the kinetic equation [64]. This way one finds

m∂t~j + ~∇Π̌E − enL ~E −
e

c
~j × ~B = −m

τL
~j, (16)

where the stress tensor may me expressed in terms of thermodynamic pressure and disorder-induced viscosity

Παβ
E = Pδαβ − σαβ , ηL =

µ3τL
4πv2g~2

. (17)

To be concrete, we assume that the leads’ material is doped graphene. In that case we may introduce the “effective
mass” m = µL/v

2
g and the drift velocity ~uL, such that ~j = nL~uL. Expressing the carrier density in terms of pressure,

we find

m~j =
3PL
v2g

~uL, (18)

where to lowest order in temperature we find PL = µ3/(3πv2g~2). In the stationary state and at B = 0, the equations
of motion become

~∇~uL = 0, (19)

~∇Π̌E + enL~∇φ = − 3PL
v2gτL

~uL. (20)

Experimentally, the density nL and the chemical potential µ are fixed by the gate voltage. Moreover, under the
common assumption of fast equilibration in the leads, we may assume a uniform temperature T as well. The general
variation of PL is found to be

δPL =

(
2πµTδT

3v2g
+
πT 2δµ

3v2g
+
µ2δµ

πv2g

)
(21)

and thus vanishes under the condition we consider. Since the leads are highly doped, we find nL = n+ = nI , such
that the imbalance chemical potential µI vanishes.

Boundary conditions

The differential equations (10) and (11) should be supplemented by a suitable set of boundary conditions. The
only boundaries present in the Corbino are boundaries between the sample and the leads. Since charge conservation
is exact and also holds in the leads, we find

jr(r1 − ε) = δjr(r1 + ε), δjr(r2 − ε) = jr(r2 + ε). (22)

Fixing the total current I in a radially symmetric system completely determines the current density

I = e

∫
d ~A ·~j = 2πerjr. (23)

In contrast, the total quasiparticle number (imbalance) and entropy are not conserved due to recombination and
energy relaxation processes. However, assuming that the corresponding relaxation rates are not singular at the
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interface, the continuity equations (9b) and (9d) yield the following boundary conditions for the radial components
of the current densities.

The resulting boundary conditions at the two interfaces can be summarized as follows

jr(r1 − ε) = nLur(r1 − ε) = δjr(r1 + ε), (24)

jI,r(r1 − ε) = nLuL,r(r1 − ε) = nI,0ur(r1 + ε) + δjI,r(r1 + ε) = δjr(r1 + ε), (25)

sLuL,r(r1 − ε) = sBur(r1 + ε) (26)

jr(r2 + ε) = nLuL,r(r2 + ε) = δjr(r2 − ε), (27)

jI,r(r2 + ε) = nLuL,r(r2 + ε) = nI,0ur(r2 − ε) + δjI,r(r2 − ε) = δjr(r2 − ε), (28)

sLuL,r(r2 + ε) = sBur(r2 − ε). (29)

Full solution

Solving the equations of motion in the leads, we find

uL,r =
I

2πenLr
, uL,ϑ = 0, (30)

σrr =
−IηL
πenLr2

, σrϑ = 0, (31)

Er =
2PL

enLv2gτL

I

2πenLr
, (32)

φ(r) = − I

2π

2PL
e2n2Lv

2
gτL

log

(
r

r0

)
. (33)

Here the drift velocity follows from the continuity equation and the relation to the current which in turn is given
by Eq. (23). After that, the assumption δP = 0 leads to the simple 1/r behavior for the electrical field Er as well.
Consequently, the charge density (from the Poisson equation) is indeed constant. On the other hand, the constant
r0 in the potential is not fixed by the boundary conditions we have imposed so far. Finally, neither the electric field
nor the current depend on the disorder dominated viscosity ηL. However, the viscous stress tensor itself is not zero,
which will be used below later.

The above expressions can be re-written in terms of the temperature T and the chemical potential µL in the leads.
Under our assumptions, the leads’ material is graphene, where the entropy density is defined as

Ts = 3P − µn− µInI . (34)

For µ� T in the leads we then find

PL =
πT 2µ

3v2g
+

µ3

3πv2g
= PTL + PT=0

L , (35)

nL =
πT 2

3v2g
+

µ2

πv2g
(36)

sLT = 3PL − nLµ =
πT 2µ

v2g
+

µ3

πv2g
− πT 2µ

3v2g
− µ3

πv2g
=

2

3

πT 2µ

v2g
= 2PTL , (37)

so we need to keep finite temperature corrections in the leads as well.
In our sample, the situation is more involved since in neutral graphene the electric current is not related to the

hydrodynamic velocity. As a manifestation of this fact, the differential equations (10) and (11) decouple into two
disjunct sets. The first one consists of equations (10a) and(11a) with the solution

δjr =
I

2πer
, (38)

Er =
IR0

2πr
, φ = −IR0

2π
log

(
r

r0

)
. (39)
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The constant r0 (not necessarily the same as in the corresponding solution for the leads) is not fixed by the boundary
conditions we have imposed so far.

The second set of equations consists of (10b), (10d), (10e) and (11c). Expressing δP through ur, we find

0 = ∂r

(
1

r

∂(rur)

∂r

)
− ur
`2GE

(40)

1

`2GE

=

(
η +

3PτRE
2

)−1
3P

v2gτdis
, (41)

where the Gurzhi length is renormalized by energy relaxation through the combination η′ = η+ 3PτRE/2. The other
two equations can be combined to form

∂r

(
1

r

∂(rur)

∂r

)
−M∂r

(
1

r

∂(r ∂µI

∂r )

∂r

)
= −M

`2R

∂µI(r)

∂r
(42)

M =
2T ln 2

nI,0π

δI

τ−1dis +δ−1I τ−122

, `2R =
δI

τ−1dis +δ−1I τ−122

πT 2τR
6nI,0

. (43)

The two coupled Bessel differential equations for ur and ∂rµI can be expressed using the differential operator D =
∂r(1/r)∂rr. This way we can write the system of equations in the matrix form

D

(
1 0
1 −M

)(
ur
∂µI

∂r

)
=

(
1
`2GE

0

0 −M
`2R

)(
ur
∂µI

∂r

)
⇔ D

(
ur
∂µI

∂r

)
=

(
1
`2GE

0
1

M`2GE

1
`2R

)(
ur
∂µI

∂r

)
. (44)

This can be formally solved by diagonalizing the matrix(
1
`2GE

0
1

M`2GE

1
`2R

)
= Û−1D̂Û , (45)

where D̂ is a diagonal matrix with the eigenvalues d1 and d2 (in units of inverse length squared) and then transforming
back to the ur and ∂rµI basis. Then this coupled Bessel differential equation has the general solution

ur = M

(
1− `2GE

`2R

)[
f1I1

(
r

`GE

)
+ f2K1

(
r

`GE

)]
(46)

∂µI
∂r

= f1I1

(
r

`GE

)
+ f2K1

(
r

`GE

)
+ g1I1

(
r

`R

)
+ g2K1

(
r

`R

)
, (47)

where the coefficients f1, f2, g1 and g2 should be determined from the boundary conditions. These involve the entropy
density

TsB = 3P = 3
3T 3ζ(3)

πv2g
. (48)

From the conservation of entropy current Eqs. (26) and (29) we find f1 and f2 so that

ur =
IsL

2πenLsB

I1
(

r
`GE

) [
r1K1

(
r1
`GE

)
− r2K1

(
r2
`GE

)]
−K1

(
r
`GE

) [
r1I1

(
r1
`GE

)
− r2I1

(
r2
`GE

)]
r1r2K1

(
r1
`GE

)
I1

(
r2
`GE

)
− r1r2I1

(
r1
`GE

)
K1

(
r2
`GE

)
 . (49)

This leads to the stress tensor elements

σrr =
ηIsL

2πe`GEnLsB

I2

(
r
`GE

) [
r1K1

(
r1
`GE

)
− r2K1

(
r2
`GE

)]
+K2

(
r
`GE

) [
r1I1

(
r1
`GE

)
− r2I1

(
r2
`GE

)]
r1r2

[
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

)] , (50)

σrϑ = 0 (51)
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and

δP = −3PτRE

2

1

r

∂(rur)

∂r
= (52)

= −3PτRE

2

IsL
2πe`GEnLsB

K0

(
r
`GE

) [
r1I1

(
r1
`GE

)
− r2I1

(
r2
`GE

)]
+ I0

(
r
`GE

) [
r1K1

(
r1
`GE

)
− r2K1

(
r2
`GE

)]
r1r2K1

(
r1
`GE

)
I1

(
r2
`GE

)
− r1r2I1

(
r1
`GE

)
K1

(
r2
`GE

)
 ,

Using the conservation of the imbalance current Eqs. (25) and (28) we find the imbalance chemical potential

µI(r) =
IsL`R

2πeMnLr1r2sB(`2GE − `2R)

K0

(
r
`R

) [
r1I1

(
r1
`R

)
− r2I1

(
r2
`R

)] [
`2GE +

(
`2R − `2GE

)
nL

nI,0

sB
sL

]
K1

(
r1
`R

)
I1

(
r2
`R

)
− I1

(
r1
`R

)
K1

(
r2
`R

)
+
I0

(
r
`R

) [
r1K1

(
r1
`R

)
− r2K1

(
r2
`R

)] [
`2GE +

(
`2R − `2GE

)
nL

nI,0

sB
sL

]
K1

(
r1
`R

)
I1

(
r2
`R

)
− I1

(
r1
`R

)
K1

(
r2
`R

) (53)

+
`GE`RK0

(
r
`GE

) [
r2I1

(
r2
`GE

)
− r1I1

(
r1
`GE

)]
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

) +
`GE`RI0

(
r
`GE

) [
r2K1

(
r2
`GE

)
− r1K1

(
r1
`GE

)]
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

)


and the dissipative correction to the imbalance current

δjIr(r) =
InI,0sL

2πenLr1r2sB (`2GE − `2R)

K1

(
r
`R

) [
r1I1

(
r1
`R

)
− r2I1

(
r2
`R

)] [
`2GE +

(
`2R − `2GE

)
nL

nI,0

sB
sL

]
K1

(
r1
`R

)
I1

(
r2
`R

)
− I1

(
r1
`R

)
K1

(
r2
`R

)
−
I1

(
r
`R

) [
r1K1

(
r1
`R

)
− r2K1

(
r2
`R

)] [
`2GE +

(
`2R − `2GE

)
nL

nI,0

sB
sL

]
K1

(
r1
`R

)
I1

(
r2
`R

)
− I1

(
r1
`R

)
K1

(
r2
`R

) (54)

+
`2RK1

(
r
`GE

) [
r1I1

(
r1
`GE

)
− r2I1

(
r2
`GE

)]
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

) +
`2RI1

(
r
`GE

) [
r2K1

(
r2
`GE

)
− r1K1

(
r1
`GE

)]
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

)
 .

From δP and µI we find δT according to

δT =
πv2g

9T 2ζ(3)
δP − π2

27ζ(3)
µI . (55)

Our hydrodynamic system is not characterized by a local thermal conductivity κ. In other words, the heat current

~jQ(r) = 3P~u− µ~j − µI~jI (56)

is related to the temperature gradient ∇δT (r) at the same point r non locally. The non-local (integral) relation
between ~jQ(r) and ∇δT (r′) characterized by a non-local kernel κ(r, r′) follows from the fact that the equation for ~u(r)
is now a second-order differential equation with a non-local Green’s function. Expressing δP (r) there in terms of δT (r)
and µI(r), we have a non-local relation between ~u(r), δT (r′) and ∇µI(r′). Substituting this ~u(r) into the definition
of ~jQ(r), we obtain a non-local thermal conductivity. As a result one can only introduce the thermal conductance for
the device, relating the temperature difference between the contacts with the total heat current through the system.
This will be done in a subsequent publication.

Dissipation and total resistance

The above solution is not sufficient to determine the drop in electrochemical potential between the points rin and rout
(in the inner and outer lead, respectively) since it contains the undefined constant r0 that has to be determined from
a boundary condition for the electric potential. Although microscopically the potential has to be continuous, several
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effects might contribute to an apparent discontinuity on the hydrodynamic scale. The most obvious contribution is
the contact resistance that is a manifestation of the different work functions in the two materials across the interface
as well as the mismatch in their chemical potentials [65]. A more subtle effect due to electron-electron interaction
giving rise to viscosity and hence an additional dissipation channel [66]. At charge neutrality, this effect is subtle,
since the electric current is decoupled from the hydrodynamic energy flow. However, both flows are induced by the
same current source providing the energy dissipated by means of both the Ohmic and viscous effects [66] as well as
energy relaxation [48]. The latter processes should be taken into account in the form of an additional voltage drop at
the interface.

Under the assumption that energy is not being accumulated at the interface, we generalize the idea proposed in
Ref. [66] and consider viscous dissipation in the sample. Since the electric field in bulk of the sample is completely
determined by the Ohmic resistance R0, additional dissipation due to viscosity and energy relaxation corresponds to
a jump in the electric potential (on the hydrodynamic scale) at the interface. Microscopically, the voltage jump is
due to an excess electric field in the Knudsen layer around the sample-lead boundary.

Consider the kinetic energy associated with the hydrodynamic flow that can be found from the energy density

E =

∫
dV (nE − nE(~u = 0)) ≈

∫
dV

6P

v2g
~u2. (57)

Working within linear response, here we only keep terms up to the second order in ~u (and thus the drive I). Dissipation
is then describe by

A = Ė = 2
6P

v2g

∫
dV~u∂t~u = 0, (58)

vanishing in the steady state. This expression can now be simplified using the generalized Navier-Stokes equation.
In the leads (still assuming graphene at finite carrier density) we find

3PL
v2g

~uL∂t~uL = ~uL

(
−3PL
v2g

~uL
τL
− ~∇Π̌E + nLe ~E

)
=− 3PL

v2g

~u2L
τL
− ~∇δP~uL + ~uL~∇σ̌ − e~j ~∇φ.

= −3PL
v2g

~u2L
τL
− ∂uL,i

∂xj
σij + ~∇

(
~uLσ̌ − e~jφ− ~uLδP

)
. (59)

The term enL~uL ~E = e~j ~E is the Joule heating. Using the divergence theorem we can divide this into a boundary and
a bulk term

0 = A = Aboundary −Abulk, (60)

Aboundary = 4

∫
d ~A
(
~uLσ̌ − ~uLδP − e~jφ

)
, (61)

Abulk = 4

∫
dV

(
3PL
v2g

~u2L
τL

+
∂uL,i
∂xj

σij

)
. (62)

The boundary term includes the energy transmitted through the interface.
Since the current density is conserved at the interface, we can immediately write down the corresponding equation

in the neutral graphene sample, where the Joule heating is given by eδ~j ~E. Then we find

0 = A = Aboundary −Abulk, (63)

Aboundary = 4

∫
d ~A
(
~uσ − ~uδP − eδ~jφ

)
, (64)

Abulk = 4

∫
dV

(
3P

v2g

~u2

τdis
+
∂ui
∂xj

σij − δP (~∇ · ~u)

)
. (65)

As stated above, under realistic experimental conditions the non-equilibrium part of the pressure at u = 0 on the lead
side vanishes

δP = 0. (66)
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At the same time, in neutral graphene sample we find

δP =

(
9T 2δTζ(3)

πv2g
+
πµIT

2

3v2g

)
=
T 2

v2g

(
9δTζ(3)

π
+
πµI

3

)
. (67)

Using the hydrodynamic equations, one may replace δP by [−3PBτRE/(2r)]∂(rur)/∂r, thus determining δP for finite
τRE without any additional boundary conditions. The same goes for µI . Thus we may use the viscous part of the
dissipation to find the difference in the electrochemical potential across the interface.

In addition, we may include the contact resistance described by

I2Rc = ~IT Ř~I, (68)

where ~I includes charge and entropy current and Ř includes the thermoelectric coefficients of the interface.
In the absence of magnetic field, both uϑ and σrϑ vanish. In the leads δP = 0 and hence we find the condition

4π [r (urσrr)]r1−ε − 2Iφ(r1 − ε) = 4π [r (urσrr − urδP )]r1+ε − 2Iφ(r1 + ε)− 2~IT Ř~I

⇔ φ(r1 − ε)− φ(r1 + ε) =
2π

I

{
[r (urσrr)]r1−ε − [r (urσrr − urδP )]r1+ε

}
+ IRc (69)

at the first interface and similarly for the second interface

4π [r (urσrr − δPur)]r2−ε − 2Iφ(r2 − ε) = 4π [r (urσrr)]r2+ε − 2Iφ(r2 + ε)− 2~IT Ř~I

⇔ φ(r2 − ε)− φ(r2 + ε) = −2π

I

{
[r (urσrr)]r2+ε − [r (urσrr − urδP )]r2−ε

}
+ IRc. (70)

Combining the above general solution with these conditions, we find at r1

rur(σrr − δP ) =
I2s2Lη`GE

4π2e2n2Ls
2
B`

2
G

`GE − r2K0

(
r1
`GE

)
I1

(
r2
`GE

)
− r2I0

(
r1
`GE

)
K1

(
r2
`GE

)
r1r2

[
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

)] − ηI2s2L
2π2e2n2Lr

2
1s

2
B

and at r2

rur(σrr − δP ) = − I2s2Lη`GE

4π2e2`2Gn
2
Ls

2
B

`GE − r1I1
(
r1
`GE

)
K0

(
r2
`GE

)
− r1K1

(
r1
`GE

)
I0

(
r2
`GE

)
r1r2

[
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

)] − ηI2s2L
2π2e2n2Lr

2
2s

2
B

.

As a result, we find the total resistance R of the system in the form

IR = φ(rin)− φ(rout) = I(RL +RB + 2RC +Rdiss
L +Rdiss

B ), (71)

RL =
3PL

2πe2n2Lv
2
gτL

log

(
r1rout
rinr2

)
, RB =

R0

2π
log

(
r2
r1

)
, (72)

RC =
~IT Ř~I

I2
, (73)

Rdiss
L =

ηL
πe2n2L

(
1

r22
− 1

r21

)
(74)

Rdiss
B =

ηs2L
πe2n2Ls

2
B

{
1

r21
− 1

r22
+
`GE

2`2G
(75)

×
r2

[
K0

(
r1
`GE

)
I1

(
r2
`GE

)
+I0

(
r1
`GE

)
K1

(
r2
`GE

)]
+r1

[
I1

(
r1
`GE

)
K0

(
r2
`GE

)
+K1

(
r1
`GE

)
I0

(
r2
`GE

)]
−2`GE

r1r2

(
K1

(
r1
`GE

)
I1

(
r2
`GE

)
− I1

(
r1
`GE

)
K1

(
r2
`GE

))
 .

Analysis of results

The behavior of the obtained resistance depends on the hierarchy of length scales r1, r2, r2 − r1, `GE and `R. In
this Section, we specify the quantitative values of the parameters used to produce the plots shown in the main text.
For clarity, here we restore the constants ~ and kB .
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We perform our quantitative analysis assuming the carrier density in the leads to be nL = 5 × 1014 m−2. The
equilibrium temperature in the device (including both leads and the sample) is fixed to T = 100 K. The current, that
is supplied by the source is I = 1 µA and we assume that the effective interaction constant is screened to α = 0.2.
We further use τdis = 1.25 × 10−12 s and τL = 0.189 × 10−12 s [65], since the density is higher in the leads. This
determines all other parameters, except for τRE and τR (or alternatively `GE and `R). Since these quantities are
difficult to extract from the available experimental data, we show results for several different regimes.

The time scales related to electron-electron interaction are given by [63]

τii = ~
4πtii log 2

α2kBT
, t11 =

1

33.13
, t22 =

1

5.45
. (76)

For the above parameter values, we find τ11 = 0.5× 10−12 s and τ22 = 3× 10−12 s. The viscosity can be estimated as

η =
0.446k2BT

2

α2v2g~
(77)

and amounts to ν = v2gη/(3P ) = 0.25 m2/s. In addition

R0 =
π

2 log 2

~2

e2kBT

(
1

τ11
+

1

τdis

)
= 1985.33Ω (78)

When describing the hydrodynamic velocity ur and the pressure δP one can consider three different limits. If
`GE � r1, r2, which is achieved for very small τdis, one finds

ur ≈
IsL

(√
rr2 sinh

(
r−r2
`GE

)
−√rr1 sinh

(
r−r1
`GE

))
2πenLrsB

√
r1r2sinh

(
r1−r2
`GE

) (79)

which means, that the velocity vanishes exponentially close to the interface and is very small in the bulk of the
sample. In the opposite limit `GE � r1, r2 ur shows a behavior similar to the drift velocity in the leads with
logarithmic corrections

ur ≈
IsL

2πenLrsB
+

IsLr
2
1r

2
2 log

(
r1
r2

)
4πe`2GEnLrsB(r21 − r22)

+
IrsL

[
r21 log

(
r
r1

)
− r22 log

(
r
r2

)]
4πe`2GEnLsB (r21 − r22)

. (80)

Finally, if r2 − r1 � r1, r2, `GE we find the same 1/r behavior as in the leads

ur ≈
IsL

2πenLrsB
(81)

The resulting velocity ur is shown in Fig. 2 of the main text. In the leads, the drift velocity shows a simple 1/r
behavior, while one finds a jump due to the mismatch of entropy directly at the interface. Inside the sample, the
situation depends on the relative size of `GE. If `GE � r1, r2 we indeed observe, that the velocity decreases rapidly
close to the interface and exactly vanishes in the bulk of the sample. This behavior is generally only observable in
rather large samples, since the quantity τdis cannot be arbitrarily small while still staying in the hydrodynamic regime.
In all other cases, ur resembles a 1/r behavior, that is slightly modified by logarithmic corrections.

The plot of δT are shown in Fig. 3 of the main text. In the limit of `GE � r1, r2 the non-equilibrium part of the
temperature δT vanishes in the bulk of the sample. In this limit energy relaxation processes transfer any heating,
that may develop in the sample to the substrate and out of the device. There is only a small finite effect very close to
the interface. Since this is an effect of τR it is in principle independent of `GE and τRE, however we need `R < `GE to
remain in the hydrodynamic regime. In all other scenarios, there is a finite temperature profile, which may amount
to 0.5% of the equilibrium temperature.

Finally we take a look at the total resistance R of the system. In general one might place the measuring points
rin and rout very close to the interface, in which case the bulk resistance of the leads RL would not contribute to the
total resistance R. We will further disregard the influence of the phenomenological contact resistance RC , which only
depends on the used materials and their relative chemical potential. Then one can consider again three limiting cases
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of the hydrodynamic, dissipative contribution to the resistance Rdiss
B . The first limit is `GE � r1, r2 in which case we

find

Rdiss
B ≈ ηs2L

πe2n2Ls
2
B

(
1

r21
− 1

r22

)

−
s2L(A+ η)

(
(r1 + r2) cosh

(
r1−r2
`GE

)
− 2
√
r1r2

)
csch

(
r1−r2
`GE

)
2πe2`GEn2Lr1r2s

2
B

(82)

≈ ηs2L
πe2n2Ls

2
B

 1

r21
− 1

r22
−

√
`2G +

v2gτdisτRE

2

2`2G

(
1

r1
+

1

r2

) (83)

where the second approximation requires r1 − r2 � `GE. The result of Ref. [66] corresponds to neglecting the term
proportional to `GE. The second limit is the case `GE � r1, r2 and we find

Rdiss
B ≈ ηs2L

πe2n2Ls
2
B

(
1

r21
− 1

r22
+

1

2`2G
log

(
r2
r1

))
, (84)

which introduces a logarithmic correction of exactly the same form as the bulk resistance RB of the sample. The final
limit is r2 − r1 � r1, r2, `GE where we find the result

Rdiss
B =

s2Lη(r22 − r21)

4πe2n2Lr1r2s
2
B`

2
G

. (85)

If one instead directly takes the limit τRE → 0, and additionally `G � r1, r2, r2 − r1 one would obtain

Rdiss
B ≈ ηs2L

πe2n2Ls
2
B

[
1

r21
− 1

r22
− 1

2`G

(
1

r1
+

1

r2

)]
. (86)

This is the result for the viscous correction to the resistance at charge neutrality in the setup of Ref. [67].
The plots for φ(r) and R = RB +Rdiss

B +Rdiss
L are shown in Fig. 4 and 5 of the main text respectively. In the case

of the potential φ we find a logarithmic dependence on the radial position r in both the leads and the sample, where
the overall prefactor is however different. In all considered cases, the jump at the interface is in the same direction,
which for the second interface is opposite to what Ref. [66] obtains. This is due to the fact, that in our case the
contribution of δP is larger than the contributions due to η and ηL alone. The jump is larger, for larger `GE. As seen
in Fig. 5 of the main text, the total measured resistance is only slightly changed. The correction shown in the inset
of Fig. 5 of the main text is nearly logarithmic for the larger `GE, while is saturates for the smaller `GE.
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We explore the magnetohydrodynamics of Dirac fermions in neutral graphene in the Corbino ge-
ometry. Based on the fully consistent hydrodynamic description derived from a microscopic frame-
work and taking into account all peculiarities of graphene-specific hydrodynamics, we report the
results of a comprehensive study of the interplay of viscosity, disorder-induced scattering, recombi-
nation, energy relaxation, and interface-induced dissipation. In the clean limit, magnetoresistance of
a Corbino sample is determined by viscosity. Hence the Corbino geometry could be used to measure
the viscosity coefficient in neutral graphene.

Transport measurements remain one of the most com-
mon experimental tools in condensed matter physics.
Having dramatically evolved past the original task of es-
tablishing bulk material characteristics such as electrical
and thermal conductivities, modern experiments often
involve samples that are tailor-made to target particular
properties or behavior.

In recent years considerable efforts have been devoted
to uncovering the collective or hydrodynamic flows of
charge carriers in ultraclean materials as predicted theo-
retically [1–4]. Several dedicated experiments focused on
answering two major questions: is the observed electronic
flow really hydrodynamic and how to measure electronic
viscosity [5–10], the quantity that fascinates physicists
beyond the traditional condensed matter physics [11–
18]. The hydrodynamic regime is apparently easiest to
achieve in graphene [2–4]. This material is especially in-
teresting since it can host two drastically different types
of hydrodynamic behavior: (i) “conventional” at rela-
tively high carrier densities [3, 19, 20] and (ii) “uncon-
ventional” at charge neutrality [21, 22].

Linearity of the excitation spectrum in graphene leads
to the fact that electronic momentum density defines the
energy current, jE . In the intermediate temperature win-
dow where electron-electron interaction is the dominant
scattering process in the system (ℓee ≪ ℓdis, ℓe−ph,W , in
the self-evident notation) the energy flow becomes hydro-
dynamic. At high carrier densities (in “doped graphene”)
the energy current is essentially equivalent to the electric
current, j, allowing one to formulate a Navier-Stokes-like
equation for j [20] as pioneered by Gurzhi [19].

At charge neutrality and in the absence of the exter-
nal magnetic field (B = 0) the energy and electric cur-
rents decouple [23]. In the hydrodynamic regime the elec-
tric current remains Ohmic [22] (with the “internal” or
“quantum” conductivity σQ due to electron-electron in-
teraction [24–27]), while the Navier-Stokes-like equation
describes the energy current [22, 28, 29]. If external mag-
netic field is applied, the energy and charge flows become
entangled [21–23] allowing for a possibility to detect the
hydrodynamic flow in electronic transport experiments.
In particular, a bulk (infinite) system is characterized

FIG. 1. Hydrodynamic velocity u and temperature δT dis-
tribution in the device obtained by solving the hydrodynamic
equations at relatively high temperatures where energy relax-
ation is dominated by supercollisions. Arrows indicate u and
the color map shows δT . The quantitative results were com-
puted using the following values of the average temperature
T = 150K, disorder scattering time τdis = 1.5 ps (correspond-
ing to the scattering rate τ−1

dis ≈ 0.67THz≈ 5.1K), recombi-
nation time τR = 15ps, energy relaxation time τRE = 5ps,
dimensionless coupling constant in graphene α = 0.5, carrier
density in the leads nL = 5×1012 cm−2, and the current pass-
ing through the device I = 1µA. The four panels correspond
to the indicated values of magnetic field.

by positive, parabolic magnetoresistance [23, 30] propor-
tional to the disorder mean free time τdis (disorder scat-
tering is the only mechanism of momentum relaxation).

The outcome of a given measurement is strongly in-
fluenced by the sample size and geometry. Early experi-
ments focused on either the “strip” (or Hall bar) [5–8] or
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the point contact geometry [9, 10], while more recently
data on Corbino disks became available [31].

The simplest viscous phenomenon one can look for in a
long (striplike) sample [7–10, 12, 32–52] is the Poiseuille
flow [53–55]. This flow is characterized by a parabolic
velocity profile with the curvature determined by viscos-
ity. In doped graphene the Poiseuille flow of charge can
be detected by imaging the electric current density [8].
In contrast, neutral graphene exhibits the Poiseuille flow
of the energy current [56]. Moreover, at relatively high
temperatures where hydrodynamic behavior in graphene
is observed the electron-phonon interaction (either direct
[23, 57, 58] or via “supercollisions” [59–64]) cannot be ne-
glected and hence electronic energy is not conserved. The
resulting energy relaxation dwarfs the viscous contribu-
tion to the Navier-Stokes [65] equation.

Applying a perpendicular magnetic field to a neutral
graphene strip leads to a coupled charge and energy flow
with the two currents being orthogonal [23]. The elec-
tric current flowing along the strip is accompanied by a
neutral quasiparticle flow in the lateral direction result-
ing in energy and quasiparticle accumulation near the
strip boundaries [66, 67]. The accumulation is limited by
quasiparticle recombination [67] and energy relaxation
processes [59]. As a result, the boundary region’s contri-
bution to the resistance is linear in the applied magnetic
field [23, 48, 67, 68], in contrast to the standard quadratic
magnetoresistance of the bulk system [23, 30]. In classi-
cally strong fields the boundary contribution dominates
making the linear magnetoresistance directly observable.
This effect is not specific to Dirac fermions as shown by
experiments in bilayer graphene [69].

The Corbino geometry presents an interesting alterna-
tive to the Hall bar experiments [31, 65, 70–78]. In a typ-
ical measurement the electric current is passed from the
inner to the outer boundary of a Corbino disk. The spe-
cific feature of the stationary flow in this geometry is that
the magnitude of the radial component of the current is
determined by the continuity equation alone. In the ab-
sence of the magnetic field the whole current flows radi-
ally. Combining the solution of the continuity equation
with the hydrodynamic Gurzhi equation (e.g., in doped
graphene) leads to an apparent paradox [73]: the current
flow appears unaffected by viscosity. However, the dis-
sipated energy is still determined by viscosity leading to
the jumps of electric potential at the contacts thus re-
solving the paradox. In a perpendicular magnetic field
the system exhibits parabolic magnetoresistance inverse
proportional to the viscosity and independent of the dis-
order scattering. Applied phenomenologically to neutral
graphene (neglecting contact effects) [78] this conclusion
stands in sharp contrast to the standard result [23, 30]
raising the question of the fate of the disorder-limited
bulk magnetoresistance in the Corbino geometry.

In this paper we investigate hydrodynamic flows in
neutral graphene in the Corbino disk subjected to the
perpendicular magnetic field based on the graphene-
specific hydrodynamic theory [2, 22, 59] reporting the

results of a careful study of the interplay of viscosity,
disorder-induced scattering, recombination, energy relax-
ation, and interface-induced dissipation. Solving the hy-
drodynamic equations we find the spatial distribution of
the hydrodynamic velocity u, temperature (see Fig. 1),
electric current, and potential φ (see Fig. 2). Further-
more, we calculate the field-dependent resistance of the
whole Corbino sample including the leads. Keeping in
mind recent and ongoing experiments, it appears logical
to include the effect of the lead resistance in order to
achieve a more realistic description of the Corbino de-
vice. However, the theoretical limit of “ideal” leads can
be considered without any complications.
The main results of this paper are as follows. We

show that magnetoresistance of the Corbino device ex-
hibits a crossover from the “hydrodynamic” (viscosity-
dominated) to the “bulk” (disorder-limited) behavior
with the increasing system size as compared to the
Gurzhi length ℓG =

√
ντdis [46–49, 52] (ν is the kinematic

viscosity [3, 5, 6, 55, 79] and τdis is the disorder mean
free time). In the clean limit (τdis → ∞) magnetoresis-
tance remains finite and is determined by viscosity offer-
ing a way to measure the viscosity coefficient in neutral
graphene. In classically strong fields magnetoresistance
remain parabolic (in contrast to the linear magnetoresis-
tance in the strip geometry). The “contact magnetoresis-
tance” induced through the dissipation jump is present,
but is typically weaker than the bulk contribution.

I. MAGNETOHYDRODYNAMICS IN
GRAPHENE

Our arguments are based on the hydrodynamic theory
of electronic transport in neutral graphene derived from
the kinetic (Boltzmann) equation [21, 22, 59] or from the
microscopic Keldysh technique [80]. At charge neutral-
ity both bands contribute to transport on equal footing.
A current-carrying state is characterized by the chemical
potentials µ± of each band or by their linear combina-
tions [22, 81]

µ =
µ++µ−

2
, µI =

µ+−µ−

2
, (1a)

conjugate to the “charge” and “imbalance” (or “total
quasiparticle”) densities

n = n+ − n−, nI = n+ + n−. (1b)

In equilibrium µI = 0. Any macroscopic current can be
expressed as a product of the corresponding density and
hydrodynamic velocity u (up to dissipative corrections).
Due to the kinematic peculiarity of the Dirac fermions
in graphene known as the “collinear scattering singular-
ity” [21, 25] one has to consider the electric, energy, and
imbalance, jI currents defined as

j = nu+δj, jI = nIu+δjI , jE = Wu, (2)
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where W is the enthalpy density and δj and δjI are
the dissipative corrections. In the degenerate limit
µ ≫ T the dissipative corrections vanish [22, 28] justify-
ing the applicability of the single-band picture to doped
graphene. At charge neutrality n = 0, the electric and
energy currents in Eq. (2) appear to be decoupled [22].

Within linear response, steady-state macroscopic cur-
rents obey the linearized hydrodynamic equations [82].
Assuming that the dominant mechanism of energy relax-
ation is supercollisions [59], the equations have the form

∇·δj = 0, (3a)

nI∇·u+∇·δjI = −12 ln 2

π2

nIµI

TτR
, (3b)

∇δP = η∆u+
e

c
δj×B − 3Pu

v2gτdis
, (3c)

3P∇·u = −2δP

τRE
. (3d)

Here Eq. (3a) is the continuity equation; Eq. (3b) is the
“imbalance” continuity equation [22, 81] (where vg is the
band velocity in graphene, c is the speed of light, e is the
unit charge, and τR is the recombination time); Eq. (3c)
is the linearized Navier-Stokes equation [22, 29, 82, 83]
(with η being the shear viscosity); and Eq. (3d) is the
linearized “thermal transport” equation (τRE is the en-
ergy relaxation time [59]). We follow the standard ap-
proach [55] where the thermodynamic quantities are re-
placed by the corresponding equilibrium functions of the
hydrodynamic variables. Equilibrium thermodynamic
quantities, i.e., the pressure P = 3ζ(3)T 3/(πv2g), en-

thalpy density W, imbalance density, nI = πT 2/(3v2g),
and energy density are related by the “equation of state”,
W = 3P = 3nE/2. Equations (3) should be solved for
the unknowns u, µI , and δP keeping the remaining (ther-
modynamic) quantities, e.g., nI , P , and T , constant.

The dissipative corrections to the macroscopic currents
can be determined from the underlying microscopic the-
ory [22, 29, 82] and are expressed in terms of the same
variables closing the set of hydrodynamic equations (3)

δj =
1

e2R̃

[
eE + ωBeB×

(
α1δI∇µI

τ−1
dis +δ−1

I τ−1
22

− 2T ln 2

v2g
u

)]
,

(4a)

δjI = − δI

τ−1
dis +δ−1

I τ−1
22

1

e2R̃
× (4b)

×
[
α1ωBeB×E+

2T ln 2

π
e2R0∇µI+α1ω

2
B

2T ln 2

v2g
u

]
,

R̃ = R0+α2
1δIR̃B . (4c)

In Eqs. (4) the following notations are introduced. R0 is
the zero-field bulk resistivity in neutral graphene [23, 30]

R0 =
π

2e2T ln 2

(
1

τ11
+

1

τdis

)
−→

τdis→∞

1

σQ
, (5)

where τ11 ∝ α−2
g T−1 describes the appropriate electron-

electron collision integral. R̃B denotes [65, 82]

R̃B =
π

2e2T ln 2

ω2
B

τ−1
dis +δ−1

I τ−1
22

, (6)

where τ22 ∝ α−2
g T−1 describes a component of the col-

lision integral that is qualitatively similar, but quantita-
tively distinct from τ11 and δI ≈ 0.28. Another numerical
factor in Eqs. (4) is α1 ≈ 2.08 and ωB = eBv2g/(2cT ln 2)
is the generalized cyclotron frequency at µ = 0.
The shear viscosity at charge neutrality and in the ab-

sence of magnetic field was evaluated in Refs. [22, 79, 83]
and has the form

η(µ = 0, B = 0) = B T 2

α2
gv

2
g

, B ≈ 0.45. (7)

Within the renormalization group (RG) approach, αg

is a running coupling constant [56, 83–86]. However,
the product αgvg remains constant along the RG flow
[24, 83]. Hence Eq. (7) gives the correct form of shear
viscosity in neutral graphene [84]. Within the kinetic
theory approach, the coefficient B can be expressed in
terms of time scales characterizing the collision integral
[22, 79]. At neutrality these time scales are qualitatively
similar to, but quantitatively distinct from τ11 and τ22.
The similarity follows from the fact that in general all
time scales are functions of the chemical potential and
temperature [22, 28, 87]. At neutrality µ = 0 and hence
all time scales are inverse proportional to temperature.
As a function of the magnetic field, the viscosity co-

efficient in neutral graphene exhibit a weak decay until
eventually saturating in classically strong fields [79]

η(µ = 0, B) =
B+B1γ

2
B

1+B2γ2
B

T 2

α2
gv

2
g

, γB =
|e|v2gB
α2
gcT

2
, (8)

where

B1 ≈ 0.0037, B2 ≈ 0.0274.

This behavior should be contrasted with the more con-
ventional Lorentzian decay of field-dependent shear vis-
cosity in doped graphene [6, 45, 46, 79, 88]. However, in
weak fields where most present-day experiments are per-
formed this distinction is negligible. Moreover, due to
the smallness of the coefficient B1 and B2 we disregard
the field dependence of η in what follows.
Under the assumptions of the hydrodynamic regime,

disorder scattering is characterized by the large mean free
time, τdis ≫ τ11, τ22, yielding a negligible contribution to
Eqs. (5) and (6). Equation (5) describes the uniform bulk
current (at B = 0) and is independent of viscosity (i.e.,
in a channel [3, 21, 67, 82]). In contrast, in the Corbino
geometry the current flow is necessarily inhomogeneous
and hence viscous dissipation must be taken into account.
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II. BOUNDARY CONDITIONS

Differential equations (3) should be supplemented by
boundary conditions, which should be expressed in terms
of the hydrodynamic velocity and macroscopic currents.
The statement of the boundary conditions does not im-
ply the validity of the hydrodynamic approximation at
the sample edges and generally have to be derived from
the underlying microscopic theory. However some of the
boundary conditions can be derived based on the con-
servation laws alone. In the circular Corbino geometry
conservation laws can be used to establish boundary con-
ditions for radial components of the currents [65].

A. Radial components of macroscopic currents

A typical experimental setup involves a graphene sam-
ple (in our case, at charge neutrality) in the shape of an
annulus placed between the inner (a disk of radius r1) and
outer (a ring with the inner radius r2) metallic contacts
(leads). The electric current I is injected into the cen-
ter of the inner lead preserving the rotational invariance
(e.g., through a thin vertical wire attached to the center
point) and spreads towards the outer lead, which for con-
creteness we assume to be grounded. The overall voltage
drop U is measured between two points in the two leads
(at the radii rin < r1 and rout > r2) yielding the device
resistance, R = U/I. The only boundaries in the system
are between the sample and the external leads.

For simplicity, we assume both leads to be of the same
material with a single-band electronic system, e.g., highly
doped graphene with the same doping level. In that
case, all macroscopic currents in the leads are propor-
tional to the drift velocity and hence are determined by
the injected current. In the stationary case, the conti-
nuity equation (3a) determines the radial component of
the electric current density. In the inner lead this yields
jinr = I/(2πer), defining the radial component of the drift
velocity, uin

r = jinr /nL (nL is the carrier density in the in-
ner lead). Assuming charge conservation is not violated
at the interface, we find the boundary condition between
the inner lead and the sample

jr(r1−ϵ) = nLur(r1−ϵ) = δjr(r1+ϵ), (9a)

where ϵ > 0 is infinitesimal and we took into account
that in neutral (n = 0) graphene j = δj.

The second hydrodynamic equation, Eq. (3b), is the
continuity equation for the imbalance density. Although
the total quasiparticle number is not conserved, integrat-
ing this equation over an infinitesimally thin region en-
compassing the boundary yields a similar boundary con-
dition for the imbalance current assuming that the re-
laxation rate due to quasiparticle recombination is not
singular at the boundary

jI,r(r1−ϵ) = nLur(r1−ϵ) = nIur(r1 + ϵ) + δjI,r(r1 + ϵ).
(9b)

Here we took into account the fact that in a single-band
system jI is identical with j.
Finally, Eq. (3d) is the linearized continuity equation

for the entropy density (here we follow the standard prac-
tice [55] of replacing the continuity equation for the en-
ergy density by the entropy flow equation, also known
as the thermal transport equation). Again, assuming the
energy relaxation rate is not singular at the interface (i.e.,
the current flow is not accompanied by energy or excess
heat accumulation at the boundary between the sample
and the contact) we integrate Eq. (3d) over an infinitesi-
mally thin region encompassing the boundary and arrive
at the boundary condition for the entropy current

sinur(r1−ϵ) = sur(r1 + ϵ), (9c)

where s and sin are the entropy densities in the sample
and inner lead, respectively.

B. Tangential flows in external magnetic field

The above boundary conditions (and the correspond-
ing conditions on the outer lead) are sufficient to solve the
hydrodynamic equations in the absence of magnetic field
where all currents are radial [65]. An external magnetic
field induces the tangential components of the currents
due to the classical Hall effect. The continuity equations
do not determine the tangential components and hence
the boundary conditions have to be derived from a mi-
croscopic theory. Generally speaking, the boundary con-
ditions depend on the presence of tangential forces at the
interface, usually associated with edge roughness. Typi-
cally [2–4, 55, 73], one considers the two limiting cases of
either the “no-slip” or “no-stress” boundary conditions
corresponding to either the presence or the absence of
the drag-like friction across the interface.
For contact interfaces in the Corbino geometry, the

boundary conditions corresponding to the above limiting
cases differ from the well-known expression of conven-
tional hydrodynamics. The no-slip boundary condition
now means that the tangential component of the hydro-
dynamic velocity is continuous across the interface (writ-
ten as above for the inner interface)

uLϑ(r1 − ϵ) = uϑ(r1 + ϵ), (10a)

in contrast to the common condition of vanishing velocity
at the channel boundary (the two are consistent, since in
the latter case there is no flow beyond the edge).
The no-stress boundary condition means the absence of

any forces along the interface in which case the tangential
component of the stress tensor Πij is continuous. In polar
coordinates appropriate for the Corbino geometry one
finds

Πϑr
L,E(r1 − ϵ) = Πϑr

E (r1 + ϵ), (10b)

The no-stress boundary condition is easy to derive start-
ing from the kinetic equation. Multiplying the kinetic
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equation by the momentum and summing over all quasi-
particle states, one finds an equation featuring the gradi-
ent of the stress tensor [22] as well as macroscopic forces
in the system. Now the boundary condition can be ob-
tained by integrating that equation over the small volume
around the interface. Unless there is a force localized at
the interface (with a δ-function-like coordinate depen-
dence on the hydrodynamic scale), this procedure would
yield Eq. (10b). Usually, the interfaces are microscop-
ically rough with the roughness providing such a force.
As a result, the no-slip boundary condition is more com-
monly used. In neutral graphene, however, the quasipar-
ticle wavelength typically exceeds any length scale asso-
ciated with edge roughness leading to specular scattering
[82] and Eq. (10b).

In the case of the hard wall edges, the boundary con-
ditions were previously studied theoretically in Ref. [89]
and confirmed experimentally in Ref. [8] where a nonzero
slip length was proposed indicating a more general
Maxwell’s boundary condition. However, the specific
choice of the boudnary conditions does not lead to qual-
itatively different results [73]. Here we follow the hy-
drodynamic tradition and consider both the no-slip and
no-stress boundary conditions.

C. Interface-induced dissipation and jumps of the
electric potential

The hydrodynamic theory discussed so far completely
describes the energy flow in neutral graphene. In order to
establish the device resistance R we have to find the be-
havior of the electrochemical potential at the interfaces.

The standard description of interfaces between metals
or semiconductors in terms of the contact resistance [90]
can be carried over to neutral graphene [81]. In graphene,
the contact resistance was recently measured in Ref. [8]
(see also Refs. [31, 91, 92]). In the diffusive (or Ohmic)
case, the contact resistance leads to a voltage drop that is
small compared to that in the bulk of the sample and can
be neglected. In contrast, in the ballistic case with almost
no voltage drop in the bulk, most energy is dissipated at
the contacts. Both scenarios neglect interactions.

In the diffusive regime interactions give rise to per-
turbative corrections to the bulk resistivity [93, 94] and
the contact resistance can still be neglected. In ballis-
tic samples electron-electron interaction may lead to the
“Knudsen-Poiseuille” crossover [19] and drive the system
to the hydrodynamic regime. In this case the Ohmic
resistivity of the electronic fluid may remain small, but
there exist other channels for dissipation due to viscos-
ity [73] and energy relaxation processes [59]. In neutral
graphene the effect is subtle [65], since the electric current
is decoupled from the hydrodynamic energy flow. How-
ever, both are induced by the current source that pro-
vides the energy dissipated through all the above chan-
nels. The energy dissipated in the system corresponds to
the overall voltage drop. In the bulk of the sample the

FIG. 2. Electric current density j and potential φ in the
device obtained by solving the hydrodynamic equations at
relatively high temperatures where energy relaxation is domi-
nated by supercollisions. Arrows indicate j and the color map
shows φ. The outer lead is chosen to be grounded. The four
panels correspond to the indicated values of magnetic field.
For the values of other parameters, see Fig 1.

voltage drop is Ohmic as determined by Eq. (4a), while
the additional contribution takes the form of a potential
jump at the interface between the sample and leads. At
the same time, an excess electric field is induced in a thin
Knudsen layer around the interface [73].
The magnitude of the jump in ϕ can be established by

considering the flow of energy through the interface as
suggested in Ref. [73] and detailed in neutral graphene
atB = 0 in Ref. [65]. Consider the kinetic energy defined
by integrating the energy density nE(u)−nE(0) over the
volume

E =

∫
dV [nE(u)−nE(0)] ≈

∫
dV

6P

v2g
u2, (11)

which we have expanded to the leading order in u (and
hence in I). In the stationary state, dissipation is bal-
anced by the work done by the source, such that the time
derivative of the kinetic energy vanishes, A = Ė = 0. Us-
ing the equations of motion and continuity equations to
find time derivatives, one may split A into the “bulk”
and “boundary” contributions, A = Abulk +Aedge. The
former may be interpreted as the bulk dissipation, while
Aedge must include the energy brought in (carried away)
through the boundary by the incoming (outgoing) flow.
The boundary condition is then found under the assump-
tion that energy is not accumulated at the interface.
Assuming the leads’ material is highly doped graphene,

the equation of motion is the usual Ohm’s law where we
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may combine the diffusion term [95] with a contribution
of viscosity ηL due to disorder [96] into the gradient of
the stress-energy tensor [23] and hence

3PL

v2g
uL∂tuL =

= ui
L

(
−3PL

v2g

ui
L

τL
−∇jΠij

L,E+nLeE
i+

e

c
ϵijkjjBk

)

= −3PL

v2g

u2
L

τL
+
∂uL,i

∂xj
Πij

L,E+
e

c
uL ·(j×B)+eφ∇·j

−∇i
(
uj
LΠ

ij
L,E + ejiφ

)
.

The last term in this expression determines the bound-
ary contribution. Given that the Lorentz force does not
explicitly contribute, the only difference from the expres-
sion derived in Ref. [65] at B = 0 is the nonzero tangen-
tial components of the hydrodynamic velocity and the
stress tensor (vanishing in the absence of magnetic field).
In neutral graphene, we obtain a similar expression from
the Navier-Stokes equation, while the Joule heat is de-
termined by δj. Equating the two contributions we find
the jump of the potential in the form

φ(r1 − ε)− φ(r1 + ε) = IRc + (12)

+
2πr1
I

[(
urΠ

rr
E + uϑΠ

ϑr
E

) ∣∣∣
r1+ε

−
(
urΠ

rr
L,E + uϑΠ

ϑr
L,E

) ∣∣∣
r1−ε

]
,

where Rc is the usual contact resistance [81]. A similar
condition holds at the boundary with the outer lead.

III. HYDRODYNAMIC FLOWS IN THE
CORBINO GEOMETRY

In polar coordinates and taking into account radial
symmetry, the hydrodynamic equations (3) and (4) form
two disjoint sets of differential equations. The first one
determines the tangential component of the velocity uϑ:

1

r

∂(rδjr)

∂r
= 0, (13a)

η∂r

(
1

r

∂(ruϑ)

∂r

)
− eB

c
δjr −

3Puϑ

v2gτdis
= 0, (13b)

δjr =
1

e2R̃

[
eEr(r) + ωB

2T ln 2

v2g
uϑ

]
, (13c)

δjIϑ = − α1δIωB

τ−1
dis +δ−1

I τ−1
22

δjr, (13d)

while the second one involves the radial component ur:

nI

r

∂(rur)

∂r
+

1

r

∂(rδjIr)

∂r
= −12 ln 2

π2

nIµI(r)

TτR
, (14a)

∂δP

∂r
= η∂r

(
1

r

∂(rur)

∂r

)
+

eB

c
δjϑ − 3Pur

v2gτdis
, (14b)

3P

r

∂(rur)

∂r
= −2δP (r)

τRE
. (14c)

δjϑ =
ωB

e2R̃

(
α1δI

τ−1
dis +δ−1

I τ−1
22

∂µI

∂r
− 2T ln 2

v2g
ur

)
, (14d)

δjIr = − 2δIT ln 2

τ−1
dis +δ−1

I τ−1
22

[
R0

πR̃

∂µI

∂r
+
α1ω

2
B

e2R̃

ur

v2g

]
. (14e)

A. Tangential component of the velocity and bulk
voltage drop

The bulk magnetoresistance can be found by solv-
ing Eqs. (13) with the appropriate boundary conditions.
Combining Eqs. (13a) and (13b) we find an inhomoge-
neous Bessel equation for the tangential component of
the velocity uϑ with the characteristic length scale be-
ing the Gurzhi length ℓ2G = ηv2gτdis/(3P ). The boundary
condition for uϑ is determined by microscopic details of
viscous drag at the interface and hence is not universal.
Here we follow the hydrodynamic tradition and consider
both the no-slip and the no-stress boundary conditions,
see Sec. II B. Moreover, one can distinguish two different
setups where the external magnetic field is applied either
to the sample only or to the whole device including the
leads. In all these cases we can find an analytic expression
for uϑ, which can be substituted into of Eq. (13c) to find
the electric field in the sample, Er (the radial component
of the current is determined by the continuity equation
alone). Similarly, Eq. (13d) determines δjIϑ. Using the
obtained electric field we can determine the voltage drop
through the bulk of the sample as

U =

r2∫
r1

Erdr =

r2∫
r1

dr

(
R̃I

2πr
− B

c
uϑ

)
. (15)

For the no-slip boundary condition for uϑ and allowing
the external magnetic field to penetrate the leads, the
tangential component of the velocity is given by

uϑ = −BIℓ2G
2πcηr

+
BI
(
ηℓ2L − ηLℓ

2
G

)
2πcηηLr1r2

× (16)

×

K1

(
r

ℓG

) r1I1

(
r1
ℓG

)
−r2I1

(
r2
ℓG

)
K1

(
r1
ℓG

)
I1

(
r2
ℓG

)
−I1

(
r1
ℓG

)
K1

(
r2
ℓG

)

+ I1

(
r

ℓG

) r2K1

(
r2
ℓG

)
−r1K1

(
r1
ℓG

)
K1

(
r1
ℓG

)
I1

(
r2
ℓG

)
−I1

(
r1
ℓG

)
K1

(
r2
ℓG

)
,
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where ηL is the disorder-induced viscosity [96] and ℓ2L =
v2gηLτL/(2PL) is the Gurzhi length in the leads.

In the limit ℓG ≫ r1, r2 (i.e., “clean system” with long
mean free time τdis → ∞) this simplifies to (p = r2/r1)

uϑ ≈ − BIℓ2L
4πcrηL

[
2 +

(
1

ℓ2G
− ηL
ηℓ2L

)
× (17)

×
r2 ln

(
r
r1

)
+r2p2 ln

(
r2
r

)
−r22 ln p

1−p2

.
The corresponding voltage drop remains finite

U ≈
(
1− ηℓ2L

ηLℓ2G

)
B2Ir22
4πc2η

(p2−1)2−4p2 ln2 p

4p2(p2−1)
(18a)

+
I ln p

2π

(
B2

c2
v2gτL

3PL
+ R̃

)
,

yielding the field-dependent bulk resistance (R = U/I)

R(B) ≈ ln p

2π
R0 +

B2r22
4πc2η

(p2−1)2−4p2 ln2 p

4p2(p2−1)
(18b)

+
B2v4g ln p

2c2T 3

[
α2
1δI

8 ln3 2

1

τ−1
dis +δ−1

I τ−1
22

+
T 3

µ3
τL

]
,

assuming ηℓ2L/(ηLℓ
2
G) = 3PτL/(2PLτdis) ≪ 1 with PL =

µ3
L/(3πv

2
g). The two field-dependent terms differ in their

dependence on temperature, sample size, and coupling
constant [35] opening a possibility to separate the two
contributions from the experimental data and thus to
measure the viscosity coefficient.

If the magnetic field is applied to the sample only (and
not to the leads) uϑ vanishes in the leads and hence the
terms with ℓL do not appear in the voltage drop (18). In
that case, the field-dependent contribution to U does not
contain τdis in contrast to the known result in the strip
geometry [23, 30].

A similar result can be obtained in the case of no-stress
boundary conditions, where the tangential component of
the velocity uϑ is still expressed in terms of the Bessel
functions. In the clean limit (ℓG ≫ r1, r2) the voltage
drop also remains finite

U ≈ I

2π

(
R̃+

B2ℓ2L
c2η

− BηH
ecηnL

)
ln p (19)

+
r22B

2I

4πc2η

[(
p2−1

) (
p4+10p2+1

)
12p2 (p2+1)

2 − ln p

1+p2

]

+
I

2π

[
B2

c2

(
ℓ2G−ℓ2L

)
η

+
BηH
ecηnL

]
p2−1

p2+1
,

where ηH is the Hall viscosity in the leads, which vanishes
if the magnetic field is not allowed in the leads. In that
case, the last term in the voltage drop (19) is proportional

FIG. 3. Radial (top panel) and tangential (bottom panel)
components of the hydrodynamic velocity u computed within
the “supercollisions model” of energy relaxation. Black lines
in the shaded regions show the drift velocity in the leads.
Color curves correspond to different values of the external
magnetic field according to the shown color coding. The top
curve shows values at B = 0 and is identical with the results
of Ref. [65]. For the parameter values, see Fig 1.

to τdis and independent of viscosity. The second term
in Eq. (19) remains similar to Eq. (18) and is inverse
proportional to η. This term’s dependence on the ratio
p is distinct from both Eq. (18) and the third term in
Eq. (19) and could be extracted by analyzing the data in
a set of Corbino disks with different p.
In the opposite limit ℓG ≪ r1, r2, the leading contri-

bution to the bulk voltage drop is independent of η. For
no-slip boundary conditions and in the simplified case
where the field is not allowed to penetrate the leads we
find for the field-dependent part of U

R(B)−R(0) ≈
B2v2gτdis ln p

6πc2P
+

ln p

2π
δIα

2
1R̃B ∝ τdisB

2.

(20)
The voltage drop (20) is proportional to τdis similarly
to the result in the strip geometry (see Refs. [23, 30]).
Of course, in the limit ℓG ≪ r1, r2 the mean free time
τdis cannot be arbitrarily large, hence the voltage drop
(20) does not diverge. In the limit τdis → ∞ the voltage
drop crosses over to the above “clean” limit and is given
by Eq. (18). However, the limiting expression (20) is



8

independent of viscosity, and hence qualitatively similar
to the usual result.

To summarize the results of this section, we have
shown that bulk magnetoresistance in neutral graphene
in the Corbino geometry exhibits a crossover between the
“clean” limit of the large (compared to the disk radius)
Gurzhi length to the limit of small Gurzhi length. In the
former case, the field-dependent part of the bulk voltage
drop is determined by viscosity, while in the latter limit
it is proportional to the disorder mean free time similarly
to the known result in the strip geometry.

B. Radial component of the velocity and the
device resistance

The five equations (14) can be reduced to two cou-
pled differential equations (for similar calculations in the
strip geometry see Refs. [23, 48, 68, 82]). To simplify the
arguments, we introduce the following notations

q = nIur, p = δjI,r, x =
2nI

3P
δP, y =

12 ln 2

π2

nI

T
µI .

(21)
In terms of the new variables, Eqs. (14a) and (14c) can
be written as

1

r

∂(rq)

∂r
+

1

r

∂(rp)

∂r
= − y

τR
, (22a)

1

r

∂(rq)

∂r
= − x

τRE
. (22b)

Equation (14e) can be rewritten as

∂y

∂r
= − 6

π

R̃nI

R0T 2τ̃
p− 12 ln 2

π

α1ω
2
B

e2v2gR0T
q, (23a)

where τ̃ = δI/(τ
−1
dis +δ−1

I τ−1
22 ). Finally, Eqs. (14b) and

(14d) can be combined into

∂x

∂r
=

2η

3P

∂

∂r

1

r

∂(rq)

∂r
− 2

v2g

[
τ−1
dis +

ω2
B

e2R̃

4T 2 ln2 2

3Pv2g

]
q

+α1τ̃
π2T 2

9Pv2g

ω2
B

e2R̃

∂y

∂r
. (23b)

Introducing the differential operator

D̂q =
∂

∂r

1

r

∂(rq)

∂r
, (24)

we rewrite Eqs. (22) in the matrix form

D̂

(
q
p

)
= T̂S

(
∂x/∂r
∂y/∂r

)
, T̂S =

( 1
τRE

0

− 1
τRE

1
τR

)
. (25a)

Similarly, Eqs. (23) can be written in the matrix form(
∂x/∂r
∂y/∂r

)
= −M̂

(
q
p

)
+ V̂ D̂

(
q
p

)
, (25b)

FIG. 4. Local variations of temperature (top panel) and pres-
sure (bottom panel) in the Corbino device computed within
the “supercollisions model” of energy relaxation. Black lines
in the shaded regions indicate that the leads are at equilib-
rium. Color curves correspond to different values of the exter-
nal magnetic field according to the shown color coding. Zero
field values are identical with the results of Ref. [65]. For the
parameter values, see Fig 1.

where

V̂ =

(
2η
3P 0
0 0

)
,

and

M̂ =

 16 ln3 2
3π

δIR̃BT 3

v4
gPR0τ̃

+ 2
v2
gτdis

4 ln 2
3

α1δInIR̃BT
v2
gPR0τ̃

24 ln2 2
π2

α1δIR̃B

v2
gR0τ̃

6
π

nIR̃
R0T 2τ̃

 .

Finally, combining Eqs. (25) we find the equation for
the variables p and q

D̂

(
q
p

)
= K̂

(
q
p

)
, K̂ =

[
1− T̂S V̂

]−1

T̂SM̂. (26)

The obtained equation should be solved with the bound-
ary conditions (9). The solution is straightforward albeit
tedious. The results can be expressed in terms of linear
combinations of the Bessel functions. Thus obtained so-
lutions are not particularly instructive, hence we present
the results of the calculation in graphical form.
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FIG. 5. Magnetoresistance of a small (top panel) and large
(bottom panel) Corbino device computed within the “su-
percollisions model” of energy relaxation. The radii of the
Corbino disks are shown above the plots. The black dotted
line shows the quantity R̃, which is of the same order of magni-
tude as the magnetoresistance in the infinite system [23, 82].
Color curves correspond to three different sets of values of
the relaxation times. For other parameter values (yielding
ℓG = 0.2µm), see Fig 1. The insets show the contact resis-
tance due to viscous dissipation.

The radial component of the hydrodynamic velocity is
shown in the top panel of Fig. 3. The drift velocity in the
leads shows the standard Corbino profile, ur ∝ 1/r. At
each interface, ur exhibits a jump due to the mismatch of
the entropy densities in the sample and leads. For high
enough magnetic field, ur has a sign change close to the
interface. However, the corresponding change of direc-
tion is hardly seen in the overall flow diagram shown in
Fig. 1, since the numerical value of the tangential compo-
nent uϑ is much larger (see the bottom panel of Fig. 3).

The hydrodynamic velocity determines the energy cur-
rent in the system. The nonuniform energy current re-
sults in local variations of the electronic temperature
from its equilibrium value (see Fig. 4). The inhomoge-

neous temperature profile suggests that energy relaxation
is less effective in strong magnetic fields. Fig. 1 shows the
same data as Fig. 4 but in the form of the color map.
Finally we use the boundary conditions (12) to find the

interface jumps of the electric potential which allows us
to determine the device resistance. The procedure is the
same as in the case of B = 0 discussed in Ref. [65]. The
results are shown in Fig. 5. For small enough samples (see
the top panel in Fig. 5) the device resistance deviates only

slightly from R̃ which is of the same order of magnitude
as the magnetoresistance in the infinite system [23, 82].
In large samples the deviation is more pronounced and
depends on the actual radius of the disk rather than on
the ratio p (which is the same in both plots).
The quantitative results shown in this section were

computed for a particular choice of the relaxation times.
These values are largely phenomenological; however, the
magnetoresistance shown in Fig. 5 hardly depends on
them, while for larger samples (the bottom panel) the
three curves are indistinguishable. However, the values of
the relaxation times cannot be completely arbitrary. The

point is that the matrix K̂ in Eq. (26) is not guaranteed to
have real, positive eigenvalues (although its determinant
is positive). In particular, the recombination time τR
and energy relaxation time τRE cannot be very different.
Within the physical model of supercollisions [59] these
time-scales are of the same order of magnitude. Quasi-
particle recombination involves supercollision scattering
between the bands, while energy relaxation includes an
additional contribution of intraband scattering. As a re-
sult, the energy relaxation time is shorter than τR, but
not much shorter since the model does not involve any
additional parameter. For such physical values of the re-

laxation times the eigenvalues of the matrix K̂ are real
positive and the resulting magnetoresistance is well ac-
counted for by the curves shown in Fig. 5 where, again,
the particular values of τR and τRE do not have a strong
quantitative impact on the overall resistance magnitude.

C. Energy relaxation due to electron-phonon
interaction

Supercollisions are scattering events involving electron
scattering off a phonon and an impurity. As such, this is
a next-order process as compared to the direct electron-
phonon scattering. The reason supercollisions might be
important is that the speed of sound is much smaller than
vg. At high enough temperatures [59, 60] supercollisions
indeed dominate, but at lower temperatures the direct
electron-phonon scattering cannot be neglected.
Energy relaxation and quasiparticle recombination due

to electron-phonon scattering was considered in Ref. [23]
within the linear response theory. Since the macroscopic
equations of the linear response theory coincide with
the linearized hydrodynamic equations [22], we can di-
rectly incorporate the corresponding decay terms into
our hydrodynamic theory. These decay terms appear in
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FIG. 6. Magnetoresistance in small (top) and large (bot-
tom) Corbino devices computed within the “electron-phonon
model” of energy relaxation (cf. Fig. 5).

Eq. (25a) through the matrix T̂S . The model of electron-
phonon interaction introduced in Ref. [23] corresponds to
the following choice of this matrix

T̂ep = − 1

|∆|

(
γ

τEc
+ 1

τEb
− γ2

N2τEb
− γ

τEc

−γ2N2

γτEc
− N2

τIc
− 1

τEb

2γ
τEc

+ γ2

N2τEb
+ N2

τIc

)
,

(27)
where

γ=
π2

12 ln2 2
, N2 =

9ζ(3)

8 ln3 2
, ∆ = γ2 −N2,

and τEb ≪ τEc ≤ τIc describe the three independent
components of the electron-phonon collision integral [23].

Repeating the above calculation with T̂ep instead of

T̂S , we arrive at the results that are largely similar to
those obtained within the supercollision model, but with
a few notable differences (see Figs. 6-11). Unless specified
in the figure captions, the parameter values used for the
quantitative computation are the same as in the case of
supercollisions (see the caption to Fig. 1).

FIG. 7. Electric current density j and potential φ within the
electron-phonon model of energy relaxation (cf. Fig. 2).

Magnetoresistance of the device is still positive and
parabolic (see Fig. 6). In small devices, it is still largely

determined by the quantity R̃ (shown by the black dot-
ted line in Fig. 6 similarly to Fig. 5). In this case, varia-
tions of the electron-phonon relaxation rates still do not
affect the result in any noticeable way. The results for
large devices are also similar to the case of supercollisions:
calculated magnetoresistance clearly exceeds R̃ and thus
shows a strong dependence on the size of the device (but
not on the ratio p).

The electric current density and potential in the device
are seen largely the same as in the case of supercollisions,
although the deviation of the current from the radial di-
rection (i.e., its tangential component δjϑ) is somewhat
smaller (see Fig. 7, cf. Fig. 2). This result seems to be
consistent with the similarities in the magnetoresistance
in the two cases.

The hydrodynamic velocity u is still dominated by its
tangential component (see Figs. 8 and 9). The latter
shows the behavior that is largely similar to that shown
in the bottom panel of Fig. 3, although the magnitude of
uϑ shows stronger growth with increasing magnetic field.
In contrast, the temperature variation is “reversed”: now
the electronic temperature is increased around the inner
contact and decreased close to the outer one (the opposite
behavior to that seen in Figs. 1 and 4) (see Fig. 10).

The reversed behavior of the temperature variation
corresponds to the change in the radial component of
the hydrodynamic velocity ur. While the jumps at the
interfaces with the leads remain the same (insofar ur on
the sample side of the interface is larger than the drift
velocity in the leads), the initial slope of ur as a function
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FIG. 8. Hydrodynamic velocity u and temperature δT dis-
tribution in the device obtained by solving the hydrodynamic
equations at relatively low temperatures where energy relax-
ation is dominated by direct electron-phonon scattering (cf.
Fig. 1).

FIG. 9. Tangential component of the hydrodynamic velocity
uϑ computed within the “electron-phonon model” of energy
relaxation (cf. Fig. 3).

of the radial coordinate has the opposite sign, which does
not change with the increase in the magnetic field.

Overall, it is rather natural that the choice of the en-
ergy relaxation model mostly affects the energy flow in
the device rather than the charge flow. This is a clear
consequence of the decoupling of the energy and electric
currents in neutral graphene. Although the two currents
are being coupled by the magnetic field, the effect ap-
pears to be subleading. It is not surprising that the effect
of this coupling is most pronounced in strong magnetic
fields and large Corbino disks.

Contact resistance induced by viscous dissipation (see

FIG. 10. Local temperature variation computed within the
“electron-phonon model” of energy relaxation (cf. Fig. 3).

FIG. 11. Radial component of the hydrodynamic velocity
ur computed within the “electron-phonon model” of energy
relaxation (cf. Fig. 3).

insets in Figs. 5 and 6) is also affected by the choice of the
energy relaxation model. In the case of supercollisions
its qualitative behavior exhibits a strong dependence on
the size of the disk (see Fig. 5), while in the model of
electron-phonon scattering this dependence is reduced to
the magnitude only. The contact resistance is signifi-
cantly stronger in small devices for both choices of the
energy relaxation model as expected on general grounds.
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IV. SUMMARY

In this paper we considered hydrodynamic flows of
charge and energy in neutral graphene Corbino disks. We
have shown that the Corbino geometry offers a (in princi-
ple realizable) possibility to measure electronic viscosity
in neutral graphene, a task that so far has appeared elu-
sive. The viscosity coefficient could be extracted from the
magnetoresistance data in the ultra-clean limit where the
bulk contribution to the device resistance is independent
of the electron-impurity scattering time. The bulk re-
sistance dominates over the contact resistance for larger
sized disks and hence can in principle be measured in
laboratory experiments.

Corbino magnetoresistance in graphene is illustrated
in Figs. 5 and 6, where the calculated magnetoresistance
is shown for two models of energy relaxation. In both
cases, the dependence R(B) is parabolic, similarly to the
known result in the strip geometry. The viscosity co-
efficient can be in principle determined experimentally
by analyzing the data in a set of different Corbino disks
(see Sec. IIIA). This is not a straightforward task since
the magnetoresistance is given by a sum of viscosity-
dependent and viscosity-independent terms. In the clean
limit ℓG ≪ r1, r2 [see Eq. (18)], these terms exhibit
distinct dependence on the sample size r2, the ratio of
the radii p = r2/r1, and temperature, making it possi-
ble to extract the viscosity coefficient from the experi-
mental data. In the opposite limit [see Eq. (19)], the
dominant contribution to magnetoresistance is indepen-
dent of viscosity. Existing experiments appear to be in
the crossover between these two limits. In this paper
we have used parameter values yielding ℓG ≈ 0.2µm.
The size of the Corbino disk used in a recent experiment
[31] was r1 = 2µm, r2 = 9µm, which is closer to the
“large Corbino disk” illustrated in panels (b) in Figs. 5
and 6 than to the clean limit. It is fair to say that at
present extracting viscosity from Corbino magnetoresis-
tance measurements would be extremely difficult. At the
same time, we are not aware of any other way to measure

the viscosity coefficient in neutral graphene. We believe
that viscosity measurements and more generally exper-
imental observation of purely viscous effects in neutral
graphene will be more accessible in the near future with
even cleaner samples (increasing τdis by an order of mag-
nitude).
The regime of linear magnetoresistance as seen in the

strip geometry or infinitely sized models does not exist
in the Corbino geometry. This can be easily understood
by noting that the origin of linear magnetoresistance is
in the accumulation of energy and quasiparticle density
in the boundary region of a long strip where the sam-
ple edges provide a natural barrier for the lateral neutral
flow of quasiparticles induced by the magnetic field. In
a Corbino disk there is no such edge. The lateral cur-
rents (energy and imbalance) flow freely around the disk
without accumulating quasiparticles at any point.
Unlike the case of a single-band conductor (e.g., doped

graphene), at charge neutrality the electric field is not
expelled from the bulk of the sample. Nevertheless bulk
viscous dissipation does lead to a discontinuity of the
electric potential at the sample-lead interfaces inducing
an additional contact resistance. This resistance however
is rather small as compared to the resistance of the whole
device and should not have a strong effect on the viscosity
measurements.
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Conducting materials typically exhibit either diffusive or ballistic charge transport. However, 
when electron-electron interactions dominate, a hydrodynamic regime with viscous charge 
flow emerges1–13. More stringent conditions eventually yield a quantum-critical Dirac-fluid 
regime, where electronic heat can flow more efficiently than charge14–22. Here we observe heat 
transport in graphene in the diffusive and hydrodynamic regimes, and report a controllable 
transition to the Dirac-fluid regime at room temperature, using carrier temperature and carrier 
density as control knobs. We introduce the technique of spatiotemporal thermoelectric 
microscopy with femtosecond temporal and nanometre spatial resolution, which allows for 
tracking electronic heat spreading. In the diffusive regime, we find a thermal diffusivity of 
~2,000 cm2/s, consistent with charge transport. Remarkably, during the hydrodynamic time 
window before momentum relaxation, we observe heat spreading corresponding to a giant 
diffusivity up to 70,000 cm2/Vs, indicative of a Dirac fluid. These results are promising for 
applications such as nanoscale thermal management.  

In the diffusive transport regime, electrons and holes undergo random-walk motion with 
frequent momentum scattering events. When studied on ultrasmall length scales or ultrashort 
timescales, before momentum relaxation can occur, charges typically move ballistically – in a 
straight, uninterrupted line. Besides charge, electrons and holes carry electronic heat, with the 
thermal diffusivity linked to the charge mobility through the Wiedemann-Franz law. Under 
special conditions – when electron-electron interactions occur faster than momentum relaxation 
– the hydrodynamic regime emerges1–22. In this regime, the rapid collisions between particles can 
lead to viscous charge flow. The electron system then obeys macroscopic transport laws that are 
similar to the ones for classical fluid transport. During the last few years, signatures of viscous 
charge flow in this so-called Fermi-liquid regime were observed in 2D electron systems using 
electrical device measurements3,4,10–12 and scanning probe microscopy5,13,22 typically at cryogenic 
lattice temperatures and using ultraclean samples with high mobilities, µ > 100,000 cm2/Vs.  
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A second hydrodynamic regime, which has no analogue in classical fluids, can occur very close to 
the Dirac point. When the Fermi temperature (TF = EF/kB, where EF is the Fermi energy and kB is 
the Boltzmann constant) becomes small compared to the electron temperature Te, the system 
becomes a quantum-critical fluid6,9,14,15,17. In this Dirac-fluid regime, the non-relativistic 
description of the viscous fluid is replaced by its ultra-relativistic counterpart, which accounts for 
the presence of both particles and holes, as well as for their linear energy dispersion. In line with 
theoretical predictions in this regime15, noise thermometry measurements indicated a deviation 
from the Wiedemann-Franz law19, electrical measurements of the thermoelectric Seebeck 
coefficient demonstrated a deviation from the Mott relation20, and a terahertz-probe study 
revealed the quantum-critical carrier scattering rate21. Very recently, scanning probe 
measurements showed that viscous charge flow occurs both in the Fermi-liquid and Dirac-fluid 
regimes at room temperature22. However, observing and controlling the flow of electronic heat 
in the hydrodynamic regime at room temperature has so far remained elusive.  
 
Here, we follow electronic heat flow in the diffusive and hydrodynamic regimes at room 
temperature, and demonstrate a controlled Fermi-liquid to Dirac-fluid crossover, with a strongly 
enhanced thermal diffusivity close to the Dirac point. These observations are enabled by ultrafast 
spatiotemporal thermoelectric microscopy, a technique inspired by all-optical spatiotemporal 
diffusivity measurements23–25, with the crucial difference that the observable is the 
thermoelectric current, which is directly sensitive to electronic heat26. We use a hexagonal boron 
nitride (hBN)-encapsulated graphene device that is both a Hall bar for electrical measurements 
and a split-gate thermoelectric detector (Fig. 1a). Since we use ultrashort laser pulses, with an 
instrument response time of DtIRF ~200 fs, to generate electronic heat, we are able to examine 
the system before momentum relaxation occurs, as we measure a momentum relaxation time 
tmr of ~350 fs (see Suppl. Fig. 1). In this temporal regime before momentum is relaxed, we enter 
the hydrodynamic window, because the electron-electron scattering time tee is <100 fs 27, i.e. tee 

< DtIRF < tmr. This is a different approach compared to most previous studies, where hydrodynamic 
effects were observed by using small system dimensions L in order to eliminate effects of 
momentum scattering, i.e. vF

.tee < L < vF
.tmr 3–5,10–13,19,22 (vF = 106 m/s is the Fermi velocity). Our 

approach furthermore exploits elevated carrier temperatures, which greatly increases the 
accessibility of the Dirac-fluid regime, as for increasing carrier temperatures the crossover occurs 
increasingly far away from the Dirac point14,17 (see Fig. 1b). As we will show, during the 
hydrodynamic window significantly more efficient heat spreading occurs in the Dirac-fluid regime 
than in the Fermi-liquid regime and in the diffusive regime (see Fig. 1c-d).  
 
Our technique works by employing two ultrafast laser pulses that produce localized spots of 
electronic heat within tens of femtoseconds27. These spots are characterized by an increased 
carrier temperature Te > Tl, with Tl the lattice temperature (300 K). The degree of spatial 
spreading of these electronic heat spots as a function of time is governed by the diffusivity D. We 
control the relative spatial and temporal displacement, Dx and Dt, of the two pulses with sub-
100 nm spatial precision and ~200 fs temporal resolution. Each laser pulse is incident on opposite 
sides of a pn-junction at a distance ∆x/2 from the junction. This pn-junction is created by applying 
opposite voltages ±DU with respect to the Dirac point voltages to the two backgates that form a 
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split-gate structure. The two photo-generated electronic heat spots spread out spatially and part 
of the heat can reach the pn-junction after a certain amount of time, generating a thermoelectric 
current at the junction through the Seebeck gradient26. The small region of the pn-junction thus 
serves as a local probe of electron temperature. While each of the heat spots can create 
thermoelectric current independently, we obtain spatiotemporal information by examining 
exclusively the signal that corresponds to heat generated by one of the pulses interacting with 
heat generated by the other pulse – the interacting heat signal DITE. Since the thermoelectric 
photocurrent scales sub-linearly with incident power, we can isolate this interacting heat signal 
DITE by modulating each laser beam at a different frequency, f1 and f2, and demodulating the 
thermoelectric current at the difference frequency f1 - f2. As illustrated in Fig. 1e-f, the higher the 
diffusivity D, the more interacting heat signal DITE remains for increasing Dx and Dt.  
 
Figure 2a shows the measured interacting heat current ∆ITE as a function of Dx and Dt. As 
expected, the largest ∆ITE occurs for the largest spatiotemporal overlap at the pn-junction (Dx = 
Dt = 0). For increasing |∆t|, we find that the normalized signal extends further spatially, indicating 
the occurrence of heat spreading (see Fig. 2b). This spatial spread is quantified via the second 
moment <Dx2>, which quantifies the width of the profile at different time delays (see Methods). 
Similar to recent all-optical spatiotemporal microscopy24,25, we obtain spatial information beyond 
the diffraction limit by precise spatial sampling of diffraction-limited profiles. The experimentally 
obtained spatial spread as a function of Dt (Fig. 2c) is very similar to the calculated results (Fig. 
2d), obtained by simulating the experiment with a given diffusivity D (see Methods and Suppl. 
Note 1). The white lines indicate the values of the spatial spread <Dx2> for different Dt. We also 
compare the simulated spatial spread <Dx2> vs. Dt (blue dashed line in Fig. 2e) with the 
theoretical expectation according to the heat diffusion equation, <Dx2> = <Dx2>focus + 2DDt (dash-
dotted line in Fig. 2e). Here, D is the same diffusivity that was used as input for the simulation, 
and <Dx2>focus is the minimum second moment from the two overlapping pulses (see Suppl. Note 
2 and Suppl. Figs. 2-5). The initial slope is the same for both the simulated heat spreading and 
the theoretical spreading following the heat diffusion equation.  
 
We first discuss the experimental results in the diffusive regime, where ∆𝑡 > 𝜏&'. For three 
different gate voltage combinations, corresponding to Fermi energies between 75 and 190 meV 
(TF = 900 – 2200 K), we extract the spatial spread <Dx2> as a function of ∆𝑡 from DITE (Dx,Dt) (see 
symbols in Fig. 2e), and compare it with the results from simulations (solid lines). For these 
simulations, we have used the diffusivity values that we obtain directly from electrical 
measurements of charge mobility on the same device (see Suppl. Fig. 1), and the relation 
between mobility and diffusivity: 𝐷 = µ𝐸,/2𝑒 (see Methods). We find excellent agreement, if 
we account for short-lived ultrafast heat spreading around Dt = 0, which leads to a larger-than-
expected initial spread at time zero <Dx2>min, as we will explain below. Importantly, the 
agreement between the measured heat spread for ∆𝑡 > 𝜏&'	and the one calculated using the 
measured charge mobilities shows that electronic heat and charge flow together, as expected in 
the diffusive regime. Furthermore, it confirms that our technique is a reliable method for 
obtaining thermal diffusivities in a quantitative manner. 
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We now turn to the non-diffusive regime, by exploring the behaviour in the hydrodynamic 
window, where Dt < 𝜏&'. Surprisingly, the experimentally obtained spatial spreads start at a 
minimum value <Dx2>min larger than 2 µm2, rather than starting at an expected <Dx2>focus = 0.56 
µm2. A second device we measured reproduces this larger-than-expected spatial spread at time 
zero (see Suppl. Note 3 and Suppl. Fig. 6). We exclude the possibility of an experimental artefact 
such as an underestimation of the laser spot size, since we repeated the measurements while 
scanning through the laser focus, and measured the focus size (Suppl. Figs. 2-5). Furthermore, 
we observe that the offset depends on the Fermi energy, while keeping all other experimental 
parameters fixed. We therefore attribute the large experimentally observed minimum <Dx2>min 
to ultrafast initial heat spreading that occurs before momentum relaxation takes place, ∆𝑡 ≲ 350 
fs (see schematic illustration of spatiotemporal heat spreading in Fig. 1d). The dynamics of this 
initial heat spreading are washed out by the finite time resolution DtIRF, and manifests as a large 
minimum <Dx2>min at time zero. The observed initial spatial spread suggests a thermal diffusivity 
of D = (<Dx2>min - <Dx2>focus)/2DtIRF » 70,000 cm2/s for the lowest measured EF of 75 meV. 
Simulations of heat spreading with an input diffusivity of 100,000 cm2/s are indeed consistent 
with the experimentally observed spread in the hydrodynamic window (see red line in Fig. 2e). 
 
We attribute this observation of highly efficient initial heat spreading in the hydrodynamic time 
window to the presence of the quantum-critical electron-hole plasma. We can exclude that the 
observed initial spreading is the result of ballistic transport, as we calculate that the ballistic 
contribution to initial heat spreading would give only <Dx2>ball = 0.68 µm2 (see Suppl. Note 2 and 
Suppl. Fig. 7). Besides, ballistic transport has a very weak dependence (<10 %) on carrier density 
in this range, as the Fermi velocity does not change significantly for the Fermi energies considered 
here28.  
 
In order to provide further evidence of hydrodynamic heat transport, we demonstrate the ability 
to control the crossover between the Fermi-liquid and quantum-critical Dirac-fluid regime via the 
ratio Te/TF, by independently varying Te via the incident laser power and TF via the applied gate 
voltages. A larger ratio results in less Coulomb screening and correspondingly stronger 
hydrodynamic effects due to electron-electron interactions. If Te is significantly larger than TF, 
electrons and hole coexist, and the Dirac-fluid regime becomes accessible (see Fig. 1b). We 
perform spatial scans in the hydrodynamic window at a temporal delay of Dt = 0, in a geometry 
with one laser pulse impinging on the junction, while scanning the other pulse across (x-axis) and 
along (y-axis) the junction region. Figure 3a-d shows four representative spatial ∆ITE maps with 
varying Te/TF, yet similar signal magnitudes. Clearly, the signal is broader for larger Te/TF, 
indicating faster thermal transport. We repeat these measurements for a range of Te and TF 
values and quantify the initial heat spreading using Gaussian functions, with widths sx and sy, to 
describe ∆ITE at ∆𝑡 = 0 as a function of Dx or Dy (see Fig. 3e-f and Suppl. Fig. 8). As expected for 
a crossover from the diffusive Fermi-liquid regime to the hydrodynamic Dirac-fluid regime, both 
spatial spreads sx and sy increase substantially for increasing ratio Te/TF. These spreads 
correspond to a diffusivity up to 40,000 cm2/s (see Methods), similar to the 70,000 cm2/s we 
found earlier.  
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We compare our experimental results to Boltzmann transport calculations following Refs. 9,18, 
including carrier interactions and long-range impurity scattering. We model impurities as 
Thomas-Fermi screened Coulomb scatterers of density 0.24·1012/cm2. Figure 3g shows the 
calculated thermal diffusivity D as a function of TF and Te, when considering only the 
hydrodynamic term due to electron-electron interactions, relevant in the hydrodynamic window 
where ∆𝑡 < 𝜏&'. A higher electron temperature or lower Fermi temperature leads to strongly 
increased diffusivity, which is the same qualitative trend as for the experimental data taken at 
∆𝑡 = 0 in Fig. 3e-f, where a larger initial width originates from a larger diffusivity. The observed 
trend is clearly not consistent with calculations considering only the diffusive term due to 
scattering with impurities (Fig. 3h). The calculations thus support our interpretation of a 
crossover from a diffusive Fermi liquid to a hydrodynamic Dirac fluid for increasing ratio Te/TF.  
 
A more quantitative comparison shows that the calculated D in the diffusive regime is around 
2000 cm2/s (see Fig. 3h), in quantitative agreement with the experiment in the diffusive regime. 
The obtained thermal diffusivity in the hydrodynamic window close to the Dirac point reaches 
values above 100,000 cm2/s, even higher than our experimental estimates of 35,000 – 70,000 
cm2/s. Using the calculated diffusivities, we estimate the spatial spread at time zero scalc (see 
Methods), as shown in Fig. 3g. These are similar to the experimentally obtained ones, thus 
confirming our conclusion of highly efficient heat spreading in the Dirac-fluid regime at room 
temperature, with a diffusivity that is almost two orders of magnitude larger than in the diffusive 
regime. We note that the theoretical calculations predict that even higher diffusivities are 
attainable.   
 
Finally, we discuss the (3D) thermal conductivity, in order to assess the ability of the Dirac fluid 
to transport useful amounts of heat. We find ~100 W/mK in the diffusive regime (see Methods), 
in agreement with ab-initio calculations29. In the Dirac-fluid regime, with an electron temperature 
of ~1000 K, we obtain a thermal conductivity of 18,000 – 40,000 W/mK. This is in agreement with 
Ref. 15, where values up to 100,000 W/mK were predicted theoretically for large Te/TF. The 
thermal conductivity we obtain is about three orders of magnitude larger than the one obtained 
in the Dirac-fluid regime at cryogenic temperatures19. Interestingly, our results show that in the 
Dirac-fluid window the electronic contribution to heat transport can be much larger than the 
phononic contribution with a conductivity of >2000 W/mK 30, which is already exceptionally high. 
Thus, the Dirac electron-hole plasma can contribute very significantly to thermal transport, 
extracting heat from hot spots much faster than predicted by classical limits.  
 
In conclusion, our results show that the, until recently unreachable, physical phenomena 
associated with the Dirac fluid do not only offer an exciting playground for interesting physical 
phenomena, yet also hold great promise for applications, e.g. in thermal management of 
nanoscale devices. We note that the quantum-critical behaviour can be switched on and off using 
a modest gate voltage and in systems prepared by standard fabrication techniques. Finally, we 
believe that the optoelectronic technique we have introduced will be a valuable tool to reach a 
better understanding of the thermal behaviour of a broad range of quantum materials, with great 
promise for novel technological applications.  
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Methods 
Fabrication of split-gate thermoelectric device 
The split-gate device with Hall geometry consists of exfoliated, single layer graphene encapsulated by 
hBN, using standard exfoliation and dry transfer techniques. The hBN-graphene-hBN stack is placed on a 
pre-defined split-gate structure made of graphene, grown by chemical vapour deposition, where the gap 
between the two gates is ~100 nm, created via electron-beam lithography and reactive ion etching (RIE). 
The top hBN and graphene are etched into a Hall bar shape with laser lithography and RIE, keeping the 
split-gate intact, and not etching completely through the bottom hBN. Finally, the Ti/Au side contacts are 
created by a further step of lithography, RIE and metal evaporation. The fabrication steps are shown in 
Supplementary Figure 9.  
 
Spatiotemporal thermoelectric current microscopy setup 
Our setup enables us to follow electronic heat spreading in space and time, because we use the 
thermoelectric signal generated by electronic heat interacting at a fixed location (the pn-junction), while 
we vary the spatial displacement of our two laser pulses with respect to this junction, and vary the 
temporal delay between the two ultrashort pulses. This means that we are following in space and time 
the diffusion of light-induced electronic heat from the location of light incidence to the pn-junction. It is 
the thermoelectric effect at the pn-junction, governed by the Seebeck coefficient, that generates our 
observable signal, the thermoelectric current. We note that although the value of the Seebeck coefficient 
itself changes when changing EF, and when entering the hydrodynamic regime20, this only affects the 
magnitude of the thermoelectric current – not how electronic heat is diffusing outside of the pn-junction, 
which is what we are following with our spatiotemporal technique.  
 
A sketch of the setup is shown in Supplementary Figure 10. A Ti:sapphire oscillator (886 nm centre 
wavelength, 76 MHz repetition rate), is split into two beam paths. Both beams are modulated with optical 
choppers, at frequencies f1 = 741 Hz and f2 = 529 Hz. The relative time delay between the two pulses is 
controlled by a mechanical delay line. The spatial offset of one beam with respect to the other is controlled 
with a mirror galvanometer, while the position of the sample with respect to the beams is controlled with 
a piezo scanning stage. The beams are focused onto the sample with a 40x/NA 0.6 objective lens. We 
collect the TE photocurrent between the source and drain contacts on either side of the junction via lock-
in amplification. This signal is measured by demodulation of the amplified current across the source and 
drain contacts through the graphene sheet. By demodulating the current signal at the difference 
frequency of the two modulation frequencies, f2 - f1 = 211.7 Hz, we isolate the signal caused by the 
interaction of both heating sources, which we call the interacting heat current ∆ITE. The temporal 
resolution of the setup of 200 fs is determined by the 20-80% rise time of transient absorption of graphene 
in the sample plane of the microscope (see Suppl. Fig. 11). The spatial accuracy is given by the signal-to-
noise ratio, and is estimated to be below 100 nm.  
 
We have used two distinct measurement geometries that each have their advantages and characteristics. 
For the data presented in Fig. 2, the two laser pulses are spatially offset symmetrically with respect to the 
gate junction region (by ∆x/2 from the junction) by synchronized movement of the galvo mirrors (by ∆x) 
and the piezo sample stage (by ∆x/2). This measurement geometry is most suitable for extracting 
quantitatively the diffusivity, in particular in the diffusive regime, as shown by the simulations in Fig. 2. 
For the data presented in Fig. 3, where we focus on the hydrodynamic time window, we use a simpler 
“asymmetric” measurement geometry that gives a larger signal. Here, we keep one beam fixed on the 
junction while scanning the other beam by ∆x, across the junction (Fig. 3e), and by ∆y, along the junction 
(Fig. 3f), with fixed sample stage and moving the galvo mirrors only. 
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Estimating Fermi temperature controlled by gate voltage  
During photocurrent measurements, the gate voltage Ux is applied to the left (x = “A”) or right (x = “B”) 
side of the split-gate. We always apply a symmetric voltage around the experimentally determined Dirac 
point voltage 𝑈567: 𝑈8 = 𝑈867 + ∆𝑈 and 𝑈: = 𝑈:67 − ∆𝑈. The gate electrode and the graphene form a 
capacitor with the dielectric hexagonal boron nitride (hBN), with a thickness of thBN = 70 nm, and a relative 
permittivity of 𝜖=:> = 	3.56. The carrier density n is calculated via 𝑛 = 	 DEDFGH

I	JFGH
∆𝑈 , where 𝜖K	is the 

vacuum permittivity. We calculate the Fermi energy EF and the Fermi temperature TF via 𝐸,L = πħL𝑣,L · 𝑛, 
and 𝑇, =

RS
TG
,	where kB is the Boltzmann constant. 

 
Estimating carrier temperature controlled by laser power 
The thermoelectric photovoltage is assumed to be proportional to the time-averaged increase of the 
electronic temperature Te above the ambient temperature T0, as in Ref. 31. The sub-linear dependence of 
the thermoelectric current ITE on optical power for the device under study here for illumination with a 
single pulsed laser (λ = 886 nm) is shown in Supplementary Figure 12. With a linear temperature scaling 
of the electronic heat capacity for graphene away from the Dirac point, Ce(T) = γT, we integrate the heat 
energy per unit area dQ = CedT, i.e., ∫ d𝑄 =YEZ∆Y

YE
∫ 𝛾𝑇d𝑇\]
\E

. With the incident power P proportional to 
the absorbed heat energy per unit area ∆Q, we find that the peak Te as a function of the laser power P 
scales as31 𝑇I = ^𝑇KL + 𝑏𝑃

a . Here, the parameter b is defined via bP = 2∆Q/γ, and is used to convert 
incident power to peak electron temperature (see Suppl. Fig. 12). 
 
Simulation of the experiment 
A detailed description of the simulation can be found in Supplementary Note 1 and Supplementary Figure 
13. In brief, we calculate the spatiotemporal evolution of electronic heat generated by the two optical 
pulses in the graphene sheet via the heat equation with a finite difference method. We define Gaussian 
heating pulses and calculate their temperature rise via the experimentally measured nonlinear power 
scaling. We extract the differential TE current contribution as a function of ∆x and ∆t by the difference of 
the heating at the pn-junction region in the presence of both pulses with respect to simulations with only 
one pulse at a time, analogous to the experimental difference-frequency demodulation.  
 
Quantifying the spatial spread 
The following analysis is performed both on the experimental data and on the simulated data of ∆ITE(∆x, 
∆t) for “symmetric experiments” with optical pulses incident at a distance ∆x on each side of the pn-
junction (c.f. Fig. 1-2). For each ∆t of the datasets ∆ITE(∆x, ∆t) we calculate the width of the signal via the 
second moment, which for an ideal Gaussian profile is equal to the squared Gaussian width σ2. The second 
moment is calculated from the pixels ∆xi (i = 1, ..., N) via 
 

< ∆𝑥L > (∆𝑡) = ∑ f∆ghi∆gf
a
∆jkl(∆gh,∆J)h

∑ ∆jkl(∆gh,∆J)h
 , with the mean ∆𝑥 = 	 ∑ ∆gh	∆jkl(∆gh,∆J)h

∑ ∆jkl(gh,J)h
 .  

 
We note that the minimum second moment at the focus <∆x2>focus of 0.56 µm2 comes from simulating the 
symmetric experiment, using as input the measured Gaussian beam width at the focus σfocus

2 = 0.14 µm2 
(see Suppl. Note 2). For the “asymmetric experiments” with one optical pulse always incident on the pn-
junction (data of Fig. 3), we always consider the spatial profile only at time zero. Here we find that 
Gaussian fits with a background give the most reliable results. The entire set of data is shown in 
Supplementary Figure 8. For each dataset ∆ITE(∆x) or ∆ITE(∆y) taken at ∆t = 0, we perform Gaussian fits 
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using the function f(∆𝑥) = 𝑎 exp r− ∆ga

Lsa
t + 𝑏, where the Gaussian squared width σ2 indicates the thermal 

spreading. Here, the minimum simulated Gaussian widths are (σx
2)focus = 0.34 µm2 and (σy

2)focus = 0.44 µm2 
(see Suppl. Note 2). The experimentally obtained widths from this dataset as function of gate voltage and 
optical power are also shown in Supplementary Figure 8, showing an increase with power, i.e. larger Te, 
and an increase towards the Dirac point, i.e. smaller TF. We estimate the theoretical Gaussian widths  in 
Fig. 3g using  σcalcL  = (σx

2)focus + 2D DtIRF, where D are the calculated diffusivities.     
 
 
Electrical measurements  
We characterize our device electrically with four-probe measurements (see Suppl. Fig. 1), finding a charge 
mobility µ of 30,000 – 50,000 cm2/Vs, depending on carrier density. The measured mobilities correspond 
to a momentum scattering time 𝜏mr of 300 – 500 fs. Importantly, these scattering times are longer than 
the temporal resolution (instrument response function, IRF) of our measurement technique, DtIRF ≈ 200 
fs, thus allowing us to probe our system before and after momentum scattering occurs, i.e. in the non-
diffusive and diffusive regime. We use these measured charge mobilities to calculate the expected 
thermal diffusivity via the Einstein relation32,33	µy/= =

I
z{/F

|z{/F
|RS

𝐷y/=, where 𝑒 is the elementary charge, 

𝐸, is the Fermi energy, and 𝑛y/= is the electron/hole carrier density. For highly doped graphene (𝐸, ≫

𝑘:𝑇) the simple carrier density expression	𝑛y/= =
RS
a

�ħa�S
a	, leads to the simple relation:	𝐷y/= = 	

RS
LI
µy/=. We 

note that we obtain the identical result by calculating D from the ratio of the 2D thermal conductivity κe,2D 
and the electronic heat capacity Ce and using the Wiedemann-Franz law: 𝜅y,L6/𝜎 = 𝜋L/3 · (𝑘:/𝑒)L𝑇y, 
where kB is the Boltzmann constant and e the elementary charge, together with the conductivity 𝜎 = 𝑛𝑒µ 

and the following heat capacity for graphene (valid for Te < TF): 𝐶y =
L��STG

a\{
�ħa�S

a . Given the measured 

mobilities, we expect thermal diffusivities around 2000 cm2/s for our sample.  
 

Thermal diffusivity and conductivity of the Dirac fluid 

We estimate the enhanced thermal diffusivity of the Dirac fluid by comparing the measured width at time 
zero <Dx2>min to the expected width <Dx2>focus explained above, via D = (<Dx2>min - <Dx2>focus)/2DtIRF. We 
find values of 74,000 cm2/s for the symmetric scan (Fig. 2), and 29,000 cm2/s and 39,000 cm2/s for the x- 
and y-directions of the asymmetric scan (Fig. 3), where <Dx2> is replaced with (σx

2) and (σy
2), respectively. 

The same calculation for a second device (see Suppl. Note 3 and Suppl. Fig. 6) gives a diffusivity of 100,000 
cm2/s. The 3D thermal conductivity κ3D of the Dirac fluid is calculated from the diffusivity D and the 
electronic heat capacity Ce, via κ3D = DCe/d, where d is the thickness of graphene, 0.3 nm. For the Dirac 
fluid, we have Te > TF, and therefore use the “undoped” electronic heat capacity34 ��	�(�)

�(ħ�S)a
𝑘:�𝑇yL, where 

𝜁(3) ≈ 1.202. With the above estimate D = 35,000 - 70,000 cm2/s and Te = 1000 K, we obtain the 3D 
thermal conductivity κ3D = 18,000 - 40,000 W/mK.  
 
Dirac fluid crossover temperature 
Following the treatment in Ref. 14, we find the crossover temperature from Fermi liquid to Dirac fluid, as 
a function of Fermi temperature as 𝑇�'���(𝑇,) = 𝑇, r1 + 𝜆 ln r

\E
\S
tt , where 𝜆 = eL/16ϵK𝜖'𝑣,ħ ≈ 0.55/𝜖' 

for graphene with the dielectric environment 𝜖' ≈ 3.56 for hBN. The temperature 𝑇K =
Lħ�S√�

�� �� TG�E
≈ 8.4 ·

10�	K	, with the inter-atomic distance	𝑎K = 1.42 · 10i�K	m. The resulting crossover temperature is 
shown in Fig. 1b and as a red dashed line in Fig. 3e-g. We note that the relatively high refractive index of 
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the hBN encapsulant makes the Dirac fluid more easily accessible, as it lowers the crossover temperature 
compared to vacuum, by a factor of about 2 for the range of TF studied here.  
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Figure 1. 

 

Fig. 1. Spatiotemporal thermoelectric microscopy and heat spreading regimes. (a) Concept of the 
experiment, where a graphene Hall-bar/thermoelectric device is illuminated by two femtosecond heat-
generating pulses with a relative temporal offset ∆t and a symmetric spatial offset ∆x with respect to the 
pn-junction where electronic heat generates a thermoelectric current. The junction is created by applying 
+∆U to one gate and -∆U to the other. We isolate the differential thermoelectric current corresponding 
to light-induced electronic heat from both pulses that has travelled to the junction, where the heat adds 
up in a nonlinear fashion. (b) Phase diagram of the Dirac fluid regime, calculated following Ref. 14. For 
increasing Te the Dirac-fluid regime occurs increasingly far away from the Dirac point. (c, d) Illustration of 
light-triggered spreading of electronic heat in the Fermi liquid regime (c) and Dirac fluid regime (d). In 
both cases, for ∆𝑡 > 𝜏&', diffusive transport dominates (straight blue lines), while in the hydrodynamic 
window, with ∆𝑡 < 𝜏&', extremely efficient heat transport occurs in the Dirac-fluid regime (wavy red 
lines). (e, f) Sketch of the spatial broadening of the heat spots for low (e) and high (f) diffusivity, indicating 
a higher interacting heat at the junction region, hence higher ∆ITE signal for higher D.  
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Figure 2. 

 

Fig. 2. Spatiotemporal tracking of heat spreading. (a) The experimental spatiotemporal differential 
thermoelectric current ∆ITE as a function of Dx and Dt. (b) Normalized profiles, showing a larger spatial 
extent for larger |∆t|. (c, d) Experimental (c) and simulated (d) normalized ∆ITE for each ∆t, showing spatial 
broadening due to thermal transport as a function of ∆t. The white line indicates the spatial spread <∆x2>. 
(e) Spatial spread <∆x2> of ∆ITE, as a function of ∆t for three different Fermi energies (symbols), with 
simulation results using as input the diffusivities from electrical mobility measurements (purple solid 
lines), with offset due to ultrafast heat spreading around time zero. Simulation (blue dashed line) and 
theoretical heat equation (black dash-dotted line) results with the same input diffusivity and no ultrafast 
spreading around time zero. Heat spreading with ultrahigh diffusivity in the Dirac-fluid regime (red line), 
which lasts for a few hundred fs, explains the time zero offset.  
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Figure 3. 

 

Fig. 3. Fermi-liquid to Dirac-fluid crossover. (a-d) Time-zero spatial maps of ∆ITE for low optical power P 
and high gate voltage ∆U (a,d), and vice versa (b,c), for np- and pn- junction (a-b and c-d, respectively). 
For larger ratio Te/TF (i.e. larger P/∆U) the spatial extent is clearly larger. (e, f) Time-zero Gaussian widths 
for spatial scans with one pulse on the junction and the second one scanning across (e) and along (f) the 
graphene pn-junction, as a function of P and ∆U. The red dashed line shows the theoretical crossover 
temperature from Fermi liquid to Dirac fluid regime according to Ref. 14, thus showing our ability to 
controllably transition into the Dirac-fluid regime with strongly increase thermal diffusivity. (g, h) 
Calculation of the thermal diffusivity following Refs. 9,18 with only electron-electron interactions (g) and 
only long-range Coulomb scattering (h). The contours in (g) are the calculated time-zero spreads σcalcL

 (see 
Methods).  
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It is well known that the electronic thermal conductivity of clean com-
pensated semimetals can be greatly enhanced over the electric con-
ductivity by the availability of an ambipolar mechanism of conduc-
tion, whereby electrons and holes flow in the same direction expe-
riencing negligible Coulomb scattering as well as negligible impu-
rity scattering. This enhancement – resulting in a breakdown of the
Wiedemann-Franz law with an anomalously large Lorenz ratio – has
been recently observed in two-dimensional monolayer and bilayer
graphene near the charge neutrality point. In contrast to this, three-
dimensional compensated semimetals such as WP2 and Sb are typ-
ically found to show a reduced Lorenz ratio. This dramatic differ-
ence in behavior is generally attributed to different regimes of Fermi
statistics in the two cases: degenerate electron-hole liquid in com-
pensated semimetals versus non-degenerate electron-hole liquid in
graphene. We show that this difference is not sufficient to explain
the reduction of the Lorenz ratio in compensated semimetals. We ar-
gue that the solution of the puzzle lies in the ability of compensated
semimetals to sustain sizeable regions of electron-hole accumula-
tion near the contacts, which in turn is a consequence of the large
separation of electron and hole pockets in momentum space. These
accumulations suppress the ambipolar conduction mechanism and
effectively split the system into two independent electron and hole
conductors. We present a quantitative theory of the crossover from
ambipolar to unipolar conduction as a function of the size of the
electron-hole accumulation regions, and show that it naturally leads
to a sample-size-dependent thermal conductivity.

Compensated semimetals | Hydrodynamic transport | Ambipolar | Unipo-
lar | Thermoelectric |

1. Introduction

The thermal and electric conductivities of compensated
semimetals such as single- and double-layer graphene

near the charge neutrality point have been a topic of great
interest in recent years - mostly because these systems can
be made very clean and feature strong Coulomb interactions
between non-degenerate electron and hole carriers near the
point of contact of the conduction and valence bands. This
clears the way for the observation of hydrodynamic transport,
as opposed to conventional single-particle diffusive transport
(1–19).

In this regime, the thermal resistivity (ρth = κ−1) – de-
fined under the standard condition of zero electric current –
is primarily controlled by momentum-non-conserving inter-
actions (scattering from impurities and phonons), while the
electric resistivity (σ−1) is primarily controlled by momentum-
conserving electron-hole collisions. The physical reason for this
difference is well understood. The application of a thermal gra-
dient causes electrons and holes to drift in the same direction
(see Fig. 1a) This ambipolar mode of conduction is charge-
neutral and therefore automatically satisfies the condition of

zero electric current, which is essential to the measurement
of the thermal conductivity. At the same time the thermal
current is directly proportional to the total momentum of the
electron-hole system, which cannot be changed by electron-
hole collisions. Hence, except for momentum-non-conserving
processes, such as electron-impurity collisions and umklapps,
the thermal conductivity would be infinite. On the other hand,
an electric field causes electrons and holes to drift in opposite
directions (see Fig. 1a). Although the total momentum is
now zero, electron-hole collisions transfer momentum between
electrons and holes, giving rise to the Coulomb resistivity ρel.
Under these conditions the Lorenz ratio L = κ/(σT ) is much
higher than the conventional Lorenz ratio L0 = (π2/3) (kB/e)2

(= 2.44 ×10−8 W Ω K−2) of the Wiedemann-Franz law, and
is given by (16)

L = L0

(
1 + 1

Γ2

)
[1]

where Γ2 = (3/π2)(ρel,dis/ρel)� 1 is the ratio of the ordinary
Drude resistivity, ρel,dis, to the Coulomb resistivity ρel – the
smaller this is, the deeper we are into the hydrodynamic
regime. (Notice that this formula is valid at or near the charge
neutrality point, i.e., for chemical potential µ = 0 or, at least,
µ/(kBT )� Γ.) The resulting Lorenz ratio, L > L0, is clearly
seen in the experiments of Ref. (3), which we reproduce in Fig.
1b), and is well above what would be computed in a theory
that does not take into account electron-hole scattering.

Notice that the presence of two kinds of carriers with oppo-
site charges is essential to the enhancement of the Lorenz ratio.
If we had only one kind of carriers, then the requirement of
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Fig. 1. (a) Schematic illustration of the difference between heat and charge current in
a charge neutral system. A thermal current can be set up in a semimetal simply by
letting electrons and holes drift with equal speeds in the same direction (upper row).
Electric field causes electrons and holes to drift in opposite directions (lower row).
(b) Experimental observation of the enhanced Lorenz ratio in monolayer graphene
(the solid lines are guides to the eye) - data were reproduced from Ref. (3). (c)
Experimental observation of the reduced Lorenz ratio in WP2 - data were reproduced
from Refs. (20, 21). The insets in (b) and (d) depict the low energy bands in
graphene systems (dashed curves for monolayer and solid curves for bilayer) and in a
compensated semimetal, respectively. In both cases, the chemical potential is taken
as the zero of the energy.

zero-electric current in a thermal transport experiment would
force these carriers to adopt a distribution in which their direc-
tion of drift changes sign depending on whether their energy
is above or below the Fermi level. In this case, Coulomb
interactions between the carriers would increase the thermal
resistivity, producing a Lorenz ratio that is less than L0 (22),
exactly the opposite of what happens in the ambipolar case.

In view of the above discussion, it may come as a surprise
that well-known compensated semimetals, such as WP2 do
not show, experimentally, any sign of ambipolar thermal trans-
port. On the contrary, the Lorenz ratio of this and other
compensated semimetals, is found to be lower than L0 (23),
which, as we have just seen, is a signature of interaction effects
in unipolar transport. Earlier measurements on Bi (24, 25)
also found a reduction of the Lorenz ratio rather than an
enhancement. A cartoon of the band structure of a compen-
sated semimetal with a negative indirect gap is shown in the
inset of Fig. 1c. For simplicity, we assume parabolic bands of
opposite curvature for electrons and holes. The electron and
hole bands are well separated in momentum space, in contrast
with those of graphene where electrons and holes coexist in the
same region of momentum space. Experimental measurements
of the thermal and electric conductivity, reproduced in Fig.
1c, clearly show the reduction of the Lorenz ratio in a range
of temperatures kBT < εF in which electrons and holes can
be safely regarded as degenerate Fermi liquids. Here, εF is
the Fermi energy of electrons and holes measured from the
bottoms of the respective bands, while the chemical potential
is µ = 0 as required for charge neutrality.

What is the reason for this difference?
The first explanation that comes to mind invokes the dif-

ferent regimes of Fermi statistics of electrons and holes in
the two systems. Electrons and holes are degenerate Fermi

Fig. 2. (a) Schematics of the thermal conductivity measurement. (b) Spatial distribu-
tion of the electron and hole components of the electric current. `D is the diffusion
length. The ambipolar transport region is shaded. The red dashed lines represent the
enhanced density of electrons and holes near the contacts.

liquids in WP2, where the inverse quasiparticle lifetime scales
as (kBT )2/εF ; but, in graphene, they are non-degenerate,
strongly interacting (Planckian) particles whose inverse life-
time scales as kBT . The difference manifests in the behavior
of the intrinsic electric resistivity (caused by electron-hole
scattering): ρel is essentially independent of temperature in
single- and double-layer graphene, but becomes proportional
to (kBT/εF )2 � 1 in WP2. The small value of ρel suggests
that the “hydrodynamicity" parameter 1/Γ2 of Eq. (1) in WP2
is much smaller than 1, consistent with the fact that electrons
and holes are degenerate Fermi liquids. These considerations
lead one to expect that L should be close to L0, but not
smaller than L0. We note that recent theoretical calculations
of the thermal conductivity of compensated semimetals (26)
have yielded L < L0 only because the ambipolar conduction
channel was not allowed to be part of the solution. Those
results for the thermal conductivity are qualitatively similar to
what would be obtained by enforcing the zero electric current
conditions separately for electrons and holes, without allowing
for the possibility that the the electric currents of electrons
and holes cancel against each other.

In view of the fact that the Lorenz ratio of WP2 is indeed
found to be less than L0 we are left with the following prob-
lem: Why is the ambipolar channel of thermal conduction
apparently disabled in WP2, while it is clearly operative in
graphene? In this paper we propose a resolution of this puzzle.

2. Ambipolar transport in the presence of contacts -
qualitative description

In a typical thermal conductivity measurement (see Fig. 2a)
no electric current is extracted from the system. This gives us
the condition

je + jh = 0 [2]

where je and jh are the electric currents associated with elec-
trons and holes respectively. At the contacts, however, both
the electron and the hole currents are expected to vanish and
therefore we have the boundary condition je = jh = 0 at the
contacts. In principle, this boundary condition could be homo-
geneously enforced all along the sample (we assume the sample
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is a channel of length ` extending from −`/2 to +`/2 along the
x axis). Then the electrons and the holes would be effectively
decoupled: there would be no reason for momentum or energy
to flow preferentially from one group of carriers to the other.
The thermal conductivity would be κ = κe + κh, κe and κh
being the thermal conductivities of electrons and holes in isola-
tion. The pattern of motion would reproduce that of a system
with only one kind of carrier: the drift direction would change
sign depending on whether their energy is above or below the
Fermi level. Then electron-electron and hole-hole interactions
would ensure that the Lorenz ratios κe/Tσe and κh/Tσh, with
σe and σh being the electric conductivities of electrons and
holes in isolation, are lower than the non-interacting ratio L0.
The total electric conductivity σ is lower than σe + σh, due to
the effect of electron-hole collisions. However, this effect can
be neglected in the clean limit, because σe and σh are very
large. Therefore, under this boundary condition we would
expect the Lorenz ratio to be lower than L0, as it is indeed
observed to be in experiments.

But why should the boundary condition je = jh = 0 be
enforced homogeneously throughout the sample? Notice that
je and jh are not separately conserved, due to the possibility of
electron-hole recombination. Therefore je = 0 at the contacts
does not demand je = 0 everywhere. On the contrary, the
principle of least entropy production (27) demands that the
system take maximal advantage of the ambipolar channel of
thermal conduction by keeping je = −jh 6= 0 in the bulk. The
way this is achieved is by creating regions of increased electron
and hole density in the vicinity of the contacts. This is shown
schematically by the red dashed lines in Fig. 2b. The excess
densities of electrons and holes are identical, so that charge
neutrality is preserved, but the local chemical potentials for
electrons and holes shift in opposite direction. The gradients
of electron and hole densities act as opposing forces, which
gradually bring the electron and hole currents to zero. In the
next section we will show that the size of the electron-hole
accumulation regions is given by the diffusion length

`D =
√
Dτr [3]

where D is the diffusion constant of electrons or holes, related
to the electric conductivity by the usual Einstein relation
(D ∼ v2

F τ in a degenerate Fermi liquid, D ∼ (kBT/m)τ in
a non degenerate electron gas, where τ is the momentum re-
laxation time) and τr is the electron-hole recombination time.
Notice that `D can be very large in a clean semimetal with a
long electron-hole recombination time. For example, with a dif-
fusion constant on the order of 104 cm2/s and an electron-hole
recombination time on the order of 10−6 s (e.g. see chapter
4 in (28)) we obtain ` ' 10−1 cm which is comparable to the
size of experimental samples (20, 21). It is also worth noting
that this mechanism of gradual suppression of the current is
unique to ambipolar systems. In a unipolar system, carrier
accumulation is inevitably associated with charge accumula-
tion and the diffusion length is replaced by the much smaller
screening length: the electric current is suppressed all over
the sample by the uniform electric field generated by a surface
charge layer.

The following qualitative picture emerges from our dis-
cussion. In a typical thermal conductivity measurement the
system splits into three sections: (i) A central section of length
`− 2`D (assuming ` > 2`D) in which thermal transport occurs

via the ambipolar channel with je = −jh 6= 0 and the thermal
resistivity is given by ρth,ambi (ii) Two accumulation regions
of length `D adjacent to the contacts, in which je and jh
are essentially zero and the thermal conductivity is given by
ρth,uni = (κe + κh)−1. The thermal resistivities of the three
sections add in series, leading us to the final result

ρth = α(`)ρth,uni + [1− α(`)]ρth,ambi [4]

where α(`) ' 2`D/` for ` > 2`D, and α(`) = 1 for ` < 2`D.
This qualitative result will be substantiated in the next section
by detailed calculations. In particular, we will derive a more
accurate form of the weight function

α(`) = 2`D
`

tanh
(

`

2`D

)
. [5]

If, as we expect in very clean samples, ρth,ambi � ρth,uni Eq. (4)
can be further simplified to

ρth = α(`)ρth,uni . [6]

Here the dependence of the thermal resistivity on the sample
size along the direction of flow is evident – as well as a distinct
possibility to get ρth ' ρth,uni when ` and 2`D are comparable.
No such complications arise in measurements of the electric
conductivity, because the system remains homogeneous in
those measurements.

According to this description, the difference between com-
pensated semimetals like WP2 and graphene arises from the
difference between their electron-hole equilibration times. In
WP2 electrons and holes are well separated in momentum
space, making the recombination process very slow. As a
result, the diffusion length becomes comparable to the size of
the sample and the thermal conductivity reduces to the sum of
the thermal conductivities of electrons and holes in isolation,
implying a Lorenz ratio lower than L0, as discussed above. In
single- and double-layer graphene, electrons and holes coexist
in the same (small) region of momentum space. Transfer of
non-equilibrium carriers between the conduction and valence
bands is fast, preventing the establishment of different local
chemical potential for electrons and holes. Therefore the diffu-
sion length is negligible and the thermal resistivity plummets,
leading to a Lorenz ratio higher than L0.

Throughout this paper we have assumed that the current
density remains uniform in the direction perpendicular to the
flow. Thus, we have deliberately disregarded contributions to
the resistances arising from the transverse electronic viscosity
and boundary conditions which mandate the vanishing of the
electronic current along the lateral boundaries of the channel.
This corresponds to considering a wide conduction channel. A
detailed analysis of narrow-channel effects is beyond the scope
of this paper.

3. Ambipolar transport in the presence of contacts -
quantitative theory

In this section we derive the 2 × 2 matrix of thermoelectric
resistivities for a 1D channel (−`/2 ≤ x ≤ `/2). The latter
relates electric and thermal currents to electric fields and ther-
mal gradients. To simplify the following derivation, we now
define |jns〉 = t(jn, js) and |Fns〉 = t(−eE,−kB∂xT ) the vec-
tors of thermoelectric currents and fields, respectively. Here
jn = je + jh and js are the electric and thermal currents,
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respectively, while E is the electric field and ∂xT the tem-
perature gradient. Then, the resistivity matrix ρ̂, such that
|Fns〉 = ρ̂|jns〉, has the form

ρ̂ =
(

ρel +Q2ρth −Qρth
−Qρth ρth

)
, [7]

where ρel and ρth are the electric and thermal resistivities in
reduced units. That is to say, they are the usual electric and
thermal resistivities multiplied by e2 and k2

BT , respectively,
while Q is the Seebeck coefficient in units of kB/e. Throughout
this paper we work with these reduced units.

This well-establish two-mode description is however insuffi-
cient in describing thermoelectric transport in systems where
conduction can occur via both electrons and holes, if one
wishes to separately impose boundary conditions on the parti-
cle and hole currents je and jh. It is in fact clear that, by its
own construction, such description allows imposing boundary
conditions only on the total electric current, jn, which is the
sum of electron and hole currents. To treat these currents sep-
arately, it is necessary to extend this theory by adding a third
mode, the “imbalance” current jδ = je− jh, as well as the cor-
responding imbalance field Fδ = −∂x(µe − µh). Here, µe and
µh are the electron and hole chemical potentials, respectively.
Indeed, by taking linear combinations of the imbalance and
electric currents, it becomes possible to separately describe
the propagation of electrons and holes.

We stress that the imbalance mode plays a rather special
role in the present theory. From an experimental perspective,
only two fields and currents, the electric and thermal ones,
can be externally applied and measured. On the contrary, jδ
and Fδ are not directly accessible. They represent the internal
rearrangement that the particle flow undergoes as a result of
the application of external probes, while being subject to the
boundary conditions. Their presence in the theory is vital
to the correct implementation of boundary conditions and
particle-hole recombination. However, in order to describe
experiments, it is sufficient to down-fold such unfamiliar three-
mode theory, resulting from the introduction of imbalance
currents and fields, to the more conventional two-mode one
of Eq. (7). Here we show that, by applying the boundary
conditions on jδ in the presence of particle-hole recombination,
we are able to integrate out the imbalance current and reduce
the three-mode thermoelectric resistivity to the more familiar
2 × 2 matrix of Eq. (7). From that we will then be able to
read out the values of electric and thermal resistivities, as well
as of the Wiedemann-Franz ratio and the Seebeck coefficient.

In the three-mode theory, the fields are related to the
currents via a 3× 3 resistivity matrix:(

|Fns〉
Fδ

)
=
(

ρ̂ns |ρδ〉
〈ρδ| ρδδ

)(
|jns〉
jδ

)
. [8]

Here ρ̂ns is a 2 × 2 block, whereas |ρδ〉 is a two-component
vector. Hereafter 〈v| denotes the transposed of the vector
|v〉. The vector of currents on the right-hand side of Eq. (8)
specifies the state in which the system is prepared. Once such
state is defined, this equation tells us which potential drops,
thermal gradients and imbalance fields can be measured at the
boundaries of the sample. We note that the specific forms of
ρ̂ns, |ρδ〉 and ρδδ are immaterial, as we proceed to show. The
only property of the 3× 3 matrix of Eq. (8) that we will use in
what follows is that its determinant vanishes. We stress that

such property is not generic to all thermoelectric matrices, but
is a consequence of the existence of a conserved mode (the
total momentum) in the present theory.

In fact, when electron-electron interactions are the domi-
nant scattering mechanism, and barring Umklapp processes,
the total momentum is a conserved quantity which must always
be included in the theory, regardless of boundary conditions.
This can be accomplished in two ways. One possibility is that
the total momentum is already present explicitly in the 3× 3
resistivity matrix of Eq. (8). This happens in very specific
cases in which one of the three currents (jn, js or jδ) coincides
with the momentum density. For example, in a parabolic
band electron gas the electric current density coincides with
the momentum density, whereas for massless Dirac fermions
(e.g., in undoped graphene) the momentum density is directly
proportional to the heat current density. Finally, in a gapless
parabolic-band semimetal such as undoped bilayer graphene,
the momentum density coincides with the imbalance current
density jδ.

In all these cases, the current that is proportional to the
momentum cannot decay over time, since particle-particle colli-
sions do not affect it. Once launched, it can only be relaxed by
momentum-non-conserving scattering processes (e.g., electron-
phonon collisions). By the very definition of hydrodynamic
regime of transport, however, such processes seldom occur and
are in fact neglected altogether in a first approximation. This
fact has a striking consequence. If the system is prepared in
a state in which only such conserved current exists, since it
experiences neither resistance nor dissipation during its propa-
gation, it cannot give rise to a drop in electric field or thermal
gradient. Mathematically, if such nontrivial state is introduced
on the right-hand side of Eq. (8), and is thus multiplied by
the 3× 3 resistivity matrix, it produces a null vector of fields.
It is, therefore, a “zero mode” of the resistivity matrix. Since
it is nontrivial, i.e. it is not the vector with all currents equal
to zero, this in turn implies that the determinant of the 3× 3
resistivity matrix of Eq. (8) must vanish.

In general, however, none of the three currents coincides
with, or is directly proportional to the total momentum. There-
fore, to include such mode one should in principle start from
four-mode theory, the fourth component being the momentum.
Then, via a down-folding procedure similar to the one we
will describe momentarily, one can obtain the 3× 3 resistivity
matrix of Eq. (8). This procedure is shown in App. A: the end
result is that the momentum mode is implicitly included in
the 3× 3 resistivity matrix and its determinant still vanishes
(it is indeed possible to construct a current which is a combi-
nation of particle, thermal and imbalance ones that cannot
decay over time). As we proceed to show, the vanishing of
the determinant of the three-mode matrix, consequence of
the presence of a conserved mode in the theory, plays a fun-
damental role in describing the transition between unipolar
and ambipolar regimes, as well as the size-dependence of the
thermal resistivity.

To take into account particle-hole recombination and bound-
ary conditions in the thermoelectric transport, we now assume
that the imbalance density, nδ, satisfies the following continu-
ity equation:

∂tnδ + ∂xjδ = −ν0

τr
(µe − µh) , [9]

where τr is the electron-hole recombination time, while ν0
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is the density of states of electrons and holes (assumed to
be equal) at the Fermi level. Eq. (9) can be derived from
the Boltzmann equation. In general, the collision integral of
electron-electron interactions does not conserve the imbalance
density and therefore the latter decays over time with a typical
time scale τr. Note that conservation of the imbalance density
is obtained in the limit τr →∞, hence Eq. (9) is completely
general.

Before continuing, it is necessary to discuss which boundary
conditions apply in different situations. In a typical measure-
ment of the thermal resistivity, the channel is connected to
two thermal reservoirs. There is no charge transfer to the
reservoirs and only heat can be exchanged between them and
the channel. Hence, the currents of electrons and holes have
to vanish at the boundaries. This in particular implies that
jδ(±`/2) = 0. This leads to the accumulation of electrons
and holes at the boundaries. Such accumulation is required to
stop the two currents from propagating in the channel. Hence,
the imbalance field Fδ can be finite. On the contrary, when
the electric resistivity is measured, a charge current is passed
through the system and a voltage drop is detected. In this case,
the imbalance current needs not to vanish at the boundaries
and is in fact uniform throughout the channel. However, since
there is no applied imbalance field, Fδ must vanish.

We will start by considering the measurement of the thermal
resistivity. Taking the derivative of Eq. (9), in the steady state
we get

∂2
xjδ(x) = ν0

τr
Fδ . [10]

From the last line of Eq. (8), we get that Fδ = 〈ρδ|jns〉+ρδδjδ.
Using this into Eq. (10), and then solving by imposing the
boundary conditions jδ(±`/2) = 0, we get

jδ(x) = −〈ρδ|jns〉
ρδδ

[
1− α(`, x)

]
. [11]

In this equation,

α(`, x) = cosh(x/`D)
cosh

[
`/(2`D)

] , [12]

where `D ≡
√
τr/(ν0ρδδ) is the recombination length. To get

Eq. (11), we have assumed that the thermal and particle cur-
rents are constant throughout the channel, while the (electric,
thermal and imbalance) fields depend on position. This im-
plies that there is no loss of energy along the channel. This is
compatible with the system being in the hydrodynamic regime:
energy loss occurs via phonon emission, which is however as-
sumed to occur at a much slower rate than electron-electron
collisions.

We note that the hydrodynamic hypothesis also explains
why `D can assume drastically different values in compensated
semimetals and in, e.g., graphene systems. In a compensated
semimetal, electron and hole Fermi surfaces are centered at
distant points of the Brillouin zone. Electron-hole recombina-
tion occurs at the Fermi surface and requires a large transfer
of momentum, much larger than the typical Fermi momenta of
the involved particles. Therefore, it requires momentum-non-
conserving scattering process to be effective in equilibrating
particles and holes with each other. But this is exactly what
is prevented in the hydrodynamic regime of transport, in
which momentum-non-conserving collisions with impurities or
phonons seldom occur. Hence, τr becomes very large, while

electrons and holes are largely independent. When the recom-
bination time τr → ∞, `D diverges and α(`, x) → 1. Under
this condition, the imbalance current of Eq. (11) vanishes ev-
erywhere and the system behaves as two independent unipolar
systems.

On the contrary in, e.g. graphene systems, electron-hole
recombination (and therefore the equalization of their chem-
ical potentials) occurs at a much faster rate, with typical
time scales of few tens of femtoseconds. Hence, the typical
relaxation times for imbalances in chemical potential are very
short, i.e. τr → 0. In this case, `D vanishes and α(`, x)→ 0.
Since the imbalance current can be finite, the system displays
ambipolar behavior. We stress that, in graphene, electron-
hole recombination occurs in general much faster than cooling,
which has typical time scales of few picoseconds (29).

Substituting the result of Eq. (11) into the first line of
Eq. (8), we obtain an equation of the form |Fns〉 = ρ̃(x)|jns〉,
where the 2× 2 position-dependent thermoelectric matrix is

ρ̃(x) = ρ̂ns −
|ρδ〉〈ρδ|
ρδδ

[
1− α(`, x)

]
. [13]

According to the discussion above, from Eq. (13) we can define
the unipolar and ambipolar resistivity matrices as

ρ̂uni ≡ lim
α(`,x)→1

ρ̃(x) = ρ̂ns ,

ρ̂ambi ≡ lim
α(`,x)→0

ρ̃(x) = ρ̂ns −
|ρδ〉〈ρδ|
ρδδ

. [14]

Each infinitesimally thin slice of the channel at position x
contributes a resistivity ρ̃(x), which is in series to those of all
other slices. The total resistivity of the channel is therefore
obtained by summing the resistivities of the infinitesimally thin
slices that compose it, and dividing the result by its total length
`. This is equivalent to averaging Eq. (13) over the length of
the channel. We finally obtain the sought 2× 2 thermoelectric
matrix subject to thermal-measurement boundary conditions

ρ̂ = ρ̂uniα(`) + ρ̂ambi
[
1− α(`)

]
. [15]

Note that we can easily add a contribution due to momentum-
non-conserving processes ρ̂D in series to ρ̂ by replacing ρ̂uni →
ρ̂uni+ρ̂D and ρ̂ambi → ρ̂ambi+ρ̂D. Comparing Eq. (15) with the
definition (7), we immediately identify the thermal resistivity

ρth = α(`)ρth,uni +
[
1− α(`)

]
ρth,ambi . [16]

Using Eqs. (8) and (15) we can also derive the Seebeck coeffi-
cient as

Q =
α(`)ρth,uniQuni +

[
1− α(`)

]
ρth,ambiQambi

α(`)ρth,uni +
[
1− α(`)

]
ρth,ambi

, [17]

whereQuni andQambi are the Seebeck coefficients of the system
in the unipolar and ambipolar regimes, respectively.

To derive the electric resistivity, we have to start again from
Eq. (8) and apply the boundary condition Fδ = 0. Since we
impose no condition on the imbalance current, the latter has
a uniform value which is determined by the applied fields. In
this case, the electric resistivity is simply that of the ambipolar
channel, i.e. ρel = ρel,ambi. In fact, given that the boundary
conditions do no treat particles and holes separately, there is
no such thing as a “unipolar” electric resistivity. This can be
seen also mathematically, by setting Fδ = 0 in Eq. (8) and
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Fig. 3. Intrinsic unipolar and ambipolar thermal resistivities (as defined in the text) as
well as the intrinsic electric resistivity as functions of temperature (scaled with TF ).
In the presence of disorder the total electric and thermal resistivities, respectively,
become ρel + ρel,dis and ρth,uni/ambi + ρth,dis (not shown in the figure), where
ρel,dis is constant at low T (impurity-dominated regime) and linearly scales with
T when phonons are relevant. Making use of the Wiedemann-Franz law for a
non-interacting disordered system, we have assumed ρel,dis/ρth,dis = π2/3 (in
reduced units).

solving its last line. The result is jδ = −〈ρδ|jns〉/ρδδ, which
is identical to Eq. (11) in the limit α(`, x) → 0. Therefore,
as expected, the system behaves as purely ambipolar and
ρ̂ = ρ̂ambi. Therefore, the Lorenz ratio reads

L = ρel

α(`)ρth,uni +
[
1− α(`)

]
ρth,ambi

. [18]

In the absence of interactions and in the unipolar regime, L
tends to L0, the value prescribed by the Wiedemann-Franz
law.

4. Numerical Results and Discussion

In this section we present numerical results for Eqs. (16), (17),
and (18) for the thermal resistivity, the Seebeck coefficient, and
the Lorenz ratio, respectively. We assume the semimetal to be
perfectly compensated, i.e. the number of electrons equals the
number of holes. For the sake of clarity, we start by discussing
the electrical and thermal resistivities in the ideal intrinsic
limit, in which momentum-non-conserving interactions are
completely neglected. These will be re-introduced later, in
order to regularize the results pertaining to the Lorenz ratio.

Our results are summarized in Fig. 3. We plot the di-
mensionless electrical and thermal resistivities, ρel and ρth,
as functions of temperature. The thermal resistivities ρth,uni
and ρth,ambi, subject to homogeneous unipolar and ambipolar
boundary conditions, are plotted as solid and dotted lines
respectively. As discussed above, the unipolar boundary con-
dition sets electron and hole currents, je and jh, individually
to zero. This is equivalent to requiring that both the elec-
tric and the imbalance currents vanish. On the other hand,
the ambipolar boundary condition sets only the total current
je+ jh to zero. Note that, as explained in the previous section,
the distinction between unipolar and ambipolar boundary con-
ditions does not apply to the electric resistivity. In Fig. 3
we see that, while the ambipolar thermal resistivity vanishes,
the unipolar thermal resistivity remains finite. In the latter

case the system is essentially equivalent to two independent
electron and hole fluids with no electron-hole interactions.

Since our model enjoys particle-hole symmetry, the thermal
conductivity of electrons and holes are equal. Thus, ρth,uni =
1/(2κe). We use the well-established kinetic-equation methods
of Refs. (16) and (17) to calculate the intrinsic thermal conduc-
tivity κe of a single parabolic band at a fixed carrier density,
defined by the Fermi energy εF . These techniques can be
viewed as a simplified version of the calculations performed in
Ref. (26). We rely on a simpler Ansatz for the non-equilibrium
distribution function (16) and find ρth,uni ' Ith/(2D2

th), where
Dth =

∑
k
(∂fk/∂εk)vk · vk[(εk − εF )/kBT )2 ' 9ζ(3)/(4π~2β)

is the thermal Drude weight, while Ith is the Coulomb collision
integral projected onto the thermal channel. In the degenerate
Fermi liquid regime (T � TF ), Dth ∼ T and Ith ∼ T 4 we
find∗

ρth,uni(T � TF ) ∼ T 2 ln(T ). [21]
This behavior of the thermal resistivity is consistent with previ-
ous results obtained for degenerate Fermi liquid graphene (22).
We find that ρth,uni peaks around T ' TF and decreases as
∼ ln(T )/T 2 for T � TF (i.e. in the non-degenerate regime),
see blue solid curve in Fig. 3.

Next, we study the the temperature dependence of the
intrinsic electric resistivity ρel of the compensated semimetal.
We distinguish the Planckian regime, in which there is only
one energy scale kBT (T � TF ), from the Fermi-liquid one,
in which there are two energy scales, kBT and εF . The tem-
perature dependence of ρel (in reduced units) is given by,

ρel ∼
1

Del(T )τeh(T ) , [22]

where τeh(T ) is the electron-hole scattering rate and Del(T )
the Drude weight in the electric channel, which is defined as
Del =

∑
k

v2
k(∂fk/∂εk). In the Planckian regime the maxi-

mum scattering rate allowed by the energy-time uncertainty
principle (31) is 1/τeh(T ) ∼ kBT/~ while in the Fermi liquid
regime 1/τeh(T ) ∼ (kBT )2/~εF . Similarly, in the Planckian
regime the Drude weight Del ∝ kBT , whereas in the Fermi
liquid regime it is independent of temperature. Hence, the
intrinsic resistivity ρel is independent of temperature in the
Planckian regime, while it scales as ∼ T 2 in the Fermi liquid
regime. The red dashed curve in Fig. 3 shows precisely these
limiting behaviors.

We now introduce momentum-non-conserving interactions
and discuss the calculation of the Lorenz ratio of Eq. (18).

∗For a system with a single parabolic band, the velocity vk ∼ k coincides with the momentum
zero mode, and therefore only the thermal moment of the collision integral, Ith , associated with
the relaxation of energy (thermal) currents, survives. This implies that, while the electric resistivity
is exactly zero, the thermal resistivity remains finite. We make use of standard approximations for
the Coulomb collision integral (screened interaction plus Fermi golden rule), previously used for
graphene systems (16, 17), and find Ith to be

Ith = −
1

4π(kBT )3

∑
q

∫ ∞
−∞

dω
|V (q, ω)|2

sinh2(~ω/2kBT )
[(=Π1)2 − =Π0=Π2],

[19]
where V (q, ω) = vq/|1 − vqΠ0(q, ω)| is the screened electron-electron Coulomb interac-
tion and vq = 2πe2/(εq). Here, ε is the dielectric constant that accounts for the surrounding
medium as well as screening from remote bands. We set ε = 1 in our calculation. The response
functions Πn(q, ω) are defined as

Πn(q, ω) = 2
∑

k

(ε̃kvk − ε̃k+qvk+q)n(f0
k
− f0

k+q
)

εk − εk+q + ~ω + i0+ , [20]

where ε̃k = εk − εF is the band energy measured from the Fermi energy. At T � TF

(degenerate regime), Π0 is the well-known zero-temperature 2D Lindhard function (30) and we
find that for ~ω � εF , [Π2

1 − Π0Π2] ∼ ω6 . This results in Ith ∼ T4 .

6 | M. Zarenia et al.



0 10 20 30 40 50
0

1

2

3

4

5

10
-4

10
-3

10
-2

10
-1

10
0

0

1

2

3

0 100 200
0

0.5

1

(perfect unipolar)

(a) (b)

(perfect ambipolar)

Fig. 4. Lorenz ratio as a function of (a) temperature
for different values of α(`) from 0 (perfect ambipo-
lar regime) to 1 (perfect unipolar regime) with a step
of 0.01 and (b) as a function of α(`) (in logarith-
mic scale) for different temperatures as labeled. The
strength of the charge impurity- and phonon-limited
resistivities were defined through the hydrodynamicity
parameters Γ2

imp = ρel,imp/ρel(T � TF ) and
Γ2

ph = ρel,ph/ρel(T � TF ), respectively. The
inset in (b) shows α(`), Eq. (5), as a function of
`/`D . The onset temperature for phonons is taken
as Tph = 25K. In the hydrodynamic regime, i.e.
0 . T . 25K in this figure, the Lorenz ratio deviates
from its standard (impurity/phonon)-limited value L0.
Due to the ambipolar constraint je + jh = 0, the
violation of the Lorenz ratio is a large enhancement
while with the unipolar situation (je = jh = 0) the
Lorenz number is drastically reduced below L0.

Momentum-non-conserving scattering is necessary to regular-
ize results in the ambipolar limit: as it is clear from Fig. 3
and the definition 18, the ratio between the electrical and
thermal resistivity (ρth,ambi) would diverge if the contribution
of disorder were neglected. To include disorder we consider
the following simple but realistic model. At low temperatures
impurities are the dominant disorder mechanism while, as
temperature increases, electron-phonon scatterings become
more important.

The Drude resistivity due to scattering against impurities
is here defined as ρel,imp = m∗/(nτimp), where m∗ and n are
the electron effective mass and density, respectively. The
impurity scattering rate 1/τimp is assumed to be independent
of temperature for both short- and long-range impurities. Since
the particle density n and the effective masses are fixed in
compensated semimetals, once the electron and hole Fermi
energies are set, the electric resistivity due to scattering against
impurities, ρel,imp, is independent of T .

As the temperature increases, the resistivity due to col-
lisions with phonons ρel,ph becomes the dominant contri-
bution to the total electric resistivity. Above the Bloch-
Grüneisen temperature, ρph increases linearly with T (32).
We therefore posit the following model for the momentum-non-
conserving scattering: ρel,dis(T . Tph) ' ρel,imp ∼ Const. and
ρel,dis(T & Tph) ' ρel,ph ∼ T , where Tph is defined as the onset
temperature at which phonons start to become the dominant
scattering mechanism. Assuming that the Wiedemann-Franz
law is satisfied when only momentum-non-conserving (electron-
impurity or electron-phonon) processes are taken into account,
we obtain in particular that the thermal resistivity of impuri-
ties in reduced units is ρth,imp = (3/π2)ρel,imp.

Figures 4a and 4b show the results for the Lorenz ratio of
Eq. (18) as a function of (a) temperature for different values
of α(`) (corresponding to different sample lengths) and (b)
as a function of α(`) for different temperatures. The onset
temperature for phonon-dominated scattering is taken to be
Tph ' 25 K. We determine the strength the charge impurity
as well as phonon resistivities, respectively through the hy-
drodynamicity parameters Γ2

imp = ρimp/ρel(T � TF ), and
Γ2

ph = ρph/ρel(T � TF ) (i.e. the ratio of the charge impu-
rity/phonon resistivities to the intrinsic Coulomb resistivity in
the non-degenerate regime, T � TF ). For the results in Figs.
4a and 4b we have taken Γimp = 0.01 and Γph = 3.

We observe that the Wiedemann-Franz law is violated in
two radically different ways, depending on whether we are in

the ambipolar (` � `D) or unipolar (` � `D) limit. While
in the former we observe a large enhancement of the Lorenz
ratio, in the latter we observe a moderate reduction. The
ambipolar limit is the situation realized in graphene systems
(see Fig. 1b), while the unipolar one occurs in compensated
semimetals as WP2 (see Fig. 1c). We stress that the large
enhancement of the Lorenz ratio cannot be explained with-
out taking into account strong electron-hole scattering in the
electric conduction channel.

Fig. 5 displays a 2D plot of L/L0 as functions of tempera-
ture and scaled sample length (`/`D). Based on the behavior
of the Lorenz ratio we identify a phase diagram of possible
transport regimes in a charge-neutral system. When T → 0
as well as for temperatures T & Tph, L/L0 → 1 resulting from
the disorder-limited transport in these regimes, i.e. impurity-
dominated at T → 0 and phonon-dominated at T & Tph). In
the hydrodynamic regime (0 . T . Tph), one can tune the WF
ratio from an enhancement when `� `D (bipolar condition)
to a reduction when `� `D (unipolar condition).

Fig. 5. 2D plot of the Lorenz ratio as a function of `/`D (sample length scaled
with the diffusion length) and T . Different transport regimes are indicated on the
figure. The onset temperature of phonons Tph = 25K and the hydrodynamicity
parameters Γimp = 0.01 and Γph = 3 were chosen to be the same as in Fig.
4. The enhancement of the Lorenz ratio (in the ambipolar hydrodynamic regime)
is relevant for graphene systems and is a consequence of electron-hole scattering,
which selectively enhances the electric resistivity. The reduced Lorenz number (in the
unipolar hydrodynamic regime) is relevant for compensated semimetals, where the
electron and hole bands are well separated in momentum space.
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Finally, we calculate the Seebeck coefficient according to
Eq. (17). For a symmetric electron-hole system (Qe = −Qh),
the Seebeck coefficient always vanishes at the charge neutrality
point, both in the absence and in the presence of disorder. Note
that in the intrinsic regime at perfect compensation, in which
momentum-non-conserving processes are absent, ρth,ambi = 0.
This in turn implies that ρth = α(`)ρth,uni and Q = Quni. In
this case, while the thermal resistivity depends on the system
size, the Seebeck coefficient is independent of it.

5. Outlook

The breakdown of the Wiedemann-Franz law, which results in
an anomalously large Lorenz ratio near the charge neutrality
has been recognized to occur in clean graphene samples and
has inspired a considerable amount of theoretical work. On the
contrary, experiments in three-dimensional semimetals such as
WP2 and antimony show a radically different result. Although
a phenomenology similar to that of graphene would naively be
expected, a puzzling reduced Lorenz ratio is observed at low
temperatures, when both electrons and holes form degenerate
Fermi liquids.

In this study, we have shown that this apparent contradic-
tion is explained by the completely different transport situa-
tions realized in the two systems: truly ambipolar transport in
graphene versus two independent channels of unipolar trans-
port in compensated semimetals. In contrast to graphene
and its bilayer, electron and hole pockets in compensated
semimetals are well distanced in momentum space, resulting
in a long recombination time. Since both electron and hole
currents must separately vanish at the contacts, this results
in a suppression of the bulk ambipolar conduction mechanism.
Effectively, electrons and holes behave as two independent and
decoupled Fermi liquid throughout the channel (a situation
analogous to unipolar transport).

The violation of the Wiedemann-Franz law in both the
ambipolar and unipolar transport regimes occurs in a tem-
perature window in which the so-called hydrodynamic regime
of transport is realized, i.e. when momentum-conserving col-
lisions among particles constitute the dominant scattering
mechanism (we note that in a Fermi liquid the WF law is sat-
isfied when disorder scattering dominates). We have presented
a simple theory for a general unipolar/ambipolar system and
demonstrated a crossover from ambipolar to unipolar con-
duction as a function of a weight function (related to the
electron-hole recombination time) which naturally leads to a
sample-size-dependent thermal conductivity as observed in
experiments. Although our theory has been presented for a
two-dimensional system, the results would qualitatively remain
valid for three-dimensional ones.
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Appendix

A. Explicitly accounting for momentum: the four-mode
theory

In this appendix we consider the general case in which the total
momentum, the conserved mode of hydrodynamic conduction,
does not coincide with either the electric, thermal or imbalance
currents. Given its importance in determining the transport
properties of the system, it is necessary to include it explicitly.
In the resulting four-mode description, the total momentum
is added to the list of currents flowing in the system. To
stress the fact that it is a zero mode of the resulting 4 × 4
resistivity matrix, i.e. a nontrivial vector with eigenvalue
zero, we will call the total momentum j0. A force F0 that
couples explicitly to it will also be included. The goal of
this appendix is therefore to show how the 4 × 4 resistivity
matrix that connects the four currents to the four fields can
be down-folded to obtain the 3 × 3 matrix of Eq. (8). We
will guide the reader through this process and show that the
determinant of the resulting resistivity matrix vanishes, as
stated in Sect. 3. This in turn implies that the zero mode,
although not explicit, is still included in the three-mode theory.
Therefore, no information about the physical implications of
the conservation of momentum is lost in the down-folding
process.

The derivation here parallels that given in Sect. 3. Fields
and currents are now related by the 4× 4 resistivity matrix ρ̂.
Explicitly,(

F0
|Fnsδ〉

)
=
(

ρ00 〈ρ0|
|ρ0〉 ρ̂nsδ

)(
j0
|jnsδ〉

)
. [23]

Here |jnsδ〉 = t(jn, js, jδ) and |Fnsδ〉 = t(−eE,−kB∂xT, Fδ),
ρ̂nsδ is a 3 × 3 block, and |ρ0〉 is a three-component vector.
The determinant of the 4× 4 matrix in Eq. (23) is

det(ρ̂) = det(ρ̂nsδ)
[
ρ00 − 〈ρ0|ρ̂−1

nsδ|ρ0〉
]
, [24]

and it is equal to zero since there is at least one nontrivial
vector with eigenvalue zero (i.e. the total momentum). Indeed,
if the system is prepared in a state such that only j0 6= 0,
the vector on the left-hand side of Eq. (23) is a null vector.
By assumption, the only zero mode is the momentum, so the
determinant of the 3× 3 block ρ̂nsδ is finite and such matrix
is therefore invertible. Thus, it must be that

ρ00 = 〈ρ0|ρ̂−1
nsδ|ρ0〉 . [25]

The property (25) plays a pivotal role in the following proof.
To down-fold the four-mode theory of Eq. (23) into the

three-mode one of Eq. (8) we need to apply the boundary
conditions on the momentum. Since no external field that
couples specifically to the momentum is applied, we will set
F0 = 0, while the momentum j0 is allowed to assume an

arbitrary value. The latter is determined by the values of
the electric and thermal currents and fields, as well as by the
boundary conditions imposed on the imbalance current. The
first line of Eq. (23) implies that

j0 = −〈ρ0|jnsδ〉
ρ00

. [26]

When this relation is substituted into the last line of Eq. (23)
we get

|Fnsδ〉 =
[
ρ̂nsδ −

|ρ0〉〈ρ0|
ρ00

]
|jnsδ〉 . [27]

The matrix in square brackets on the right-hand side of Eq. (27)
is the 3×3 resistivity matrix of Eq. (8). We now prove that its
determinant is zero. To do so, it is sufficient to show that there
exists a nontrivial vector |jnsδ〉 such that, when the matrix
acts on it, the result is exactly zero. It is easy to see that such
vector is ρ̂−1

nsδ|ρ0〉. Indeed, using the property (25), we have

|Fnsδ〉 =
[
ρ̂nsδ −

|ρ0〉〈ρ0|
ρ00

]
ρ̂−1
nsδ|ρ0〉

= |ρ0〉 −
|ρ0〉〈ρ0|ρ̂−1

nsδ|ρ0〉
〈ρ0|ρ̂−1

nsδ|ρ0〉
= 0 , [28]

which proves the assertion. Hence, the 3× 3 resistivity matrix
of Eq. (8) can be assumed to have determinant equal to zero
and to implicitly retain the information about the conservation
of momentum by electron-electron interactions.
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Interplay between two mechanisms of resistivity

A Kapustin and G Falkovich

(Dated: July 24, 2024)

Abstract

Mechanisms of resistivity can be divided into two basic classes: one is dissipative (like scattering

on phonons) and another is quasi-elastic (like scattering on static impurities). They are often

treated by the empirical Matthiessen rule, which says that total resistivity is just the sum of these

two contributions, which are computed separately. This is quite misleading for two reasons. First,

the two mechanisms are generally correlated. Second, computing the elastic resistivity alone masks

the fundamental fact that the linear-response approximation has a vanishing validity interval at

vanishing dissipation. Limits of zero electric field and zero dissipation do not commute for the

simple reason that one needs to absorb the Joule heat quadratic in the applied field. Here, we

present a simple model that illustrates these two points. The model also illuminates the role of

variational principles for non-equilibrium steady states.

1
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I. INTRODUCTION

This is a methodological note intended to explain the basic interplay between the two

mechanisms of resistivity using a simple model analyzed in more detail in [1].

Consider a classical particle that moves under the influence of a uniform force E in a

medium with the temperature T and randomly placed elastic scatterers. We denote the

momentum relaxation rate due to elastic scattering (averaged over all momenta) by ρe.

Finite temperature provides for additional momentum relaxation with the rate ν and for a

random force, which leads to diffusion in the momentum space with the diffusivity νT .

We define the resistivity ρ as a linear-response factor relating the mean momentum to

the force: p̄ = E/ρ. It is, thus, the mean relaxation rate of the momentum direction. An

empirical Matthiessen rule (M-rule) suggests that (see, e.g. [3])

ρ ≈ ν + ρe . (1)

Just how off is the estimate (1)? Below, we show that the rule is exact when the elastic scat-

tering is momentum-independent in two dimensions. We also compute ρ in two limits where

one or another mechanism dominates and show that the addition of another mechanism

generally enhances resistivity much more than the Matthiessen rule suggests.

It is also clear that computing the elastic contribution in the limit ν → 0 does not make

much sense since energy conservation requires

ν〈p2〉 = E · p̄ = E2/ρ . (2)

That means that the E2-corrections to the linear-response theory diverge as 1/ν; that is,

nonzero friction is necessary for the elastic resistivity to make sense. The behavior of the

nonequilibrium distribution function in this limit iss discussed in detail in [1]. On the

contrary, we show below that the validity interval of the linear-response theory expands as

1/ρe when ρe → 0.

II. THE BASIC EQUATION

Let us consider the simplest kinetic (Fokker-Planck) equation on the momentum distri-

bution f(p, t), which satisfies the equation:

∂f

∂t
=

∂

∂pi
(νpi − Ei)f + Tν∆f + Îf . (3)

2



The first term on the right is due to a constant force and linear friction. Random kicks from

the thermostat provide diffusion in the momentum space, described by the Laplacian. Let

us stress that the ν-terms is the simplest model of a thermostat; our classical consideration

only qualitatively corresponds to the scattering of quantum electrons on phonons. On the

other hand, it describes a variety of classical stochastic systems. The last term is a linear

operator Î describing elastic scattering.

Statistical isotropy of scattering means that the angular harmonics are eigenfunctions

of the scattering operator: Îfl = γlfl. Mean momentum and resistivity are determined by

the first-harmonic rate, which we denote γ1 = γ. It generally depends on p. One universal

limit is that of scattering by a small angle proportional to the time of interaction and

inversely proportional to p. For a finite-range scattering potential, the time is also ∝ 1/p

so that the deflection angle is 1/p2. The rate of meeting scatterers is proportional to the

momentum p. As a result, small-angle scattering leads to angular diffusion: Î = W
p3
∆Ω so

that γ = (d− 1)Wp−3 [2]. That typically occurs when the average momentum exceeds the

potential strength measured by W (proportional to the 2-point correlation function of the

potential [1]). For lower momenta, the scattering is by angles of order unity; the rate of

momentum loss in many such cases is proportional to the momentum itself or independent

of momentum. It is also instructive to consider power-law functions γ(p) ∝ pa with different

a.

For every momentum, two mechanisms have their scattering rates added according to

(3). The first-harmonic correction to f(p) is inversely proportional to the sum of the rates

for every momentum p. The conductivity is proportional to the correction integrated over

momenta (see e.g. [3]). The total resistivity (inverse conductivity) is then bounded by

ρ ≥ ν + ρe, where ρe = γ is the average of γ(p) over p. Only when both relaxation rates are

independent of momenta, we have the M-rule equality: ρ = ν+ ρe. Here we shall see that in

our case, it is enough that elastic scattering is momentum-independent for the Matthiessen

rule to hold.

The model is characterized by two dimensionless parameters, B = γ/ν and F = E/νT 1/2.

The first one determines the relative role of the two mechanisms of resistivity. The second

one characterizes the strength of the field.

Without the external force, E = 0, the equation has an equilibrium Maxwell isotropic

solution f0(p) ∝ exp(−p2/2T ), which is independent of ν. It realizes the maximum of

3



entropy S = −
∫

f log f dp for a given mean energy
∫

(p2/2)f dp.

Without scattering, Î = 0, the solution has a Gaussian form for arbitrary E since (3) has

a symmetry which shifts p and E simultaneously:

f0(p, θ) = (2π)−d/2 exp[−|p− E/ν|2/2T ] . (4)

The distribution (4) gives a linear current-field relation, 〈p〉 = E/ν, for any E. It also

realizes the entropy maximum under the condition of the energy production-dissipation

balance, ν〈p2/2〉 = E〈p〉. Indeed, it realizes the extremum of the functional
∫

f [− log f +

λ(νp2/2−pE)] dp. Even though (4) looks like a shifted equilibrium whose entropy does not

depend on E, it is a non-equilibrium state with energy dissipation and entropy production.

III. LINEAR RESPONSE AT WEAK ELASTIC SCATTERING

Let us describe the effect of scattering on the distribution and the linear resistivity in

the limit B = γ/ν → 0. Even though (4) is valid at arbitrary E, we could compute the

Î-corrections to it only in the limit F = E/νT 1/2 → 0. We assume f = f0(p) + f1(p, E) +

f2(p, E, γ), where f0 ∝ e−p2/2T and f1 = f0(pE/νT ) cos θ are given by (4). We assume

f1 ≫ f2 ∝ BF ∝ γE. Substituting it into (3) gives

∂

∂pi
Eif2 −

∂

∂pi
νpif2 − Tν

1

p

∂

∂p
p
∂f2
∂p

− Tν

p2
∆Ωf2 ≈ Îf1 = cos θγ(p)f0

pE

νT
. (5)

Since we are interested in the contribution of scattering to resistivity, we consider only the

first angular harmonic, f2 = f0χ(p) cos θ, which satisfies the equation

p
∂χ

∂p
− T

p

∂χ

∂p
− T

∂2χ

∂p2
+

T (d− 1)χ

p2
= −γ(p)

pE

ν2T
. (6)

For a general γ(p) ∝ pa, the solution has different asymptotics for large and small p: χ ∝
−pa+1E/(a+ 1)ν2T for p ≫ T and χ ∝ −Wpa+3E/[d− 1− (a+ 3)2]ν2T for p ≪ T . In this

case, one needs numerics to compute the solution and the correction to resistivity from weak

elastic scattering. Fortunately, for two specific (and physical!) values of a, the solution has a

simple power form, χ = bpc, where b, c are constants to be determined. Only solutions with

b < 0 make physical sense since the scattering must diminish the current. Action by the

first term in (6) gives −bνcpc cos θ. Action by the third term gives bνcpc−2[2p2 − cT ] cos θ.

Action by the fourth term gives b(d− 1)νTpc−2 cos θ. Then the equation (6) gives

bνcpc + bνpc−2T
[

d− 1− c2
]

= −γ(p)
pE

νT
. (7)
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Since the terms on the left have different powers of p, the power-law solution exists only

for c = 0 and c =
√
d− 1. The former case corresponds to the small-angle scattering when

Î = Wp−3∆Ω and γ(p) = (d− 1)Wp−3. In that case we get

f2 = − WE

(νT )2
f0 cos θ . (8)

The correction (8) diminishes the current and gives corrections to the conductivity and

resistivity:

σ =
1

ν

(

1− W

νT 3/2

)

, ρ ≈ ν +
W

T 3/2
. (9)

In the next section, we compute the elastic resistivity for small-angle scattering: ρe =

(d− 1)W
√
2π/32T 3/2. Comparison with that value shows that the Matthiessen’s rule, ρ =

ν + ρe, is quite off in the limit of weak elastic scattering. For d = 3 the W -addition to the

resistivity (9) is more than six times larger (and for d = 2 twelve times larger) than the

rule predicts since there is a strong positive correlation between the two mechanisms of the

momentum relaxation. Indeed, an angular scattering enhances the frictional relaxation of

the x-momentum by bringing more particles from other directions.

The case c =
√
d− 1 for d = 2 corresponds to γ independent of p:

f2 = −γpE

ν2T
f0(p) cos θ = −f1

γ

ν
, (10)

which gives the conductivity correction −γ/ν2 and the resistivity as follows:

ρ = ν + γ . (11)

We see that only for the momentum-independent scattering rate in two dimensions is the

Matthiessen’s rule valid. In this case, (11) is valid for arbitrary relation between γ and ν.

Indeed, the linear-response first angular harmonic is exactly equal to

f1 =
pE

(ν + γ)T
f0 cos θ . (12)

The terms we neglected are quadratic in E and contribute to the zeroth and second

harmonics. They can be accounted for in the next orders. The terms cubic in E contribute

to the third angular harmonic.

5



IV. LOW-FRICTION LIMIT

One may assume that in the limit ν → 0, T → 0 one can neglect the thermostat-related

terms and write:
∂f

∂t
+

∂

∂pi
Eif = Îf . (13)

Yet this equation does not have a steady state for the simple reason that the second term

pumps energy while the last one does not change it. Despite that, one can find the resistivity

within the linear response theory, assuming that f(p) = f0(p) + f1(p) +O(E2), where f0(p)

is isotropic and f1 ∝ E. Then for small-angle scattering we can write

∂

∂pi
Eif0 =

W

p3
∆Ωf1 . (14)

f1 = −E cos θ
p3f ′

0

(d− 1)W
(15)

Taking f0 = δ(p− p0), we obtain p̄ =
2p3

0
E

(d−1)W
, which gives the resistivity for a given energy

E0 = p20/2:

ρe(E0) =
(d− 1)W

2(2E0)3/2
. (16)

Resistivity at a fixed temperature is obtained by using f0 ∝ exp(−p2/2T ):

ρe(T ) =

√
2π(d− 1)W

32T 3/2
. (17)

Let us now account for small friction. The Matthiessen rule would predict just adding ν

to resistivity: ρ =
√
2π(d− 1)W/32T 3/2 + ν. Let us show that this is not the case. We look

for the correction in the form f = f0(p) + f1(p,W ) + f2(p,W, ν), where f0 ∝ e−p2/2T and

f1 = Ef0 cos θp
4/T (d− 1)W due to (15). Substituting into (3) and assuming f1 ≫ f2, we

obtain (for d = 3):

f2 = f1
ν(9pT − 2p3)

W
. (18)

Non-surprisingly, friction decreases the number of fast particles and increases the number of

slow ones. The resulting resistivity is as follows:

ρ =

√
2πW

16T 3/2
+ ν

630π

512
. (19)

For a general case of scattering by order-unity angles, we can simply put Îf1 = −γf1,

which gives f1 = f0E cos θ/γ. The elastic resistivity is simply γ and ρ = ν + γ.
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In compensated two-component systems in confined, two-dimensional geometries, nonlocal re-
sponse may appear due to external magnetic field. Within a phenomenological two-fluid framework,
we demonstrate the evolution of charge flow profiles and the emergence of a giant nonlocal pat-
tern dominating charge transport in magnetic field. Applying our approach to the specific case of
intrinsic graphene, we suggest a simple physical explanation for the experimental observation of
giant nonlocality. Our results provide an intuitive way to predict the outcome of future experiments
exploring the rich physics of many-body electron systems in confined geometries as well as to design
possible applications.

The trend towards miniaturization of electronic devices
requires a deeper understanding of the electron flow in
confined geometries. In contrast to the electric current
in household wiring, charge flow in small chips with mul-
tiple leads may exhibit complex spatial distribution pat-
terns depending on the external bias, electrostatic envi-
ronment, chip geometry, and magnetic field. Tradition-
ally, such patterns were detected using nonlocal transport
measurements [1–7], i.e. by measuring voltage drops be-
tween various leads other than the source and drain. De-
vised to study ballistic propagation of charge carriers in
mesoscopic systems, these techniques were recently ap-
plied to investigate possible hydrodynamic behavior in
ultra-pure conductors [8–12], where the unusual behavior
of the nonlocal resistance is often associated with viscos-
ity of the electronic system [13–17].

Nonlocal resistance measurements have also been used
to study edge states accompanying the quantum Hall ef-
fect [18–23]. While the exact nature of the edge states
has been a subject of an intense debate, the nonlocal
resistance, RNL, appears to be an intuitively clear con-
sequence of the fact that the electric current flows along
the sample edges and not through the bulk. Such a cur-
rent would not be subject to exponential decay [24] ex-
hibited by the bulk charge propagation leading to a much
stronger nonlocal resistance.

In recent years the focus of the experimental work on
electronic transport has been gradually shifting towards
measurements at nearly room temperatures [6, 8–10, 21].
A particularly detailed analysis of the nonlocal resistance
in a wide range of temperatures, carrier densities, and
magnetic fields was performed on graphene samples [21].
Remarkably, the nonlocal resistance measured at charge
neutrality remained strong well beyond the quantum Hall
regime, with the peak value RNL ≈ 1.5 kΩ at B = 12 T
and T = 300 K, three times higher than that at T = 10 K.

In this Letter, we argue that the giant nonlocality ob-
served in intrinsic graphene at high temperatures can be
attributed to the presence of two types of charge carriers

FIG. 1: Giant nonlocality in a compensated semimetal in
magnetic field. The arrows indicate the current flow and the
color map shows the electrochemical potential (see the main
text and Figs. 2 and 3 for specific parameters).

(electrons and holes): at the neutrality point, the two
bands (the conductance and valence bands) touch creat-
ing a two-component electronic system. Physics of such
systems is much richer than in their single-component
counterparts. Observed phenomena that are directly re-
lated to the two-band structure of the neutrality point
include giant magnetodrag in graphene [25, 26] and lin-
ear magnetoresistance [27, 28]. Both effects have been
explained within a phenomenological framework [26, 27]
allowing for a two-component (electron-hole) system cou-
pled by the external magnetic field. We generalize this
approach to investigate evolution of the spatial distribu-
tion of the electron current density in the experimentally
relevant Hall bar geometry. In sufficiently strong mag-
netic fields, the current density forms a giant nonlocal
pattern where the current is flowing not only in the bulk,
but also along the boundaries leading to strong nonlocal
resistance, see Fig. 1. Such patterns can be directly ob-
served in laboratory experiments using the modern imag-
ing techniques [29–31]. Tuning the model parameters to
the specific values available for graphene, we arrive at a
quantitative estimate of the nonlocal resistance [21].

To highlight the difference between the one- and two-
component systems, we briefly recall the macroscopic de-
scription of electronic transport in the standard (former)
case. Allowing for nonuniform charge density, the linear
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FIG. 2: Classical Hall effect in a one-component electronic
system. The current density (shown by the arrows) and the
electrochemical potential (shown by the color map) were ob-
tained from Eqs. (1) for a sample of the width W = 1µm and
length L = 4µm with the carrier density n = 1012 cm−2 at
the temperature T = 240 K and in magnetic field B = 0.2 T.

relation between the electric current J and the external
fields E, B could be formulated as [17, 32, 33]

r0J = E + rHeB×J +
1

eν0
∇n, (1a)

where e > 0 is the unit charge, ν0 is the density of states
(DoS), n is the carrier density, eB is the unit vector in
the direction of the magnetic field, and r0 and rH are the
longitudinal and Hall resistivities. Within the Drude-like
description, rH = ωcτr0 (ωc is the cyclotron frequency
and τ is the mean free path). The relation Eq. (1a)
is applicable to a wide range of electronic systems from
simple metals [34, 35] to doped graphene [11, 36]. The
transport coefficients r0 and rH could be treated as phe-
nomenological or could be derived from the underlying
kinetic theory [11, 32, 37].

In addition to Eq.(1a), the electric current satisfies the
continuity equation, which for stationary currents reads

∇·J = 0. (1b)

Charge density inhomogeneity induces electric field, so
that Eq. (1a) should be combined with the corresponding
electrostatic problem. Most recent experiments were per-
formed in gated structures, where the relation between
the electric field and charge density simplifies [27, 38]. In
two-dimensional (2D) samples

E = E0 −
e

C
∇n, (1c)

where C = ε/(4πd) is the gate-to-sample capacitance per
unit area, d is the distance to the gate, ε is the dielectric
constant, and E0 is the external field.

In a two-terminal (slab) geometry, solution of Eqs. (1)
is a textbook problem. In the absence of magnetic field,
the resulting electrochemical potential is governed by the
relation of the mean free path to the system size, exhibit-
ing either a flat (in short, ballistic samples) or linear (in
long, diffusive samples) spatial profile. Most recently,
these solutions were used as benchmarks in the imaging
experiment [29] and the numerical solution of the hydro-
dynamic equations in doped graphene [17]. In external

FIG. 3: Charge flow in compensated semimetals. Top: Ohmic
flow in the absence of magnetic field. Bottom: emergent non-
locality in weak magnetic field B = 0.2 T. The associated
potential on the sample boundaries grows with the increasing
field, see Fig. 1 for the pattern at B = 2 T. Stronger fields
expel the current from the bulk such that it flows along the
boundary.

magnetic field, the system exhibits the classical Hall ef-
fect, which in short samples is accompanied by nontrivial
current flow patterns [39].

In a four-terminal Hall bar geometry, the electric cur-
rent still fills the whole sample, but decays exponentially
[24] away from the direct path between source and drain.
The resulting flow pattern was calculated (in the context
of doped graphene) in Refs. [14, 15, 17]. In magnetic field,
the pattern gets skewed due to the classical Hall effect,
but exhibits no qualitatively new features, see Fig. 2.

Let us now extend the transport equations (1) to a
two-component system. Keeping in mind applications to
graphene, we re-write Eq. (1a) for the quasiparticles in
the conduction band (“electrons”) in the form

− je = eDνeE + ωcτje×eB +D∇ne, (2a)

where je is the electron flow density (carrying the electric
current Je = −eje) and νe is DoS. The “holes” (i.e., the
quasiparticles in the valence band) are described by

− jh = −eDνhE − ωcτjh×eB +D∇nh. (2b)

Here the electric current carried by the holes is Jh = ejh
and DoS may differ from that of electrons, νh 6= νe. For
simplicity, we assume that the the cyclotron frequency,
mean free time, and diffusion constant for the two bands
coincide (a generalization is straightforward, but doesn’t
lead to qualitatively new physics).

The total electric current in the two component system
is given by J = −ej, where j = je − jh. Introducing
also the total quasiparticle flow jI = je + jh, we find (cf.
Ref. [37])

j + eD(νe + νh)E + ωcτjI×eB +D∇n = 0, (3a)

jI + eD(νe − νh)E + ωcτj×eB +D∇ρ = 0, (3b)
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FIG. 4: Giant nonlocality in the Hall bar geometry. The sample has a width W = 1µm and length 8µm, with the distance
between contacts L = 5µm. The driving current is I = 0.1µA. The flow pattern was computed for B = 0.8 T, cf. Fig. 1.

where n = ne − nh is the carrier density per unit charge
(the charge density being −en) and ρ = ne + nh is the to-
tal quasiparticle density. The transport equations have
to be supplemented by continuity equations reflecting the
particle number conservation. The electric current satis-
fies Eq. (1b), but the total number of quasiparticles [40]
can be affected by electron-hole recombination processes
leading to a weak decay term in the continuity equation

∇·jI = −δρ/τR, (3c)

where δρ is the deviation of the quasiparticle density from
its equilibrium value and τR is the recombination time.

Under the assumption of electron-hole symmetry (e.g.,
at the charge neutrality point in graphene), νe = νh, we
recover the phenomenological model of Ref. [27]. In the
two-terminal geometry this model yields unsaturating
linear magnetoresistance in classically strong fields [28].

Now we analyze the behavior of the phenomenological
model (3) in the four-terminal Hall bar geometry. In
the absence of the magnetic field, the system exhibits
a typical Ohmic flow [14, 15, 17], see the top panel in
Fig. 3. Applying the field we find a qualitative change in
the flow pattern – the emergence of a boundary flow and
the associated electrochemical potential at the sample
edges. Increasing the field leads to the nonlocal pattern
growing until it fills the whole sample, see Figs. 1 and 4.
Stronger fields essentially expel the current from the bulk
with the charge flow being concentrated along the sample
boundaries, which leads to strong nonlocal resistance.

The nonlocal flow pattern emerging in magnetic field,
see Figs. 1, 3 and 4, has to be contrasted with the vor-
tices appearing in the viscous hydrodynamic flow (e.g., in
doped graphene [14, 15, 17, 41]). In the latter case, vor-
ticity appears due to the constrained geometry of the flow
and the particular boundary conditions [15, 17, 42]: ne-
glecting Ohmic effects, the solution of the hydrodynamic
equations can be obtained by introducing the stream
function, which obeys a biharmonic equation indepen-
dent of viscosity, which however affects the distribution
of the electrochemical potential. In contrast, within the
model (3) the “Ohmic” scattering represents the only
source of dissipation and hence cannot be omitted. One
can still introduce the stream function, but now it is de-
termined not only by the sample geometry, but also by

the Ohmic scattering and magnetic field. As a result,
the flow pattern does not exhibit vortices, unlike those
suggested recently for the hydrodynamic flow in intrinsic
graphene [41] (in the absence of magnetic field).

Nonlocal resistance in graphene subjected to external
magnetic field was studied experimentally in Ref. [21]. At
high enough temperatures where signatures of the quan-
tum Hall effect are washed out, strong (or “giant”) non-
locality was observed at the neutrality point. The effect
vanishes in zero field as well as with doping away from
neutrality. Both features are consistent with the model
(3): in zero field the model exhibits usual Ohmic flow
patterns, see Fig. 3, while at sufficiently high doping lev-
els the effects of the second band are suppressed – the two
equations (3a) and (3b) become identical showing the re-
sponse typical of one-component systems, see Fig. 2.

Having discussed the qualitative features of the charge
flow in two-component systems, we now turn to a quan-
titative calculation of nonlocal resistance in graphene.
Although the model (3) is applicable to any semimetal,
graphene is a by far better studied material with read-
ily available experimental values for model parameters.
Here we use the data measured in Refs. [8, 9, 21, 26, 43]
and theoretical calculations of Refs. [11, 12, 26, 37, 41].

DoS of the quasiparticles in graphene has been evalu-
ated in, e.g., Refs. [11, 12, 36, 37], and has the form

νe + νh = 2T /(πv2g), νe − νh = 2µ/(πv2g), (4)

where µ is the chemical potential, vg is the quasiparticle
velocity in graphene, and T = 2T ln[2 cosh(µ/2T )]. The
generalized cyclotron frequency is ωc = eBv2g/(cT ) and
the diffusion coefficient has the usual form D = v2gτ/2.
At charge neutrality, µ = 0 and T = 2T ln 2, while in the
degenerate regime T (µ� T ) = µ. The latter confirms
that all coefficients in Eqs. (3a) and (3b) become identi-
cal with doping. Similarly, the continuity equations (1b)
and (3c) should coincide in the degenerate regime. In
graphene this happens by means of the fast decay of the
recombination rate [26]. Close to neutrality we assume

τ−1
R = g2T/ cosh(µ/T ), (5)

where g is determined by the corresponding matrix ele-
ment. The above expression [26] reflects the exponential
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FIG. 5: Nonlocal resistance measured in the Hall bar geome-
try, see Fig. 4, as a function of carrier density. Top: Coulomb
scatterers; bottom: short-ranged impurities. The impurity
model parameters are chosen to represent the mobility at
n = 1011 cm−2 reported in Ref. [21]. The range of magnetic
fields and carrier densities as well as the distance to the gate
(d = 50 nm) is taken from Ref. [21], see Fig.2.

decay of the two-band physics away from charge neutral-
ity, which is responsible for the fast decay of RNL as a
function of carrier density [21], see Fig. 5. Finally, the
mean-free time, τ , in graphene is a non-trivial function of
temperature and carrier density [11, 12, 36, 43, 44], which
strongly depends on the model of the impurity potential
[45–50]. However, these dependencies are typically not
exponential and hence do not affect the exponential de-
cay of the nonlocal resistance.

In Fig. 5 we demonstrate the decay of RNL for two im-
purity models – the Coulomb scatterers and short-ranged
impurities – showing nearly identical behavior. Such ro-
bustness of the model (3) with respect of the functional
dependence of the mean free time justifies the inaccuracy
of our description of electronic transport in graphene,
where close to charge neutrality the resistivity is strongly
affected by electron-electron interaction. The data shown
in Fig. 5 were obtained by solving Eqs. (3) in the Hall

bar geometry of Fig. 4 using the estimate [41] for the re-
combination length scale, `R = vgτR ≈ 10µm (a previous
calculation of Ref. [26] put it at a smaller value 1.2µm),
which leads to similar results for the nonlocal resistance,
but with a smaller peak value at charge neutrality.

The results for RNL shown in Fig. 5 are extremely sim-
ilar to those reported in Ref. [21] with the exception of
the values at neutrality, which are grossly exaggerated.
There are several reasons for this behavior. Firstly, by
ignoring the effects of electron-electron interaction, we
strongly underestimate the usual resistivity of intrinsic
graphene. Secondly, we ignore viscous effects. Further-
more, DoS in real graphene never really vanishes “at neu-
trality” due to electrostatic potential fluctuations [51].
As a result, the minimal carrier concentration is often as
high as 1010cm−2, essentially cutting off the lower den-
sity range around the peak in Fig. 5. Finally, Eq. (5) is
a rather crude estimate that needs to be improved.

To conclude, we have argued that the observed giant
nonlocality in neutral graphene in non-quantizing mag-
netic fields at relatively high temperatures observed in
Ref. [21] is a direct consequence of the two-band nature
of the quasiparticle spectrum in graphene. As such, this
effect is not specific to graphene and should be observ-
able in any compensated two-component system. Our
theory does not involve spin-related phenomena includ-
ing the effect of Zeeman splitting invoked in Ref. [21].
The latter should be independent of the field direction,
however, the effect was not observed in the nearly par-
allel field studied in Ref. [51]. Assuming the g-factor
to be equal to 2, we estimate the Zeeman splitting
as Ez ≈ 0.35 meV≈ 4 K at B = 10 T. The correspond-
ing residual quasiparticle density (at T = 0) is given by
ρQ = E2

z/(4πv
2
g) ≈ 2.2× 106 cm−2. As a result, we ex-

pect the effects of Zeeman splitting to be observable at
temperatures and carrier densities much lower than those
typical to nonlocal measurements discussed here.

With material-specific parameters, our phenomenolog-
ical model is capable of a quantitative description of the
effect. For graphene, a more precise calculation involv-
ing solution of the full system of hydrodynamic equations
near charge neutrality is required to reach perfect agree-
ment with the data, however the present approach shows
that the effect is more general and does not require ad-
ditional assumptions of electronic hydrodynamics.
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Abstract

In this work we consider the hydrodynamic behavior of a coupled electron-phonon fluid, focusing on elec-
tronic transport under the conditions of strong phonon drag. This regime occurs when the rate of phonon
equilibration due to e.g. umklapp scattering is much slower than the rate of normal electron-phonon colli-
sions. Then phonons and electrons form a coupled out-of-equilibrium state where the total quasi-momentum
of the electron-phonon fluid is conserved. A joint flow-velocity emerges as a collective hydrodynamic vari-
able. We derive the equation of motion for this fluid from the underlying microscopic kinetic theory and
elucidate its effective viscosity and thermal conductivity. In particular, we derive decay times of arbitrary
harmonics of the distribution function and reveal its corresponding super-diffusive relaxation on the Fermi
surface. We further consider several applications of this theory to magneto-transport properties in the Hall-
bar and Corbino-disk geometries, relevant to experiments. In our analysis we allow for general boundary
conditions that cover the crossover from no-slip to no-stress flows. Our approach also covers a crossover
from the Stokes to the Ohmic regime under the conditions of the Gurzhi effect. In addition, we consider the
frequency dependence of the surface impedance and non-equilibrium noise. For the latter, we notice that
in the diffusive regime, a Fokker-Planck approximation, applied to the electron-phonon collision integral in
the Eliashberg form, reduces it to a differential operator with Burgers type nonlinearity. As a result, the
non-equilibrium distribution function has a shock-wave structure in the energy domain. The consequence
of this behavior for the Fano factor of the noise is investigated. In conclusion we discuss connections and
limitations of our results in the context of recent electron-phonon drag measurements in Dirac and Weyl
semimetals, and layout directions for further extensions and developments.

Keywords: Electron-phonon scattering, drag viscosity, superdiffusion, magnetotransport, noise
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A.2 Detailed calculation of the electron-phonon drag viscosity . . . . . . . . . . . . . . . . . . 26
A.3 Detailed calculation of the electron-phonon drag thermal conductivity . . . . . . . . . . . 28
A.4 Spectral properties of the collision integral and super-diffusion on a Fermi surface . . . . 29

1. Introduction and motivation

Hydrodynamic effects of electronic transport in quantum materials are of significant current interest
in condensed matter physics; see reviews [1, 2] and references therein. Various transport measurements
in electrostatically defined wires in the two-dimensional electron gas in Ga(Al)As hetero-structures [3–
7], monolayer and bilayer graphene [8–15], quasi-two-dimensional delafossite metals PdCoO2 and PtCoO2

[16–18], Dirac semimetal PtSn4 [20, 21], type-II Weyl semimetal tungsten phosphide WP2 [22, 23], and
antimony Sb [24], provided substantial evidence for viscosity-dominated electronic response. Recently, direct
imaging techniques, employing scanning gate microscopy [25, 26], a nanotube single-electron transistor
[27], and quantum spin magnetometry realized with nitrogen vacancy centers in diamond [28, 29], revealed
signatures of the Poiseuille profile of electron flow in narrow graphene channels and mesoscopic Ga(Al)As.
While experimental findings of electronic hydrodynamics in solid-state systems are mounting, the conceptual
questions remain in particular in regard to different microscopic scattering mechanisms that govern transition
to the hydrodynamic regime in different materials, and how they manifest in transport coefficients.

Hydrodynamic	electron-phonon	drag	flow	with	velocity	u(r)

𝒖(𝒓)

Figure 1: [Left panel]: When the total momentum of an interacting electron-phonon system decays slowly, a coupled out-
of-equilibrium state – the electron-phonon fluid – emerges. As a result, a joint flow-velocity u (r) emerges as a collective
hydrodynamic variable. Such a state displays viscous flow, super-diffusion in phase space and gives rise to shock-wave phenom-
ena in the energy domain. In the figure we indicate the flow of the coupled electron wave and the moving ions that indicate
the spread of acoustic waves. [Right panel]: Swirling magneto-flow profile of u (r) for a Corbino disc in an applied magnetic
field, discussed in Section 3.3.

Typically the description of electronic conduction processes in solids requires a kinetic theory that is based
on the formalism of the Boltzmann equation [30–32]. In this framework, microscopic scattering processes of
momentum and energy relaxation are captured by collision terms between electrons and impurities, phonons
or other relevant excitations. The electrical and thermal conductivities are then related to these microscopic
length and time scales for momentum and energy relaxation. In contrast, a hydrodynamic description
relies on the existence of locally conserved quantities. In this regime momentum and energy conserving
electron-electron (ee) collisions are frequent and occur on shortest length and time scales. In this picture,
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the resistance, for example, can be related to the electronic viscosity and the thermal conductivity [33–
35]. More generally, for conductors in which the underlying electron liquid lacks Galilean invariance the
resistivity is determined by the entire thermoelectric matrix of the intrinsic kinetic coefficients [36–40].

Since electronic scattering lengths are strongly temperature dependent and highly sensitive to the type
of scattering, one often argues that the hydrodynamic regime sets in at intermediate temperatures. In-
deed, at lowest temperatures when the electron-electron and electron-phonon scattering mean free paths
diverge, the electronic momentum is relaxed by scattering with impurities and boundary inhomogeneities.
At higher temperatures, when phonon excitation branches are activated, electron-phonon scattering is the
main mechanism that relaxes both momentum and energy of the electronic system. In between these two
limits, and provided samples of sufficient purity, there is a range of temperatures where the electron fluid
attains local equilibrium on the length scale of electron-electron collisions, which is short compared to the
scales at which the conservation laws break down. Then the dynamics of the electron fluid can be treated
hydrodynamically. This is certainly the scenario that occurs in graphene [1, 2, 41, 42] and perhaps very
high mobility semiconductor hetero-structures of moderately-strongly correlated electrons at low densities
[6, 43].

The above assertion that electron-phonon scattering is destructive for establishing electronic hydrody-
namic regime by relaxing electronic momentum relies on a crucial assumption that the phonons are in
thermal equilibrium. This transport situation has been considered in multiple works and much is known
about momentum and energy relaxation rates from the solution of the Boltzmann equation, see for example
Refs. [44–47]. Recently detailed ab initio calculations provided firm results for the relevant electron-phonon
scattering processes in semimetals accounting for complexities of their Fermi surfaces and microscopic de-
tails of electron-phonon coupling [48]. However, it was pointed out by Peierls [49] early on that in fact
the non-equilibrium nature of the current-carrying electronic distribution should lead, through electron-
phonon scattering, to a phonon distribution that is also out of equilibrium. As a consequence, the total
quasi-momentum of a combined electron-phonon systems would be conserved in the absence of umklapp
processes. The electrons and phonons would then drift along together, maintaining their nonzero crystal
momentum and also a nonzero current, see Figure 1 for the schematic illustration. The drift velocity can be
treated as an emergent hydrodynamic soft mode whose relaxation occurs at the longer time scale of umklapp
scattering due to phonon nonlinearities or assisted by scattering with electrons.

The transport theory of this phonon drag effect was developed by Gurevich in the context of thermo-
electric phenomena [50]. Later Gurzhi [51], Nielsen and Shklovskii [52], and Gurevich and Shklovskii [53],
and Gurevich and Laikhtman [54] put forward hydrodynamic description of phonons in dielectrics and cou-
pled electron-phonon liquids in metals and semiconductors (see also a detailed review [55]). Of particular
relevance to our work, Steinberg [56] and Gurzhi and Kopeliovich [57] considered the problem of electric
conductivity of pure metals with an account of phonon drag. The electron viscosity was determined in
Ref. [56], while Ref. [57] analyzed the case of a metal with open Fermi surface consisting of large electron
(or hole) groups interconnected arbitrarily by a narrow necks. In this situation the dominant cause of the
low-temperature resistance is due to umklapp events occurring in collisions between electrons and phonons
which remains effective down to lowest temperatures. Because of the kinematic constraints of momentum
and energy conservations in scattering, the change of electron momentum in each act of collision is small
and scattering occurs preferentially at small angles. As a result, electrons effectively diffuse in momentum
space. This enables one to reduce the full kinetic equation to a form of a Fokker-Planck type and account for
umklapp processes by imposing periodic boundary conditions on the non-equilibrium distribution function.

In this work, we in large parts develop alternative derivations of the classic works [56, 57], which allow us
to make extensions or draw additional conclusions for the behavior of electron-phonon fluids. For example,
we consider a complimentary scenario of a Peierls mechanism of umklapp scattering mediated by phonon-
phonon collisions. The rate of these processes is exponential in temperature whereas the rate of normal
electron-phonon collisions is a power-law. The interplay between the two leads to a pronounced peak in
the temperature dependent thermopower that can be observed as one lowers the temperature. This feature
is considered as one of the hallmarks of strong electron-phonon interactions as recently seen in semimetals
[20, 21]. Even though we face similar technical aspects of the problem as was already considered in Refs.
[56, 57], we perform a somewhat different route to analyze the problem. We do not expand the collision
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integrals in the limit of small momenta but rather choose to work directly with the fully coupled collision
integrals. While it will not be possible to solve these equations analytically, it is nevertheless possible to
extract the main qualitative predictions from them in particular with regard to the temperature dependence
of the drag viscosity and thermal conductivity of the coupled electron-phonon fluid. Furthermore, we believe
that our approach may be more suitable if one wants to quantitatively describe realistic materials with a
more complex shape of the Fermi surface. The rich physics that emerges if one includes such effects and
anisotropies of the underlying crystal was recently elucidated in Refs. [58, 59].

Candidate materials for electron-phonon fluid behavior are clearly the delafossite metals PdCoO2 and
PtCoO2 [16–18]. The temperature dependence of the bulk resistivity observed in Ref. [19] is fully consistent
with phonon-drag behavior, i.e. inelastic scattering at low T has an exponential temperature dependence,
rather the Bloch-Grüneisen behavior ρ ∝ T 5 that occurs without phonon drag. In addition, hydrodynamic
flow always requires strong momentum-conserving collisions. If collisions in the delafossite metals would
be due to electron-electron scattering, their large Fermi surface would immediately give rise to equally
strong umklapp processes. Hence, it seems that these systems have weak electron-electron scattering but
are governed by electron-phonon scattering with phonon drag. In addition, evidence for electron-phonon
fluid behavior was reported for the semimetal PtSn4 [21], another material that displays very low resistivity
at low temperatures and shows a pronounced phonon drag peak in the low temperature thermopower [20].

The remainder of the paper is organized as follows. In Sec. (2) we formulate the generic kinetic the-
ory of coupled integro-differential equations for non-equilibrium distributions of electrons and phonons.
We linearize these equations and study parity properties of the collision kernel. We also estimate rates
of electron-phonon and phonon-electron collisions. Even though they originate from the same matrix ele-
ments, the respective mean free paths are parametrically different due to distinct phase space restrictions for
fermions and bosons. As a methodological exercise, we illustrate how Bloch’s law for the electron-phonon
resistivity follows from the solution of the integral Boltzmann equation when phonons are taken at equilib-
rium, and discuss how this solution is violated when complete dragging of phonons is imposed. Analyzing
the conservation laws of the problem, we demonstrate how a joint drift velocity of the coupled electron-
phonon system emerges as hydrodynamic variable, even though both constituents of the fluid have vastly
different quasiparticle velocities. We finally consider a partially equilibrated case of phonon drag with rare
momentum relaxing collisions and derive the hydrodynamic equation of motion for the flow of the coupled
electron-phonon liquid. This analysis reveals the intrinsic viscosity and thermal conductivity in the drag
regime. In Sec. (3) we apply this hydrodynamic description to several practical examples of viscous resistive
effects and the Gurzhi effect in particular [60]. We consider flows in different geometries of a Hall bar, a
quantum wire, a Corbino disk, and allow for boundary conditions with arbitrary slip length that enables us
to cover the crossover from no-slip to no-stress regimes. We also consider effects of a magnetic field, and the
Hall viscosity, in particular for the viscous magnetoresistance and study finite-frequency responses in the
context of the skin effect. Lastly we briefly touch upon the non-equilibrium thermometry of electron-phonon
collisions via shot noise in the diffusive regime. We summarize our findings in Sec. (4) and discuss open
questions and directions for future research. Various technical calculations are delegated to several sup-
plementary appendices that expand on properties and methods of analysis of the electron-phonon collision
operator.

2. From kinetic to hydrodynamic theory

2.1. Electron-phonon interaction

In many practical situations and for a broad range of temperatures, the electron-phonon interaction
is dominated by processes with single-phonon emissions or absorptions [30]. Two-phonon processes could
become important when one-phonon processes are forbidden or suppressed by the conservation laws or by
symmetry restrictions for the transition matrix elements [32]. We restrict our attention to single-phonon
processes exclusively. Furthermore, we will treat only the situation of scattering by long-wavelength acoustic
phonons with a single electronic band.

4



For spatially inhomogeneous and time-dependent conditions the coupled kinetic equations for non-
equilibrium electron n(p, r, t) and phonon N(q, r, t) distribution functions read (hereafter ~ = kB = 1):

∂n

∂t
+ v

∂n

∂r
+ evE

∂f

∂ε
= Step{n,N}+ Stei{n}, (2.1)

∂N

∂t
+ s

∂N

∂r
= Stpe{n,N}+ StNpp{N}+ StUpp{N}. (2.2)

Here v = ∂pε and s = ∂qω are electron and phonon group velocities, and E is an external electric field. A
finite magnetic field or temperature gradient will be added later in the text when we consider applications
where this becomes necessary. In the steady-state regime the explicit time derivatives on the left hand sides
vanish. In equilibrium, the fermionic and bosonic distributions are the usual Fermi-Dirac and Bose-Einstein
functions

fε = [exp[(εp − εF )/T ] + 1]−1, bω = [exp(ωq/T )− 1]−1. (2.3)

The primary focus of our attention will be the electron-phonon (Step) and phonon-electron (Stpe) collision
integrals. The other terms such as electron-impurity Stei, and phonon-phonon collisions, both normal type
via phonon nonlinearities StNpp and umklapp type StUpp, are kept for generality but their explicit forms will
not be needed.

The electron-phonon collision integral consists of two contributions corresponding to emission and ab-
sorption of a phonon:

Step{n,N} =

∫
q

W (p|p′q)δ(εq − εp′ − ωq)[np′(1− np)Nq − np(1− np′)(1 +Nq)]

+

∫
q

W (pq|p′)δ(εp + ωq − εp′)[np′(1− np)(1 +Nq)− np(1− np′)Nq]. (2.4)

These two terms take care of the out-scattering and reverse in-scattering processes. In equilibrium the
difference between these processes is nullified as dictated by the detailed balance condition. The momentum
conservation in the first term implies p = p′+q+g, while in the second p+q = p′+g where g is reciprocal
lattice vector. The phonon-electron collision integral counts the overall difference between the number of
phonons emitted by electrons with momenta p, as allowed by the conservation laws, and number of phonons
absorbed by electron with momenta p′:

Stpe{n,N} = 2

∫
p

W (p|p′q)δ(εq − εp′ − ωq) [np(1− np′)(1 +Nq)− np′(1− np)Nq] . (2.5)

A factor of two accounts for the electron spin in these processes, and momentum conservation is implicit and
fixes the momentum p′. At the level of the leading Born approximation, the probabilities of scattering for
direct and reverse processes are equal to each other W (p|p′q) = W (pq|p′). Furthermore, for the deformation
potential interaction and in the long-wavelength limit, the transition probability is linearly proportional to
phonon momentum W ∝ |q|. In what follows, we will concentrate on low-temperature processes below the
scale of Debye energy, namely T < ωD.

2.2. Linearized collision kernels and scattering rates

In general, it is not possible to solve the coupled nonlinear Boltzmann equations (2.1) and (2.2). An
analytical analysis is often restricted to the linear-response regime and uses solely the linearized form of the
collision terms. For this purpose we assume that the distribution functions are close to their equilibrium
expressions with small corrections n = f + δn and N = b + δN . To determine the collision terms in Eqs.
(2.4) and (2.5) up to linear order in non-equilibrium corrections, it is customary to parametrize them as
follows

δn = f(1− f)ψ = −T ∂f
∂ε
ψ, δN = b(1 + b)φ = −T ∂b

∂ω
φ. (2.6)
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This form of δn and δN makes it convenient to employ the detailed balance conditions under the integral.
In addition, the expression for the entropy production in the system becomes a symmetric quadratic form
in terms of ψ and φ, which is very useful for the variational formulation of the Boltzmann equation.

We begin with Stpe in Eq. (2.5) as it is simpler in structure, but the same sequence of steps will apply to
the remaining collision terms. We follow the presentation given in Ref. [30] including the notation. In the
brackets of Eq. (2.5) that account for statistical occupations we take out the product (1−np)(1−np′)(1+Nq)
and then perform a variation of this expression with respect to the equilibrium state, which gives

δ Stpe{n,N} = 2

∫
p

W (p|p′q)δ(εq − εp′ − ωq)(1− fεp)(1− fεp′ )(1 + bωq )δ

[
np

1− np
− np′

1− np′
Nq

1 +Nq

]
.

(2.7)

Next we observe that

δ

(
n

1− n

)
=

δn

(1− f)2
=

f

1− f
ψ, δ

(
N

1 +N

)
=

δN

(1 + b)2
=

b

1 + b
φ, (2.8)

and use well-known properties between equilibrium Fermi and Bose functions (also making use of the energy-
conserving delta function):

fεp(1− fεp−ωq ) = [fεp−ωq − fεp ]bωq , fεp−ωq (1− fεp) = [fεp−ωq − fεp ](1 + bωq ). (2.9)

As a result we find

δ Stpe{ψ, φ} = 2

∫
p

K−(p, q) [ψp − ψp′ − φq] (2.10)

with the kernel
K∓(p, q) = W (p|p′q)bωq (1 + bωq )[fεp∓ωq − fεp ]δ(εq − εp′ ∓ ωq). (2.11)

In complete analogy we find for the linearized version of Eq. (2.4) the following expression

δ Step{ψ, φ} =

∫
q

K−(p, q) [ψp′ − ψp + φq]−
∫
q

K+(p, q) [ψp′ − ψp − φq] . (2.12)

The important property of these collision kernels is that they preserve the parity q → −q or p → −p of
the distribution functions. It then follows that even and odd modes of the non-equilibrium distributions are
decoupled and relax on parametrically different time scales. To see this explicitly let us estimate these rates
from Eqs. (2.10) and (2.12). The form of the out-scattering term in each of the linearized kernels suggests
introducing the following rates:

Γpe(T ) =

∫
p

K(p, q) ∼ λep
s

vF
T, Γep(T ) =

∫
q

K(p, q) ∼ λep
T 3

ω2
D

. (2.13)

We suppressed here plus/minus subscript in K(p, q) as phonon absorption and emission processes have the
same kinematics. Here, λep = 2D0pF /(svF ) is the dimensionless electron-phonon coupling constant while
D0 is a constant related to the deformation potential. In what follows we estimate the given, rather distinct,
T -dependencies of these two rates.

At low temperatures below the scale of the Debye temperature, T � ωD, we have ωq ∼ T and εp−εF ∼ T ,
so that fε ∼ bω ∼ 1. Furthermore, the typical scale of the phonon momentum is q ∼ T/s, which is small
compared to electronic momentum pF , where s is the sound velocity. For this reason, the delta-function in
the kernel of the collision term can be simplified δ(εp ± ωq − εp′) ≈ 1

vF q
δ(cos θpq ± s/vF ). Since s/vF � 1

it is clear that θpq ∼ π/2 so that the phonon propagates in a direction that is almost perpendicular to the
direction of the electronic momentum. In the phonon-electron scattering rate, the momentum d3p integration
is taken over the volume of a layer with thickness ∼ T/vF along the Fermi surface, so that

∫
p
→ ν

∫
dεdΩ

where the solid angle is dΩ = 2π sin θdθ and ν is the density of states at the Fermi level (ν = mpF for a
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3D metal with spherical Fermi surface). The angular average brings a factor 1/(vF q) ∼ s/(TvF ) from the
delta function. Another factor of T comes from dε and another T from ωq in the scattering probability
W ∼ D0(ωq/ωD). As a result Γpe ∼ D0ν(s/vF )(T/ωD). The electron-phonon relaxation rate is estimated
in exactly the same fashion, the only difference is that the integration goes over the phase space of a phonon
such that

∫
q

gives a factor (T/s)3. Combined with the factor 1/(vF q) from the delta function, and a factor

ωq/ωD from the scattering probability, this gives Γep ' D0T
3/(vF s

2ωD). The rate Γep defines the typical
relaxation scale for even modes e.g. the energy relaxation. With the above given definition of λep this yields
our estimates for the distinct relaxation rates of electrons and phonons given in Eq. (2.13).

The electronic momentum is relaxed on a different scale. This is not immediately clear from the form of
Γep itself but rather dictated by kinematic considerations. Indeed, during a given scattering event, the angle
between the momenta of the incoming and outgoing electron is small, θpp′ ∼ q/pF ∼ T/ωD, and the change
in electron momentum is δp ∼ q2/pF � pF . Thus electrons effectively diffuse in momentum space. We can
easily estimate the corresponding diffusion coefficient B from the Einstein relation δp2 ∼ Bτ , where τ ∼ Γ−1ep

is the typical time scale between two consecutive collisions. This gives for B ∝ T 5. The corresponding mean-
free time for momentum relaxation, namely the time needed to change the momentum from to its initial
value, is then τ−1ep ∼ B/p2F ∼ ωD(T/ωD)5. We can estimate the frequency of collisions of phonons with
electrons in the same manner, we only need to account for the ratio between the number of electrons and
the number of phonons in the region of Fermi function smearing which is of the order ∼ (T/εF )(T/ωD)−3.
This implies the collision frequency per phonon occurring with the rate τ−1pe ∼ ωD(T/εF ). Hence, phonons
are short-lived compared to electrons which can, for example, be used as a justification to integrate out the
lattice degrees of freedoms as fast intermediate excitations. Such phononic states are therefore tied to the
out-of-equilibrium dynamics of the electrons.

2.3. Bloch law and its violation under complete drag

As a first step in our analysis, it is useful to revisit the solution of the linearized Boltzmann equation
for the case of equilibrium phonons (namely neglecting the drag effect). This computation contains all the
technical elements that appear in the general calculation and is helpful methodologically. When phonons
are assumed to be in equilibrium, we can set φq to zero in the linearized collision integral δ St{ψ, φ} of Eq.
(2.12). Thus we are looking for a solution of the following linear integral equation

evE
∂f

∂ε
=

∫
q

K−(p, q) [ψp′ − ψp]−
∫
q

K+(p, q) [ψp′ − ψp] . (2.14)

The fact that the left-hand-side is odd in momentum and that kernels preserve the parity of the function
tells us that ψp must be odd as well. Since Ev contains only one (first) spherical harmonic we chose a trial
solution of the form

ψp =
evEτD
T

χ(ηp), ηp = (εp − εF )/T, (2.15)

where time τD is introduced to have correct dimensionality which happens to be the characteristic relaxation
time of electron-phonon collisions at T ∼ ωD. The terms with ψp and ψp′ have different angular structure
because the electric field has to be projected onto the initial or final momentum respectively. To resolve
this difficulty we proceed as follows. Let us choose the integration z-axis in momentum space to be along
the initial momentum p. Then in the terms ψp′ ∝ (p′E)χ(ηp′) we can rewrite p′E = p′zEz + p′⊥E⊥ which
implies an angular decomposition

cos θp′E = cos θpp′ cos θpE + sin θpp′ sin θpE cosϕp′E (2.16)

where ϕp′E is the angle between projections of p′ and E on the plane perpendicular to the direction of p.
Note that conservation of momentum and energy fixes the relationship between the angles θpp′ and θpq.
Upon integration over the angle ϕp′E the second term vanishes since we have assumed that kernels K±
are isotropic and χ(ηp) does not depend on the direction of momentum by construction. As a result, we
accumulate an extra term ∝ cos θpp′ ≈ (1−θ2pp′/2) in the differential scattering cross-section. This is noting
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else but the usual angular factor in the transport scattering time. After the angular part of the integration
is done, the integration over the absolute value of momentum q can be brought to a dimensionless form.
Combining contributions from both K− and K+, we arrive at

cosh−2(η/2) ' −ϑ3D
∫
η′
K0(η, η′)χ(η′) + ϑ3DϑF

∫
η′
K1(η, η′)χ(η′) + ϑ5D

∫
η′
K2(η, η′)χ(η′), (2.17)

where ϑD = T/ωD, and ϑF = T/εF , while

Kk(η, η′) = (η − η′)kK(η, η′) (2.18)

for k = 0, 1, 2 and also

K(η, η′) =
(η − η′)2

(1 + e−η)(1 + e−η′)|eη − eη′ |
. (2.19)

The semi-equality sign ' in above equation (2.17) implies that we kept the main parametric and functional
dependences on the right-hand-side, but we suppressed all the numerical pre-factors of the order of unity in
each of the three terms. Retaining these numerical factors will be done in Appendix A.1. Without the last
two terms in Eq. (2.17) this equation has no solution for χ(η). This is the consequence of the symmetry of
the kernel and the fact that uniform solution is not orthogonal to the left hand-side which is easy to check.
The solution can be then found by perturbation theory treating the last two terms as corrections. The term
with K1 does not contribute to the leading order, as it is odd, while the second term gives

χ(η) = c/ϑ5D (2.20)

with the constant c is determined by the double integral c−1 = 1
4

∫∫
K2(η, η′)dηdη′. With this solution at

hand we can compute the electrical current

j =
e2τD
T

∫
p

v(vE)fηp(1− fηp)χ(ηp) = σBE, (2.21)

with σB = ne2τ1/m, and τ−11 ∼ λepT
5/ω4

D, where dimensionless coupling constant of the electron-phonon
interaction λep was introduced earlier in the text below Eq. (2.13). An alternative derivation of the above
formula based on the variational analysis of the functional corresponding to the Boltzmann equation (2.14)
is presented in Appendix A.1. This approach rather easily allows to fix the numerical pre-factor in σB and
can be naturally generalized for the calculation of other kinetic coefficients, such as thermal conductivity
for example.

As the next methodological step, it is instructive to investigate an opposite extreme limit of complete
drag when the non-equilibrium electronic and bosonic distributions are locked together. For this case we
need to solve two coupled equations

evE
∂f

∂ε
= δ Step{ψ, φ}, δ Stpe{ψ, φ} = 0. (2.22)

From the second of these equations we can find bosonic function explicitly as an integral over the fermionic
function [see Eq. (2.10)]

φq =
1

Γpe

∫
p

K−(p, q) [ψp − ψp′ ] (2.23)

and insert it back into the first equation. Then repeating all the same steps as above we obtain instead of
Eq. (2.17)

cosh−2(η/2) ' −ϑ3D
∫
η′
K0(η, η′)χ(η′) + ϑ5D

∫
η′

[K2(η, η′)−Kd(η, η
′)]χ(η′), (2.24)

where a contribution with ϑF was omitted for brevity as it only gives a sub-leading corrections. The crucial
new piece is the drag kernel which has the following form

Kd =
1

2(eη + 1)

∫
ζ

|ζ|3 eζ + 1

eζ + e−η
eη
′

(eη′ + e−ζ)(eη′ + eζ)
. (2.25)
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It can be shown that
∫

[K2 − Kd] = 0 where the integration could be either over η or η′. We can now
integrate both sides of Eq. (2.24) over η to demonstrate that it has no solution. Physically this is the regime
of infinite conductivity that can only be stabilized by momentum-relaxing collisions.

2.4. Super-diffusive dynamics in phase space

The same technique that we used to analyze the resistivity can be applied to determine the viscosity, as
we show in the subsequent section. The scattering time τ1 listed below Eq. (2.21) is basically τep discussed
earlier. The subscript l = 1 was introduced to emphasize that this time corresponds to the relaxation of a
particular harmonic of the distribution function. We will determine below the viscosity that is determined
by a parametrically similar time scale but that corresponds to a relaxation of the different harmonic l = 2.
In Appendix A.4 we analyze in some detail the relaxation τl of arbitrary l by performing the angular
momentum expansion of the collision term. We obtain

τ−1l =

 l (l + 1) 240ζ (5)λepT
5/ω4

D if T � ωD/l
24ζ (3)λepT

3/ω2
D if ωD/l� T � ωD

(1− δl,0) (2− δl,1)λepT if T � ωD

(2.26)

where the intermediate regime only exists at large l. One has to be careful with the behavior above the
Debye energy as we neglected drag corrections in the source terms and collision integrals that might correct
for the numerical coefficient 2λep for l ≥ 2.

These results tell us that at lowest temperatures or for small angular momentum the collision operator

can be written as an angular Laplacian
(
1
2τ
−1
1 L̂

2)
, which corresponds to a diffusion on the Fermi surface.

However, at any finite temperature there are angular momentum modes where we get super-diffusion. The
temperature dependence of the rate of super-diffusion for T � ωD is given by the phonon scattering rate
Γep ∝ T 3, introduced in Eq. (2.13).

We remind that the term super-diffusion is commonly used in the literature to describe the anomalous
diffusion equation

(∂t −D |∆p|µ/2)n(p, t) = 0 (2.27)

with the exponent µ < 2, whereas the case µ > 2 is typically termed sub-diffusion. The fractional derivative

should be understood via the action of |p|µ/2 in Fourier space. In our case we have µ = 2 at lowest
temperatures while highest angular momentum states ultimately behave as µ → 0. Notice, here diffusion
takes place in phase space as a consequence of collisions. Such behavior is of importance if one analyzes
the relaxation of focussed electron beams or the time dependence of heat pulses [61–64]. Related behavior
was previously discussed in the context of two-dimensional Fermi liquids [61–63] and for graphene at the
neutrality point [64]. With electron-phonon fluids we have identified three-dimensional systems that should
display superdiffusive dynamics in phase space.

2.5. Emergent drift velocity and conservation laws

In this section we use the conservation laws of the system without umklapp and impurity scattering to
establish that a joint drift velocity emerges as hydrodynamic variable. The reason for the joint drift velocity
is rather transparent. Only the total momentum Ptot is conserved, which gives rise to only one canonically
conjugate hydrodynamic variable, the drift velocity u (r).

We start from the second law of thermodynamics as it enters the Boltzmann theory in the context of the
H-theorem. To this end, we consider the entropy per degree of freedom expressed in terms of the distribution
functions:

selp = − [np lnnp + (1− np) ln (1− np)] , sphq = − [Nq lnNq − (1 +Nq) ln (1 +Nq)] . (2.28)

This allows to determine the total entropy production

Q ≡ ∂S

∂t
=

∂

∂t

(∫
p

selp +

∫
q

sphq

)
=

∫
p

ln

(
1

np
− 1

)
∂np
∂t

+

∫
q

ln

(
1

Nq
+ 1

)
∂Nq

∂t
. (2.29)
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We can use the Boltzmann equations, Eqs. (2.1) and (2.2), to express
∂np

∂t and
∂Nq

∂t . For closed systems it
follows after a few steps that

Q = −
∫
p

ln

(
1

np
− 1

)
(Step {n,N}+ Stei {n})−

∫
q

ln

(
1

Nq
+ 1

)
(Stpe {n,N}+ Stpp {N}) ≥ 0, (2.30)

where the last inequality reflects the fact that the entropy of the system cannot decrease. In addition we
used Stpp {N} = StNpp {N}+ StUpp {N} which combines normal and umklapp phonon-phonon processes.

Next we summarize the well-known implications of conservation laws. For charge conservation we sum
Eq. (2.1) over p and obtain the continuity equation

∂ρ

∂t
+∇r·j = 0 (2.31)

since
∫
p

(Step {n,N}+ Stei {n}) = 0. Here we have the charge density ρ (r, t) = e
∫
p
np (r, t) and the current

density j (r, t) = e
∫
p
vpnp (p, t). To analyze energy conservation we introduce the energy density and

energy current of the combined system:

ε (r, t) = 2

∫
p

εpnp (r, t) +

∫
q

ωqNq (r, t) , (2.32)

jε (r, t) = 2

∫
p

vpεpnp (r, t) +

∫
q

sqωqNq (r, t) . (2.33)

Multiplying the Boltzmann equations by the electron and phonon energies and integrating over momenta,
we obtain

∂ρε
∂t

+∇r·jε = 2

∫
p

(ṗ · vp)np +

∫
q

(q̇ · sq)Nq. (2.34)

If there is no work done by or at the system (ṗ · vp = q̇ · sq = 0) this corresponds to the the continuity
equation for the energy. It is a consequence of the fact that the sum of

∫
p
εp (Step {n,N}+ Stei {n}) and∫

q
ωq (Stpe {n,N}+ Stpp {N}) vanishes. Finally we consider the momentum density and momentum current:

g (r, t) = 2

∫
p

pnp (r, t) +

∫
q

qNq (r, t) ,

Tαβ (r, t) = 2

∫
p

pαvβnp (r, t) +

∫
q

qαsβNq (r, t) . (2.35)

In the absence of impurity and umklapp scattering, i.e. for Stei {n} = StUep {n,N} = StUpp {N} = 0. We
obtain

∂gα
∂t

+
∂Tαβ
∂xβ

= 2

∫
p

ṗαnp +

∫
q

q̇αNq, (2.36)

which becomes the momentum continuity equation in the absence of external forces (ṗ = q̇ = 0). The con-
tinuity equation follows because the sum of

∫
p
p
(
StNep {n,N}

)
and

∫
q
q
(
StNpe {n,N}+ StNpp {N}

)
vanishes.

Let us now search for distribution functions that yield a constant entropy. Under the given conservation
laws the entropy production Q, as given in Eq. (2.30), vanishes for the distributions

ln

(
1

np
− 1

)
= −β (r)µ (r) + β (r) εp − β (r)u (r) · p,

ln

(
1

Nq
+ 1

)
= β (r)ωq − β (r)u (r) · q, (2.37)

with same β (r) an u (r) in the two equations. This gives rise to local equilibrium with Fermi-Dirac distri-
bution function for the electrons

np (r) =
1

eβ(r)(εp−µ(r)−u(r)·p) + 1
, (2.38)
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and Bose-Einstein distribution for the phonons

Nq (r) =
1

eβ(r)(ωq−u(r)·p) − 1
. (2.39)

Obviously we have the usual interpretation of β(r), µ (r) and u (r) as local inverse temperature, chemical
potential of the electrons, and flow velocity, respectively.

Just like the conservation of the total energy gives rise to a joint temperature of the electrons and phonons,
does the conservation of the total momentum yield a joint drift velocity u (r). While the local equilibrium is
only a solution of the Boltzmann equation in the limit where the collision terms dominate, they do represent
a natural starting point in the limit of small Knudsen number – i.e. the ratio of the momentum conserving
mean free path and the typical length scale of applied forces or geometric confinement – as employed by the
Chapman-Enskog method [65].

The hydrodynamic flow is protected by the conservation of the total momentum

Ptot = Pel + Pph (2.40)

and must be understood as a combined electron-phonon fluid. However, in Appendix A.2 we demonstrate
that the primary mechanism by which the flow gradient couples to the electron-phonon fluid is by directly
affecting its electron component. In addition we show that while phonon drag is crucial to give the viscosity
a true hydrodynamic interpretation, perhaps counterintuitively, it is not important for the actual value of
the viscosity. Finally, because of the larger value of the Fermi velocity and because of the different phase
space nature of degenerate electrons and acoustic phonons, it holds that the momentum current is also
dominated by the electronic system.

2.6. Hydrodynamic electron-phonon drag viscosity

Provided that momentum-conserving electron-phonon collisions are the most frequent, the regime of
phonon drag can be characterized by an emergent hydrodynamic mode, which is the drift velocity of electrons
and phonons. Indeed, both collision terms Step{n,N} and Stpe{n,N} are simultaneously solved by a
distribution function with the finite boost n(p, r) = f(εp − pu(r)) and N(p, r) = b(ωq − qu(r)). In the
previous sub-section we discuss the origin of the joint drift velocity as conjugated variable to the conserved
total momentum in some detail.

To determine the equation of motion for u(r) we follow the approach of Gurzhi [51] who solved the
kinetic equations by the method of consecutive approximations. The accuracy of the method is controlled
by the ratio between momentum-conserving and momentum-relaxing scattering lengths. We seek the non-
equilibrium distribution functions in the form of a formal series expansion: n = f + δn1 + δn2 + . . . ... and
N = b+ δN1 + δN2. To the first order we obtain two equations:

v
∂f

∂r
= δ Step{δn1, δN1}, s

∂b

∂r
= δ Stpe{δn1, δN1}, (2.41)

where linearized collision kernels are given by Eqs. (2.10) and (2.12). The contribution from the collision
term with normal phonon processes, governed by δ StN{δN1}, can be neglected as it has a subdominant
temperature dependence in comparison with phonon-electron collisions. Since the spatial dependency of the
distribution is contained in the velocity field u(r) we search for a solution of the form

δn1 = −vipj
∂uj
∂ri

∂f

∂ε
τD(ωD/T )3χ(ηp), (2.42)

δN1 = −siqj
∂uj
∂ri

τD(T/ms2)
∂b

∂ω
φ(ζq), (2.43)

where ζq = ωq/T . Again repeating all the same technical steps from the previous section, where we
discussed Bloch’s solution of the linearized kinetic equations, we find two coupled integral equations for the
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non-equilibrium distributions ψ and φ:

cosh−2(η/2) ' −
∫
η′
K0(η, η′)χ(η′) + ϑ2D

∫
η′
K2(η, η′)χ(η′)− ϑ2D

∫
η′
K1(η, η′)φ(η − η′), (2.44)

ζ/(eζ − 1) ' ϑ2Dζ2φ(ζ) + (1− ϑ2Dζ2)

∫
ζ′
Q(ζ, ζ ′)χ(ζ ′), (2.45)

where

Q(ζ, ζ ′) =
(eζ − 1)(eζ

′ − 1)

(eζ + 1)(eζ + eζ′)(eζ + e−ζ′)
. (2.46)

We were unsuccessful in finding an analytical solution of these equations. However, exploring the smallness
of ϑD � 1 it is possible to show that χ(η) ∼ ϑ−2D .

At the second order of the expansion, the set of equations takes the form

v
∂δn1

∂r
+ evE

∂f

∂ε
= δ Step{δn2, δN2}+ δ Stei{f}, (2.47)

s
∂δN1

∂r
= δ Stpe{δn2, δN2}+ δ StUpp{b}. (2.48)

It is important to emphasize at this point that δ Stei{f} ∝ u(r) and similarly δ StUpp{f} ∝ u(r) as these two
terms capture momentum-relaxing collisions and as such will define the relaxation of u. Finally, we use the
explicit form of δn1 from Eq. (2.42), multiply Eq. (2.47) by p and integrate both sides over momentum.
Similarly we use δN1 from Eq. (2.43) in Eq. (2.48), multiply by q and integrate both sides. We then add
together these equations and obtain the desired hydrodynamic equation for u(r) (see also Refs. [51, 57]):

ν∇2u + eE/m = u/τMR. (2.49)

Here momentum-relaxation time τ−1MR = τ−1ei + τ−1U is given by the sum of two terms due to electron-
impurity and phonon umklapp scattering. While the former is temperature independent, the latter has
steep exponential behavior τ−1U ∝ (T/ωD)4(τUpp)−1, with (τUpp)−1 ∝ exp(−γωD/T ) and γ ∼ 1. The kinematic
viscosity of the electron-phonon fluid ν = ηep/mn in Eq. (2.49) is expressed in terms of the corresponding
shear viscosity in a standard way:

ηep =
1

5
mnv2F τ2, τ−12 = 1440ζ(5)λepT

5/ω4
D. (2.50)

For the detailed derivation of Eq. (2.50) see Appendix A.2. Notice that the functional form of Eq. (2.49) is
formally identical to the equation of motion of an electron fluid where the hydrodynamic regime is established
by electron-electron collisions. The difference is only in the temperature dependence of the viscosity, i.e.
of the relaxation time τ2. The electron-phonon collisions that give rise to a T 5 Bloch-Grüneisen law in
the resistivity of the kinetic regime are the same processes that determine the viscosity ηep ∝ T−5 in the
hydrodynamic regime. This parallels the electron-electron hydrodynamic regime where the T 2 term in the
resistivity translates into ηee ∝ T−2 for the electron viscosity [66]. In closing this section we also wish to
draw attention to an analogy between phonon drag viscosity and recently studied Coulomb drag viscosity
contribution [67], and its relation to hydrodynamic drag resistivity in the transport properties of interactively
coupled double-layers [68].

2.7. Thermal conductivity and the Lorentz ratio in a drag regime

The theory of thermal conductivity in the hydrodynamic regime of a phonon gas was put forward in
pioneering works of Callaway [69] and Gurzhi [70] (the classical review on the topic can be found in Ref.
[71], whereas a concise summary of the field with the modern perspective can be found in Ref. [72]).
These authors carefully analyzed the interplay of various scattering processes including (i) sample boundary
scattering, described by a constant relaxation time; (ii) three-phonon nonlinearities, whose relaxation time is
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a power-law of temperature; (iii) impurity scattering; (iv) umklapp processes with an exponential relaxation
time. The resulting thermal conductivity was shown to exhibit fairly complicated non-monotonic behavior.
Recently phonon-mediated heat diffusion in insulators received a renewed attention and interest triggered
by a realization of apparently universal bound controlled by the Plankian time scale, τPl ∼ (~/kBT ),
quantum mechanical bound on sound velocity [73, 74], and generalization of Fourier’s law into viscous heat
equations [75]. In this section we consider the problem of thermal conduction from the perspective of
mutual electron-phonon drag and reveal its distinct properties. The corresponding electron-phonon bound
on thermal diffusion can be analyzed in a similar spirit as it was done recently in the context of the Coulomb
drag problem [76].

The starting point of our treatment is the same set of linearized coupled integro-differential Boltzmann
equations as used in the case of conductivity and viscosity calculations in previous sections. The only
difference is that we are looking now at the response to the temperature gradient ∇rT , thus we have

− εp
T

∂f

∂εp
(vp∇rT ) = δ Step{δn1, δN1}, −ωq

T

∂b

∂ωq
(sq∇rT ) = δ Stpe{δn1, δN1}. (2.51)

It is clear that in the linear response analysis the non-equilibrium corrections to electron and phonon
distribution functions are proportional to the thermal bias, namely {δn1, δN1} ∝ ∇T . Provided that a
solution is found, the heat current can be computed in accordance with the usual kinetic formula

jε =

∫
p

vpεpδn1 +

∫
q

sqωqδN1 = −κep∇rT, (2.52)

that thus defines the electron-phonon drag thermal conductivity κep. Just like in the case for the electron
viscosity calculation, discussed in the Appendix A.2, we can first solve for the non-equilibrium phonon
distribution δN1 in terms of yet unknown δn1, and insert the result into the Boltzmann equation for the
electrons. This yields then purely electronic Boltzmann equation of the type

Rp · ∇rT = δ Stel{δn1}. (2.53)

The source term on the right-hand-side Rp = −vp(εp/T )(∂f/∂εp)+δRp is renormalized by the drag effect.
The collision term δ St{δn1} also contains an additional correction. The analysis of the second term δRp

yields the conclusions that it can be neglected at temperatures T � ωD. The subsequent analysis of the
collision term is analogous to the one for the viscosity and yields for the thermal conductivity the result (see
Appendix A.3 for further details)

κep =
1

3
v2F cel(T )τE , τ−1E = 480ζ(5)λepT

3/ω2
D, T � ωD, (2.54)

with the electronic heat capacity cel(T ). For higher temperatures it holds that τ−1E ' λepT . With the
linear low-T heat capacity cel ' γsT , where γs is the usual Sommerfeld coefficient, it follows for the thermal
conductivity κep ∝ 1/T 2. This is distinct from the thermal conductivity of a Fermi liquid κee ∝ 1/T [66]
and would naturally lead to a temperature dependent Lorentz ratio, L(T ) = κ/σT , quite distinct from the
universal Sommerfeld bound of π2/3e2 in the Wiedemann-Franz law. We note that thermal conductivity
has been measured recently in Refs. [16, 21] in a phonon drag regime driven by normal electron-phonon
scattering processes. The scaling consistent with T−2-behavior in the intermediate range of temperatures was
indeed observed in PtSn4 [21]. Additionally, hydrodynamic features due to electron viscosity accompanied
by the size-dependent departure from the Wiedemann-Franz law, expected in the hydrodynamic picture,
were observed in recent thermal resistivity measurements in semi-metallic antimony Sb [24]. Similar thermal
transport anomalies were also reported in WP2 [22] and analyzed theoretically in Ref. [77].

3. Applications

3.1. Gurzhi resistance at arbitrary slip length

As a first application let us consider hydrodynamic flow in a two-dimensional slab geometry of width d
where the flow occurs in the x-direction such that the velocity field u (r) = (u(y), 0) has a nontrivial profile

13



-0.4 -0.2 0.2 0.4
y/d

0.2

0.4

0.6

0.8

1.0

u/u0

5 10 15 20 25
d/lG

0.2

0.4

0.6

0.8

1.0

(ρxx /ρ0)
-1

Figure 2: [Left panel]: Spatial profile of the hydrodynamic flow field in the slab geometry for d/lG = 4 in the crossover regime
from no-slip to no-stress boundary conditions. [Right panel]: Dependence of the resistivity as a function of the channel width
normalized to the Gurzhi length plotted for several different values between Gurzhi length and slip length.

along the y-direction, where the electric field E = (Ex, 0) is directed along x-direction. The equation of
motion (2.49) then becomes

ν
d2u

dy2
+ eEx/m = u/τMR. (3.1)

This equation should be supplemented by a boundary condition. We use a generic one allowing for an
arbitrary slip length lS [78, 79] (

du

dy

)
y=±d/2

= ∓u(±d/2)

lS
. (3.2)

Solving this linear differential equation we find a flow profile

u(y) = u0

[
1− 2p

(1 + p)ew/2 + (1− p)e−w/2

(1 + p)2ew − (1− p)2e−w
cosh

y

lG

]
. (3.3)

Here we introduced the characteristic steady state velocity u0, the Gurzhi length lG, and two dimensionless
parameters p, w:

u0 =
eExτMR

m
, lG =

√
ντMR, p = lG/lS, w = d/lG. (3.4)

The no-slip boundary condition corresponds to the limit where p → ∞, whereas the opposite limit p → 0
defines the no-stress regime. The flow profiles at different values of p are illustrated in Fig. 2. We introduce
the average flow velocity across the channel

ū =
1

d

∫ d/2

−d/2
u(y)dy. (3.5)

This expression enables us to find current density jx = enū and consequently resistance along the channel

ρ−1xx =ρ−10

[
1− 4p

w

(1 + p)ew/2 + (1− p)e−w/2

(1 + p)2ew − (1− p)2e−w
sinh

w

2

]
, (3.6)

where ρ−10 = e2nτMR/m is the familiar formula of the Drude resistivity. This result simplifies in the limit
of no slip p→∞ [60, 80]

ρ−1xx = ρ−10

[
1− 2

w
tanh

w

2

]
. (3.7)

For a wide channel, d� lG, the resistance saturates to its bulk value ρ0 which is governed by the momentum-
relaxing time. In contrast, for a narrow channel, d � lG, the resistivity is determined by momentum
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Figure 3: [Left panel]: Field dependence of the diagonal resistivity for different channel width aspect ratios. [Right panel]:
Field dependence for the Hall resistivity normalized to the classical Hall resistance.

conserving electron-phonon collisions and inversely proportionally to the channel width as expected for the
Poiseuille flow ρxx ' (pF /e

2n)(lMC/d)2. This defines the regime of the Gurzhi effect [60] when the resistance
drops with increasing temperature as controlled by the momentum conserving length scale lMC = vF τep.

As the next step, we briefly investigate the sensitivity of these results to the geometry of the conducting
channel. For this purpose we look at the quantum wire (cylindrical geometry) of radius d. Using the
Laplacian in radial coordinates the equation of motion and boundary condition take the form

1

r

d

dr

(
r
du

dr

)
− u

l2G
= −eEx/mν, (du/dr)r=d = −u(d)/lS, (3.8)

where u (r) = (u(r), 0, 0). This equation is solved in terms of the modified Bessel functions of zero index.
However, for a bounded solution at the origin we must retain only I0 function but not K0. Recalling then
the property of the derivative that I′0(z) = I1(z) we find

u(r) = u0

[
1− pI0(r/lG)

I1(w) + pI0(w)

]
. (3.9)

Averaging this expression over the wire cross-section and recalling the integral property∫ z

0

rI0(r)dr = zI1(z) (3.10)

we find wire resistivity in the form

ρ−1xx = ρ−10

[
1− 2p

w

I1(w)

I1(w) + pI0(w)

]
. (3.11)

The flow profile is analogous to that of a slab presented in Fig. (2) with the only difference that it looks
flatter at the center of the wire. The resistance also exhibits the same dependency on the ratio d/lG. The
only difference is numerical coefficients of the order unity that occur in the respective asymptotic limits.

3.2. Magnetoresistance and Hall resistance

In the presence of an external magnetic field we need to add the Lorentz force as well as a Hall viscosity
νH into the equation of motion. For a steady flow we thus have [80–84]

ν∇2u + νH[∇2u× eB ] + e(E + [u×B])/m = u/τMR, (3.12)

where eB is the unit vector along the magnetic field. In the semiclassical approximation, the Hall viscosity
can be derived in a manner similar to the classical work of Steinberg [56] (see also the recent discussions by
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Alekseev [80] and Scaffidi et al. [81]). The difference is that for our case it is assumed that the kinematic
viscosity is dominated by electron-phonon collisions instead of electron-electron collisions.

For a Hall bar strip geometry with magnetic field along the z-axis there is no flow in the y-direction due
to the build up of an electric field that compensates for the Lorentz force in the classical Hall effect. The
resulting equations of motion read

ν
d2ux
dy2

+ eEx/m = ux/τMR, −νH
d2ux
dy2

+ eEy/m = ωcux, (3.13)

where ωc = eB/m is the cyclotron frequency. The first equation is structurally unchanged as compared to
the case of no field, so is solved exactly as in the previous section. To find Ey in the second equation, we
integrate this equation over the strip width and get

− νH
d

[(
dux
dy

)
y=d/2

−
(
dux
dy

)
y=−d/2

]
+ eEy/m = ωcūx (3.14)

From the boundary conditions, we can express derivatives of the velocity field in terms of the velocity itself
and the slip length

2νH
dlS

ux(d/2) +
eEy
m

= ωcūx (3.15)

This equation yields the Hall field (and voltage) and thus gives us the transverse resistivity

ρxy = ρH

[
1− νH

d2ωc
H(p, w)

]
, ρH =

B

en
. (3.16)

The dimensionless function H(p, w) = 2pwux(d/2)/ūx can be found from the longitudinal flow profile of the
velocity field and is given by

H(p, w) = 2pw
1− 2pP (p, w) cosh(w/2)

1− (4p/w)P (p, w) sinh(w/2)
, (3.17)

where

P (p, w) =
(1 + p)ew/2 + (1− p)e−w/2

(1 + p)2ew − (1− p)2e−w
. (3.18)

The Hall resistance takes a particularly simple form in the no-slip limit where

H =
2w tanh(w/2)

1− (2/w) tanh(w/2)
. (3.19)

In the weak-field limit, taking νH ' ν(ωcτMC), where τMC is the momentum conserving time scale, given by
electron-phonon collisions in our case, we estimate the correction to the Hall resistivity to be of the form

δρxy
ρH
' −

(
lMC

d

)2
(2d/lG) tanh(d/2lG)

1− (2lG/d) tanh(d/2lG)
. (3.20)

We remind that the underlying assumption for the length scales is such that lMC � d � lMR. Note that
the Gurzhi length can be equivalently presented as lG =

√
lMClMR such that, in principle, the relationship

between d and lG can be arbitrary. Having this in mind we conclude that the correction δρxy is universal
in the narrow channel when d� lG where δρxy/ρH ' −(lMC/d)2 while it scales as δρxy/ρH ' −l2MC/dlG in
the opposite limit. The field dependence of both, the diagonal and the Hall resistivities in the semiclassical
limit is illustrated in Fig. (3) for different aspect ratios of the Hall bar channel and different ratios of the
channel width and the Gurzhi length, respectively.
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3.3. Stokes-to-Ohm crossover in a swirling magneto-flow

The 2D cylindrical geometry of a Corbino disk with inner radius r1 and outer radius r2 also attracts
considerable attention. It was recently suggested that the electronic shear viscosity can be measured with
this device in the response to an alternating magnetic flux that generates a measurable (dc) potential
drop, induced between the inner and the outer edge of the disk [85]. It also offers new opportunities to
experimentally determine the Hall viscosity [86] and the hydrodynamic magnetoresistance that is dominated
by the field-induced vorticity of the flow rather than by the field dependence of the kinetic coefficients [87].
Here we elaborate on the latter example focusing on the magnetoresistance in the crossover region of the
Gurzhi effect from the Stokes-to-Ohmic flow.

The centro-symmetry of the Corbino disk suggests the use of polar coordinates. For the purpose of MR
calculation we need to project the Navier-Stokes equation (3.12) into the radial (ur) and azimuthal (uφ)
components of the flow field. The corresponding components of the Laplacian operator are given by [88]

(∇2u)r = ∇2ur −
ur
r2
− 2

r2
∂uφ
∂φ

, (∇2u)φ = ∇2uφ −
uφ
r2

+
2

r2
∂ur
∂φ

. (3.21)

For an isotropic system with magnetic field perpendicular to the plane of the flow, both components of the
flow velocity depend only on the radial coordinate such that terms like ∂φur,φ vanish. Consequently, for the
corresponding components of the electrical current we find the two equations

η

ne
∆jr + enEr + jφB = ρ0nejr,

η

ne
∆jφ + enEφ − jrB = ρ0nejφ, (3.22)

where we introduced radial operator ∆ = ∇2 − 1/r2 and expressed the kinematic viscosity ν = η/(mn) in
terms of shear viscosity η. In the current setup there is no azimuthal component of the electric field Eφ = 0,
but there is a freely circulating current jφ. The situation here is opposite to that of the Hall bar, with
a transversal field but no current. Furthermore, from the continuity equation, current conservation in the
radial direction implies

jr(r) = I/(2πr), (3.23)

which gives an equation for the azimuthal current

(∆− l−2G )jφ =

[
d2

dr2
+

1

r

d

dr
−
(

1

r2
+

1

l2G

)]
jφ =

ne

η

IB

2πr
. (3.24)

This equation coincides with the canonical form of the differential equation for the modified Bessel function
of the first order, which thus gives us two linearly independent solutions I1(r/lG) and K1(r/lG). The special
solution due to the right-hand-side can be tried in the form jφ = C(I/r) where C is a yet unknown constant.
By observing that ∆(1/r) = 0 we easily deduce that C = −B/(2πρ0ne). As a result, the general solution
takes the form

jφ(r) =
IB

2πρ0ne

[
C1 I1(r/lG) + C2 K1(r/lG)− 1

r

]
. (3.25)

The integration constants C1 and C2 can be determined from the boundary conditions. For simplicity, we
apply no-slip boundary conditions jφ(r1) = jφ(r2) = 0. To visualize viscous effects we deduced the flow
pattern from the obtained solution and plotted u(r) in Fig. 4.

As next step in our analysis we use the components of the stress tensor [88]

σrr = 2η
∂ur
∂r

, σrφ = η

(
1

r

∂ur
∂φ

+
∂uφ
∂r
− uφ

r

)
, σφφ = 2η

(
1

r

∂uφ
∂φ

+
ur
r

)
, (3.26)

to determine energy dissipation rate due to viscous friction

W =
1

2η

∑
ij

σ2
ijdV. (3.27)
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Figure 4: The stream plot of the viscous flow was generated in polar coordinates for ux(r) = ur(r) cosφ − uφ(r) sinφ and
uy(r) = ur(r) sinφ+ uφ(r) cosφ based on the solution from Eqs. (3.23) and (3.25). The velocity field was normalized in units
of u0 = I/(2πenr1) for the aspect ratio a = r2/r1 = 5. The strength of the external field that controls the distribution of the

flow pattern between electrodes in the bulk is characterized by a dimensionless parameter q = nr21/(2ηl
2
B), where lB =

√
1/eB

is the magnetic length. This parameter measures the relative strength of the Lorentz and viscous Stokes forces and determines
the number of turns the flow makes between the electrodes. On the left panel we took q = 0.55 while on the right panel q = 3.55
for comparison, the aspect ratio was kept the same in both cases.

The latter gives us resistance R = W/I2. As a result we find

R = R0 +RB . (3.28)

The zero field part of the resistance R0 comprises of Ohmic and Stokes contributions. The Ohmic part is
determined by the momentum-relaxing scattering time in the bulk of the flow and is given by a standard
expression

ROhm
0 =

ρ0
2π

ln(r2/r1). (3.29)

This form of the resistance can be readily seen from the Navier-Stokes equation itself by noticing that
∆jr = 0 yields for the radial component of the electric field Er = ρ0jr, with the corresponding voltage drop
V =

∫ r2
r1
Erdr. This immediately yields Eq. (3.29). The viscous, Stokes contribution to the resistance is

given by

RStokes
0 =

η

π(ne)2

(
1

r21
− 1

r22

)
, (3.30)

but its physical origin is much more subtle and to some extent paradoxical as explained in the recent
insightful work [87]. To gauge the relative importance of these two terms one should notice that for the
large disk, r2 � r1, the viscous term saturates. The Ohmic part, however, grows in this limit very slowly
and the ratio between the two is ROhm

0 /RStokes
0 ∼ (r1/lG)2 ln(r2/r1), which means that the Ohmic part

could in principle dominate, even when the Gurzhi length is large. As explained in Ref. [87] the result
for RStokes

0 originates from the voltage drop at the electrodes. In the Ohmic regime, the impact of contact
resistance was analyzed in the context of the electronic thermal transport: Lorenz number measurements
and Wiedemann-Franz law in particular [89].
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Figure 5: A dimensionless scaling function Eq. (3.32) that describes Stokes-to-Ohm crossover in the magnetoresistance Eq.
(3.31) for Corbino device with different choice of aspect ratios a = 2, 4, 8.

The field dependent part of the resistance can be presented in the form

RB =
B2 ln a

2πρ0(ne)2
[1− f(a, b)], a = r2/r1, b = r2/lG. (3.31)

The dimensionless function

f(a, b) = 1− 1

ln a

{
[I0(b)− I0(b/a)][(a/b)K1(b)− (1/b)K1(b/a)]

I1(b/a)K1(b)− I1(b)K1(b/a)

+
[K0(b)−K0(b/a)][(a/b)I1(b)− (1/b)I1(b/a)]

I1(b/a)K1(b)− I1(b)K1(b/a)

}
(3.32)

describes the crossover from the Stokes to the Ohmic regime. This function is plotted in Fig. 5 for several
different values of the aspect ratio a. Asymptotic limits of this function can be relatively easily extracted.
In the Ohmic regime, b� 1, f is a decaying function of b such that to leading order holds:

ROhm
B =

B2 ln a

2πρ0(ne)2
∝ B2τMR, r2 � lG. (3.33)

In the opposite, viscosity-dominated limit, where lG � r1,2, we can expand the Bessel functions at small
argument b� 1 such that

RStokes
B =

B2r22
16πη

[
1− 1

a2

] [
1− 4a2 ln2 a

(a2 − 1)2

]
∝ B2

τMC
r2 � lG. (3.34)

This result coincides with the earlier conclusion of Refs. [35, 87] that in the hydrodynamic regime the MR
is inversely proportional to the viscosity. This, in principle, enables measurements of the temperature and
density dependence of the viscosity from magneto-transport experiments. On the theoretical side it should
be possible to extend these results to cover the ballistic-to-hydrodynamic crossover in the magneto-transport,
as was recently done for the geometry of narrow channels [90]. It is also of a special interest to consider
magneto-thermo-electric phenomena in Corbino geometry, and Nernst effect in particular [91].
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Figure 6: [Left]: Sketch of the frequency dependence of the normal and anomalous skin effect in the log-log scale where ωa is the
crossover frequency between the normal and anomalous skin effect. One only expects the anomalous skin effect in sufficiently
clean samples. On the plot δ0 = c/ωpl and ωa = (c/vF )2τ−1

MR/(ωplτMR)2 where ωpl is the plasma frequency. [Right]: Sketch
of the skin effect including the intermediate regime of viscous skin effect behavior with ωη ' (τMR/τMC)ωa

3.4. Hydrodynamic surface impedance in a viscous skin effect

In terms of the response to an electromagnetic field, the hydrodynamic regime of an electron-phonon
fluid is not limited to (dc) transport properties but occupies a finite domain of the frequency-momentum
(ω, q) parameter space which is bound by the conditions ωτep � 1 and qlep � 1. Finite frequency properties
of viscous electrons have attracted significant theoretical interest in recent years with interesting predictions
ranging from nonlinear electrodynamics [92, 93] (e.g. second-harmonic generation), resonant phenomena [94]
(e.g. viscous cyclotron motion) to nonlocal effects in pulsating flows [95, 96]. The optical conductivity and the
transmission of electromagnetic waves through thin ultra-pure metals have been considered in Refs. [97, 98]
under the condition that hydrodynamic regime is governed by fast electron-electron collisions. Quantum
critical hydrodynamics in the dc conductivity of graphene at the neutrality point was predicted in Ref. [41]
and recently observed experimentally in Ref. [99]. In this section we briefly consider a related problem of
the skin-effect (SE) for the strongly coupled electron-phonon liquids. An observables of interest, discussed
in the context of electron hydrodynamics already by Gurzhi in Ref. [51], is the frequency-dependent surface
impedance [31].

Consider a skin-effect geometry when a monochromatic electromagnetic wave of frequency ω is incident
on a metal surface (xy-plane). It is assumed that the metal occupies a semi-infinite volume z > 0 with the
vacuum on the other side z < 0. From a pair of Maxwell equations

[∇×E] = −(1/c)∂tH, [∇×H] = (4π/c)j (3.35)

we can establish a self-consistent relation between the electrical field and the induced current in the medium

∇2E = (4π/c2)∂tj. (3.36)

In the linear regime, the current is proportional to the drift velocity of the liquid

j = enu, (3.37)

which obeys our hydrodynamic equation of motion

∂tu = ν∇2u + eE/m− u/τMR (3.38)

that includes a time-dependent inertia term. By passing to Fourier space in frequency E(r, t) = Re
{
Eωe

iωt
}

and eliminating u(r, t), one easily obtains a single linear differential equation for the spatial dependence of
the field. For the described geometry one finds

∂4zEω − l−2G (ω)∂2zEω + il−4ω Eω = 0. (3.39)
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Here we introduced the frequency-dependent Gurzhi length

lG(ω) = lG/
√

1 + iωτMR (3.40)

and also another frequency-dependent length scale

lω = 4

√
vF δ20lMC/ω, δ20 = mc2/(4πne2), (3.41)

where δ0 is the familiar London penetration depth in the clean limit. The surface impedance is defined as
the ratio between the electric field on the metal surface and the current density, integrated over the volume

Z(ω) =
Eω(0)

(4π/c)
∫
j(z)dz

= −(iω/c)[Eω(0)/∂zEω(0)]. (3.42)

The impedance is a complex function of frequency and its real part determines the energy dissipated by
the field. To find Z we look at the characteristic equation of Eq. (3.39), Eω ∝ ekz, whose roots follow as
solutions of a bi-quadratic equation

k2±(ω) =
1

2

[
l−2G ±

√
l−4G − 4il−4ω

]
. (3.43)

This equation gives four different roots and one needs to select two of them k1 and k2 that have negative real
part. These solutions correspond to a decaying field into the bulk of the sample. The spatial profile of the
field is then given by a linear superposition of two exponentials: Eω(z) = A0e

k1z +B0e
k2z. Two coefficients

are determined by the boundary conditions Eω(0) = A0 + B0 and [∂3zEω(z)]z=0 = −(1/lS)[∂2zEω(z)]z=0,
where lS is again the slip length [78]. The second boundary condition corresponds to the linear relationship
between E and u and follows directly from Eqs. (3.2) and (3.36). Solving the linear algebraic equations we
find

A0 = Eω(0)
k22

k22 − βk21
, B0 = −Eω(0)

βk21
k22 − βk21

(3.44)

where β = (1 + k1lS)/(1 + k2lS). For the case of no-slip boundary condition (β → 1) one can expresses Z in
terms of roots k1,2 as follows

Z(ω) = − iω
c

k1 + k2
k1k2

. (3.45)

In the opposite case of no-stress (β → k1/k2) surface impedance takes the form

Z(ω) = − iω
c

k21 + k1k2 + k22
k1k2(k1 + k2)

. (3.46)

It turns out that both limits exhibit the same frequency dependence (modulo numerical factors of the order
of unity). Indeed, there are two special cases of interest that one can analyze. First is the regime when
lω � lG, which implies a bound on the range of frequencies ω < ωη, where ωη = (τMR/τMC)ωa is determined
by the frequency ωa ∼ τ−1ep (δ0/lMR)2, where usually the skin effect crosses over to the anomalous skin effect.
For ω < ωη it is easy to see from Eq. (3.43) that one of the roots is parametrically larger than the other: for
example k1 � k2, with k1 ∼ l−1G and k2 ∼ δ−1S . The length scale δS = l2ω/lG = δ0/

√
ωτMR emerges, which

is nothing else but the usual skin penetration depth, since Eω(z) ∝ e−(1+i)z/
√
2δS . The impedance in this

frequency range is identical to the one in the normal skin effect

Z(ω) ≈ δ0
c

√
ω

τMR
eiπ/4, ω < ωη. (3.47)

In the opposite, viscous regime ω > ωη the Gurzhi length is large compared to lω. Now there are two
parametrically identical roots k1 = −ik2 = −l−1ω e−iπ/8 of Eq. (3.43), and the scale of skin penetration
depth is controlled by lω only, such that δS ∝ 1/ 4

√
ω. In this case the impedance is given by

Z(ω) ≈ δ0
c

4

√
ω3vF lMC

δ20
e3iπ/8, ωη < ω, (3.48)
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which is solely determined by momentum-conserving electron-phonon collisions. This is the result for no-
slip boundary conditions. In the opposite limit, with no stress boundary conditions, one obtains a result
where Z(ω) of Eq. (3.48) is multiplied by a factor i/2. This gives rise to a measurable phase shift in the
impedance. Whether no-slip or no-stress boundary conditions are appropriate depends on frequency. The
former is correct for ω < ωη (lG/lS)

4
while the latter is appropriate in the opposite limit. In the regime

where the Gurzhi length lG is larger than the slip length lS, which is clearly fulfilled for diffuse scattering
at the interface [78], this frequency-dependent crossover between distinct boundary-scattering effects should
be observable and may serve as tool to determine the slip length.

In complete analogy with the Gurzhi effect in the resistance, where the momentum-relaxing scattering
rate drops out from the expression for the resistivity, this regime can be termed as hydrodynamic skin
effect [51]. The upper bound on frequency that determines the regime of the viscous skin effect is set
by the usual hydrodynamic condition lω > lMC. It is worth emphasizing that this hydrodynamic limit
is conceptually different from the high-frequency anomalous skin effect where δS ∝ 1/ 3

√
ω and Z ∝ ω2/3.

Figure 6 summarizes the frequency dependence of the surface skin depth in different regimes.

3.5. Noise thermometry of electron-phonon scattering

Johnson noise thermometry provides fruitful experimental tools to study electronic thermoelectric con-
ductivity in solids. Most recently these methods were applied to study electronic conduction of a monolayer
graphene over a wide range of temperatures, charge densities, and magnetic fields [100]. In this section we
discuss the role of strong electron-phonon scattering on the noise spectra of current fluctuations in meso-
scopic conductors. The question itself is not new and has been discussed by multiple authors employing
various approximations and methods of kinetic theory. The comprehensive summary of known results is
given in the review article by Blanter and Büttiker [101], see specifically section 6.3.2 page 122. Perhaps the
most concise and elegant summary of work that has been done on this topic is presented in the experimental
paper of Steinbach et al. [102], see specifically their Fig. 1. To place our approach in the context of existing
studies we first briefly summarize key results and acknowledge main contributions.

The interest in the problem of current noise in mesoscopic conductors was triggered by works of Beenakker
and Büttiker [103] based on scattering matrix formalism, and Nagaev [104] who employed the stochastic
Boltzmann-Langevin kinetic equation (see also book of Kogan [105] on electronic noise and fluctuations in
solids for an in-depth overview). These authors showed that the celebrated result of Schottky for a Poisson
process of the shot noise, namely the zero-frequency current power spectrum of fluctuations, S = 2eIF
is suppressed by a Fano factor F = 1/3. This is a single-particle effect that can be understood from
the Dorokhov statistics of transmission eigenvalues in disordered conductors. In the current literature
this regime is called shot noise of cold electrons. The subsequent studies focused on the role of inelastic
processes. Frequent electron-electron collisions lead to rapid equilibration. Shot noise survives in this
limit and has the same structural form as in the case of noninteracting particles but is described by a
different Fano factor F =

√
3/4. This result was demonstrated by Kozub and Rudin [106], and de Jong and

Beenakker [107] using a semiclassical approach. These authors assumed that inelastic processes lead to a
local equilibrium, described by a Fermi distribution with spatially varying temperature T (r) and derived an
effective diffusion-like equation for the non-equilibrium (voltage-dependent) profile of T (r). This regime is
called shot noise of hot electrons. The crossover between the two and extensions to full-counting statistics
was developed by Bagrets [108] and Gutman et al. [109]. The influence of strong electron-phonon collisions
was addressed by Gurevich and Rudin [110], Nagaev [111], and Naveh et al. [112]. In the first of these
papers the electron-phonon collision integral was treated perturbatively, whereas in the other two papers
a two-temperature model of the electron-phonon out-of-equilibrium state was assumed and an equation for
the electronic temperature profile derived. Naveh [113] also performed direct numerical calculations of the
integral equation with a phenomenological ansatz for the distribution functions.

Unlike the calculation of the electron-phonon drag viscosity, where diffusion in momentum space is
important, noise is primarily affected by the energy relaxation. For this reason it will be convenient and
technically advantageous to average the distribution function over the Fermi surface such that it will depend
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on the energy and real-space coordinate

nε(r) =
1

ν

∫
p

np(r)δ(ε− εp), (3.49)

where ν is the density of states. With this notation, the collision integral due electron-phonon scattering in
Eq. (2.4) can be rewritten as follows

Step{n,N} =

∫
ω

M(ε, ε′, ω)[nε−ω(1− nε)Nω − nε(1− nε−ω)(1 +Nω)]

+

∫
ω

M(ε, ε′, ω)[nε+ω(1− nε)(1 +Nω)− nε(1− nε+ω)Nω], (3.50)

where the Eliashberg kernel is of the form

M(ε, ε′, ω) =
1

ν

∫
pq

W (p|p′q)δ(ε− εp)δ(ε′ − εp′)δ(ω − ωq). (3.51)

Its ε, ε′ dependence is pinned to energies at the Fermi level, whereas the energy transfer dependence on ω is
strong. Apparently, its functional form in the disordered conductors at frequencies below the scale of Debye
energy was subject of certain controversy with multiple conflicting results (this is discussed by Belitz [114]).
We will discuss a generic model

M(ω) = λepk(ω/ωD)k/2, k > 1 (3.52)

and show that main results are only weakly dependent on the exponent k. Here we use the same convention
for the dimensionless coupling constant of electron-phonon interaction λep as introduced below Eq. (2.13).
To proceed we regroup terms in the collision integral by separating spontaneous emission contributions,
namely pieces independent of the bosonic occupation function, and terms proportional to Nω. Thus we have

Step{n,N} =

∫
ω

M(ω)
{

[nε+ω(1− nε)− nε(1− nε−ω)] +Nω[nε+ω + nε−ω − 2nε]
}
. (3.53)

At this point we apply a Fokker-Planck approximation to this integral operator by expanding fermionic
occupation factors over the frequency transfer up to quadratic order

nε±ω ≈ nε ± ω∂εnε + (ω2/2)∂2εnε. (3.54)

Inserting this back into the collision integral we find

Step{n,N} ≈ A(1− 2nε)∂εnε +
B
2
∂2εnε, (3.55)

where the expansion coefficients are

A = λep

∫
ω

ωM(ω) ' aλepω2
D, B = λep

∫
ω

ω2M(ω)(1 +Nω) ' bλepω3
D, (3.56)

with a ∼ b being model-specific numerical pre-factors of order of unity. In this estimation we assumed
T � ωD so that Nω � 1 and cut off the integral at the Debye energy. In general, B(r) is weakly coordinate
dependent which is ignored in the analysis below. The advantage of the Fokker-Planck approximation is
threefold: (i) it is not limited to near-equilibrium problems; (ii) it reduces the collision term to a local
differential form; (iii) it preserves the nonlinearity of the collision operator. Curiously, the nonlinearity of
Eq. (3.55) is of the Burgers type and known in the theory of nonlinear waves [115, 116].

Consider a quasi-1D geometry of a wire of length L subject to the voltage bias V . In the diffusive
approximation, the distribution function obeys the following kinetic equation (see Eq. 221 in Ref. [101])

D∇2nε(x) + Step{n} = 0 (3.57)
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with the collision term taken from Eq. (3.55). Provided that nε(x) is known the general semiclassical
expression for the shot noise power of current fluctuations can be expressed in terms of a non-equilibrium
steady-state distribution function as follows:

S =
4

RL

∫ L/2

−L/2
dx

∫ +∞

−∞
nε(x)[1− nε(x)]dε, (3.58)

where R is the wire resistance. It will be useful to rescale the coordinate l = x/L and energy ε = ε/ωD, and
introduce the Thouless energy ETh = D/L2. In these dimensionless variables it follows

∂2n

∂l2
+ λep

ωD
ETh

[
a(1− 2n)

∂n

∂ε
+
b

2

∂2n

∂ε2

]
= 0. (3.59)

This non-linear partial differential equation is of the Burgers type [115, 116], which is a prototypical equation
to develop discontinuities such as shock waves. Recall that the Fokker-Planck approximation implies strong
local equilibration, thus in the current context this means a short relaxation length scale as compared to the
wire length L� lep. This practically corresponds to an infinite wire limit. Exploring an analogy to nonlinear
waves we can attempt searching for a solution in the form of a “propagating soliton” nε(l) → n(ε − ul),
where the speed is governed by the voltage, namely u = eV/ωD. This is also physically justified; we simply
assume that the energy dependence is governed by the local electrochemical potential. The result reads

nε(x) = [exp (β(ε− eV x/L)/ωD) + 1]
−1
, β−1 =

(eV/ωD)2ETh

aλepωD
+ b/2a, (3.60)

and corresponds to a highly non-thermal state with voltage dependent temperature. This is also the point
where, perhaps, the Fokker-Planck approach overlaps with previous approximation, in particular a model
with a coordinate and voltage dependent electronic temperature. From Eq. (3.58) it then follows that the
current noise in this regime is described by the voltage-dependent Fano factor

S = 2eIF, F ' eV ETh/λepω
2
D. (3.61)

The Fano factor drops as F ∝ 1/L2 in this regime that corresponds to a suppression of shot noise by
inelastic processes. This is in qualitative agreement with Fig. 1 of Ref. [102] in the long L asymptote. It
is also in a qualitative agreement with other previous conclusions [112, 113] albeit obtained under different
approximations.

4. Summary and outlook

In this work we have considered several examples of hydrodynamic effects that can occur in electron
liquids under the condition of strong phonon drag. Electrons and phonons form a combined fluid with an
emergent joint drift velocity as hydrodynamic variable. The effect is caused by the fact that the relaxation
of the total momentum Pel+Pph is much slower than the momenta Pel or Pph of electrons or phonons alone.
This is guaranteed for clean samples with weak or kinematically forbidden umklapp scattering processes. We
have studied coupled kinetic equations for electrons and phonons, and inferred the effective viscosity of this
strongly-coupled transport regime as well as its thermal conductivity. The situation happens to be analogous
to the viscous flows in the regime of electron-electron dominated collisions with the only difference that
momentum-conserving mean free path has a different temperature dependence. This difference propagate
to numerous observables such as the viscous resistance, the Hall resistance, or the surface impedance.

While our work was primarily motivated by recent experiments, the delafossite metals PdCoO2 and
PtCoO2 studied in Refs. [16–18] and PtSn4 of Refs. [20, 21] in particular, we have not yet tried to tailor
this analysis to the case of a multi-band conductors or systems with complex Fermi surfaces. Hydrodynamic
transport theory of electron-phonon liquids in 3D Weyl or Dirac semimetals is yet to be fully developed.
The first required step towards this direction would be to consider a minimal two-band model of a non-
compensated metal. The generalized kinetic scheme has to be developed then for a coupled kinetic equations
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for electron, holes, and phonons. Another interesting possibility is to consider the possibility of a hydro-
dynamic regime in Luttinger semimetals [117, 118] with the inclusion of electron-phonon scattering. In
addition, in these systems an electron-hole imbalance mode is not restricted so severely like in graphene so
that an unusual transport regime is possible. To the best our knowledge, electron-phonon drag of imbalanced
liquids has not been addressed in the previous studies.
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A. Appendix

A.1. Variational solution of the Boltzmann equation for Bloch-Grüneisen conductivity

In this section we present a method to solve the linearized Boltzmann equation, which is based on the
variational formulation of the kinetic theory. We begin from Eq. (2.14) and rewrite it by combining both
terms on the right-hand-side together, which gives

vp
∂f

∂εp
=

1

T

∫
p′
D(p,p′)[vp′gp′ − vpgp]

∑
σ=±

δ(εp′ − εp + σωp−p′), (A.1)

where we took a parametrization of the form

ψp = evpE
g(εp)

T
, (A.2)

and, after few algebraic steps, reorganized kernels K± to make the result manifestly symmetric with respect
to interchange of momenta. This way we arrived at

D(p,p′) = D0|p− p′| f(εp)f(εp′)

|e−εp′/T − e−εp/T |
. (A.3)

It is easy to see that Eq. (A.1) can be obtained from the variational derivative of the following auxiliary
functional

QP [g] =
1

4T

∫
pp′

D(p,p′)[vp′gp′ − vpgp]2
∑
σ=±

δ(εp′ − εp + σωp−p′)−
∫
p

v2
pgp

∂f

∂εp
. (A.4)

Thus solving Eq. (A.1) is fully equivalent to minimizing Eq. (A.4). Of course, this is not an easy task
either. However, one can try to postulate a variational ansatz for gp and then extremize the functional,
which is often a simpler computation. To this end, suppose that gp = g is a constant, which is the leading
contribution for temperatures small compared to the Fermi energy, we have

QP [g] =
1

2
AP g

2 −BP g, (A.5)

where

AP =
1

2T

∫
pp′

D(p,p′)[vp′ − vp]2
∑
σ=±

δ(εp′ − εp + σωp−p′), BP =

∫
p

v2
p

∂f

∂εp
= v2F ν. (A.6)

25



Here in the integral for BP we introduced density of states ν at the Fermi energy. The extremal QP is
determined by g = BP /AP . This allows us to determine the conductivity as

σαβ = 2e2
BP
AP

∫
p

vpαvpβ

(
− ∂f

∂εp

)
=

2e2

3

(v2F ν)2

AP
δαβ = σBδαβ , (A.7)

thus finding temperature dependence of the Bloch-Grüneisen conductivity σB(T ) is reduced to the compu-
tation of the AP (T ). For the latter we have

AP (T ) =
v2F
sT

∫
dεdε′dωFP (ε, ε′, ω)

ωf(ε)f(ε′)

|e−ε/T − e−ε′/T |
∑
σ=±

δ(ε′ − ε+ σω), (A.8)

FP (ε, ε′, ω) =
D0

v2F

∫
pp′

(vp − vp′)
2δ(ω − ωp−p′)δ(ε− εp)δ(ε′ − εp′). (A.9)

Since electronic momenta are close to Fermi momentum, and the phonon momentum is small, the following
approximations apply: (vp−vp′)

2 ≈ 2v2F (1− cos θpp′) and ωp−p′ ≈
√

2spF
√

1− cos θpp′ . This implies that
to the leading order F (ε, ε′, ω) is independent of ε, ε′ so that

FP (ε, ε′, ω) ≈ D0ν
2

∫ π

0

dθ sin θ(1− cos θ)δ(ω −
√

2spF
√

1− cos θ) =
D0ν

2

2spF
Θ(2spF − ω)

(
ω

spF

)3

, (A.10)

where Θ(x) is the Heaviside step function. Next, we observe that under the approximation that FP only
depends on ω, the energy integrations in AP (T ) can be performed in the closed form. Indeed, it can be
readily verified that ∑

σ=±

∫
dεdε′

f(ε)f(ε′)

|e−ε/T − e−ε′/T |
δ(ε′ − ε+ σω) =

ω

cosh(ω/T )− 1
. (A.11)

Finally, combining everything together as a result we obtain with ωD ≈ 2spF

AP (T ) = 16D0ν
2v2F pFG

(
T

ωD

)
, G(t) = t5

∫ t−1

0

x5dx

coshx− 1
. (A.12)

As it was done in the main text, we can define the electron-phonon scattering time of momentum relaxation
τ1 via Bloch-Grüneisen conductivity σB = e2nτ1/m with

τ−11 = 2ωDλepG(t) =

{
480ζ(5)λep

T 5

ω4
D

t� 1

λepT t� 1
(A.13)

This is the well-known Bloch-Grüneisen behavior. As we saw, the implicit assumption of the analysis is that
the phonons remain in equilibrium such that the total momentum conservation is violated.

A.2. Detailed calculation of the electron-phonon drag viscosity

In the phonon-drag regime, where the total momentum conservation is respected, the conductivity is
infinite (without umklapp and impurity scattering), yet the joint electron-phonon fluid has a common flow
viscosity. To this end, we analyze the problem for a finite shear flow with velocity gradient such that

Txy = η
∂ux
∂y

. (A.14)

By starting out from the linearized coupled Boltzmann equations

− ∂f

∂εp
vypx

∂ux
∂y

= δ Step{ψ, φ}, − ∂b

∂ωq
syqx

∂ux
∂y

= δ Stpe{ψ, φ}, (A.15)
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we first solve for the phonon distribution

φq =
1

γq

∂b

∂ωq
syqx

∂ux
∂y
− 1

2γq

∫
pp′

D(p,p′)(ψp′ − ψp)
∑
σ=±

σδ(εp′ − εp + σωq)δp′−p+σq (A.16)

where

γq =
1

2

∑
σ=±

∫
pp′

D(p,p′)δ(εp′ − εp + σωq)δp′−q+σq. (A.17)

It holds that φq = φ−q. We can now insert this solution into the expression for the electronic collision
operator and obtain the effective purely electronic Boltzmann equation

Rp
∂ux
∂y

=

∫
pp′

D(p,p′)(ψp′ − ψp)
∑
σ=±

δ(εp′ − εp + σωp−p′)

−
∫
kk′p′

D(p,p′)D(k,k′)

2γp−p′
(ψp′ − ψp)

∑
σσ′=±

σσ′δ(εp′ − εp + σωp−p′)δ(εk′ − εk + σωp−p′)δp′−p+k−k′ .

(A.18)

It contains now the renormalized source term

Rp = −

(
∂f

∂εp
vypx +

∫
p′

D(p,p′)

γp−p′

∂b(ωp−p′)

∂ωp−p′
sp−p′,y(px − p′x)

∑
σ=±

δ(εp′ − εp + σωp−p′)

)
(A.19)

and the collision term captured by the second contribution on the right-hand-side of Eq. (A.18). Let us
estimate the second (integral) term of Rp that we denote in the following as δRp. First we notice that with
the help of Eq. (A.11) γq defined in Eq. (A.17) can be reduced to the following form

γq =

(
D0ν

4vF

)
Θ(2kF − q)

ωq

cosh(ωq/T )− 1
. (A.20)

Next we notice that due to kinematics ωk−k′ =
√

2spF
√

1− cos θkk′ ≈ spF θkk′ so that

δRp = −4vpF

∫
dθ sin θ[sinϕ− sin(θ + ϕ)][cosϕ− cos(θ + ϕ)]

×[cosh(ωθ/T )− 1]
∂b(ωθ)

∂ωθ

∑
σ=±

f(εp)f(εp − σωθ)
|e−εp/T − e−(εp−σωθ)/T |

, (A.21)

where we took p = pF (cosϕ, sinϕ) and p′ = pF (cos(ϕ + θ), sin(ϕ + θ)). The integral is dominated by the
small angle of scattering θ = ω/spF � 1, so that recalling that eε/T f(ε) = 1− f(ε), summing over σ = ±,
using Eq. (2.9), and expanding over ω to leading order we get

δRp ≈ 4vpF sinϕ cosϕ
∂f

∂εp

∫ ∞
0

ω3dω

(spF )4
[cosh(ω/T )− 1]

∂bω
∂ω

ω[1 + coth(ω/2T )]

2 sinh(ω/2T )
e−ω/2T (A.22)

which yields

δRp = −vxpy
∂f

∂εp

16π4

15

(
T

spF

)4

. (A.23)

It is clear that at low temperatures we can ignore the second term in Rp compared to the first one. The
primary mechanism by which the flow gradient couples to the electron-phonon fluid is by directly affecting its
electron component. By the same token one can estimate the renormalization piece of the collision integral,
namely the second integral term on the right-hand-side of Eq. (A.18). It happens to be smaller than the
first term and can be also dropped. In the end, we arrive at the much simplified Boltzmann equation

− ∂f

∂εp
vypx

∂ux
∂y

=

∫
p′
D(p,p′)(ψp′ − ψp)

∑
σ=±

δ(εp′ − εp + σωp−p′), (A.24)

27



which is essentially the Boltzmann equation without taking into account that the phonons are not equi-
librated. Hence, momentum conservation, while important for the hydrodynamic interpretation of the
viscosity is not important for its actual value. To proceed with the solution of Eq. (A.24) we can follow
an analysis that is essentially the same as the one we used to determine the resistivity within the Bloch-
Grüneisen limit. We can in fact perform this analysis for a distribution function ∝ cos(lθ), where l is the
angular momentum. The resistivity corresponds to l = 1 while the viscosity to l = 2. This yields the
scattering rate for arbitrary l, and for viscosity in particular

τ−12 = 6λep
T 5

ω4
D

∫ ωD/T

0

x2
(

1− T 2

2ω2
D
x2
)

cosh(x)− 1
dx (A.25)

The asymptotic behavior in the low-temperature regime gives Eq. (2.50) in the main text.

A.3. Detailed calculation of the electron-phonon drag thermal conductivity

For the sake of thermal conductivity calculation we can make the following ansatz for the non-equilibrium
distribution function of electrons

δn1 = −T ∂f

∂εp
ψp, ψp = (v∇rT )

εp
T

g(εp)

T
. (A.26)

Then, the Boltzmann equation for gp be obtained from the variational analysis of the functional

QE [g] =
1

4T

∫
pp′

D(p,p′)
[
vp′gp′

εp′

T
− vpgp

εp
T

]2 ∑
σ=±

δ(εp′ − εp + σωp−p′)−
∫
p

v2
pgp

ε2p
T 2

∂f

∂εp
. (A.27)

The analysis here parallels with that of Bloch-Grüneisen calculations with the only difference that we
have now some extra energy factors as we seek the results for the thermal current in response to applied
temperature gradient. At temperatures small compared to the Fermi energy we can assume that g(εp) = g
is a constant and we obtain

QE [g] =
1

2
AEg

2 −BEg, (A.28)

where

AE =
1

2T 3

∫
pp′

D(p,p′)[vp′εp′ − vpεp]2
∑
σ=±

δ(εp′ − εp + σωp−p′), BE =
1

T 2

∫
p

v2
pε

2
p

∂f

∂εp
= v2FTcel(T ).

(A.29)
In the analysis of the coefficient AE(T ) we can introduce the corresponding function FE(ε, ε′, ω):

AE(T ) =
v2F
sT

∫
dεdε′dωFE(ε, ε′, ω)

ωf(ε)f(ε′)

|e−ε/T − e−ε′/T |
∑
σ=±

δ(ε′ − ε+ σω), (A.30)

FE(ε, ε′, ω) =
D0

T 2v2F

∫
pp′

[vp′εp′ − vpεp]2δ(ω − ωp−p′)δ(ε− εp)δ(ε′ − εp′). (A.31)

Next we notice that
[vp′εp′ − vpεp]2 ≈ v2F (ε− ε′)2 − 2v2F εε

′(1− cos θpp′), (A.32)

where the second term contains the usual transport scattering cross-section factor (1 − cos θpp′), however
unlike in the case of conductivity, here it gives only a subleading correction for the energy relaxation, and
can be neglected. As a result one finds

FE(ε, ε′, ω) ≈ 4λeps

ωD

(
ε− ε′

T

)2(
ω

ωD

)
. (A.33)
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Owing to the energy conserving delta-function in AE one can replace (ε−ε′)2 → ω2 in the final integrations.
Finally, calculating the energy current from Eq. (2.52)

jε = −
∫
p

vp(vp∇rT )
(εp
T

)2
fp(1− fp)gp = −κep∇T, (A.34)

with gp = BE/AE , we determine that the time scale τE , that defines thermal conductivity κep in Eq. (2.54),
is given by

τ−1E =
2λep
ω2
DT

3

∫ ωD

0

ω5dω

cosh(ω/T )− 1
. (A.35)

A.4. Spectral properties of the collision integral and super-diffusion on a Fermi surface

In the context of electron liquids when the electron-electron interaction establishes a hydrodynamic
regime it is known that there is a fundamental difference between the relaxation of even and odd modes
of the distribution function which is specific to the two-dimensional case. As first shown by Gurzhi and
coauthors [61, 62] the ratio of corresponding decay rates is γodd/γeven ∼ (T/EF )2 � 1 and physically comes
from the kinematics of head-on collisions. This problem was recently re-analyzed in the work by Ledwith
et al. [63] where special attention was paid to the dependence of these rates on the angular momentum.
It was found that (γl)even ∼ (T 2/EF ) ln l whereas (γl)odd ∼ (T 4/E3

F )l4 ln l for 1 < l < lmax ∼
√
EF /T .

In the context of graphene with electron-electron Coulomb interaction, it was recently shown that the
corresponding rate behaves as γl ∝ (e2/vF)2T |l|. The non-analytic dependence with respect to the angular
mode l gives rise to super-diffusion on the Dirac cone and Lévy-flight behavior in phase space, described by
a Fokker-Planck equation in phase space with a fractional Laplacian [64].

It is perhaps surprising, but to the best of our knowledge, a similar analysis has not been carried out
for electron-phonon liquids. We are aware of two related studies. In the work by Kabanov and Alexandrov
[46] the lowest eigenmode of the electron-phonon collision operator corresponding to the energy relaxation
was found. This result was obtained by a Fourier transform of the linearized Boltzmann equation that thus
can be reduced to an auxiliary problem to an effective Schrödinger equation in the Pöschl-Teller potential.
In the work by Gurevich and Laikhtman [54] energy and momentum transport in fluids was analyzed in
the regime dominated by phonon-phonon collisions. It was shown that at low enough temperatures the
relaxation is primarily governed by near-collinear scattering between acoustic phonons. Globally, however,
the relaxation is hierarchical. These collisions first thermalize unidirectional modes on fast scale leading
to angle-dependent temperature, which is followed by a slower relaxation process of angular diffusion on
a 2D sphere in 3D momentum space. Below we present general results for the electron-phonon collisions
applicable for any angular harmonic of non-equilibrium distributions and carry out the analysis for the 3D
case where we reveal the super-diffusive character of the relaxation.

We aim to solve the linearized Boltzmann equation(
∂

∂t
+ v∇r

)(
−T ∂f

∂εp

)
ψp(r, t) = δ Step{ψ}+ Sp (A.36)

with the source term Sp, by expanding the non-equilibrium distribution function into angular momentum
eigenmodes of the spherical harmonics

ψp =
∑
lm

Ylm(θp, ϕp)φlm(εp, r, t). (A.37)

In the limit of degenerate fermions we can ignore the |p| dependence of φlm. Then we multiply the Boltzmann
equation with the mode expansion by Y ∗l′m′(θp, ϕp) and integrate over momenta with the usual prescription∫
p
→ ν

4π

∫
dεp

∫
dΩp where the solid angle measure is dΩp = sin θpdθpdϕp. Then it follows after the

spacetime Fourier transform

(−iω + τ−1l )φlmδll′δm,m′ + ivF q(almδl′,l+1 + blmδl′,l−1)φlmδm,m′ = Slm (A.38)
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where

τ−1l =

∫
p

Ylm(θp, ϕp)δ St{Ylm}, Slm =

∫
p

Ylm(θp, ϕp)Sp. (A.39)

Here we used that τ−1l should not depend on m if the system is rotation invariant. The coefficients are

alm =
√

(l+1−m)(l+1+m)
4l(l+2)+3 and blm =

√
(l−m)(l+m)

4l2−1 . By using the explicit form of the collision integral, the

decay rates (inverse relaxation times) for the given angular harmonic can be presented as follows

γl = τ−1l =
1

2(2l + 1)

∑
m

∫
pp′

D(p,p′)[Ylm(θp, ϕp)− Ylm(θp′ , ϕp′)]
2
∑
σ=±

δ(εp − εp′ + σωp−p′). (A.40)

The summation over the azimuthal components of the angular momentum can be completed explicitly with
the help of the well known formula from the theory of spherical functions

1

2l + 1

∑
m

Ylm(θp, ϕp)Ylm(θp′ , ϕp′) =
1

4π
Pl(cos θp−p′), (A.41)

where Pl(x) are the Legendre polynomials. This leads to the following result for the matrix elements of the
collision operator as function of angular momentum:

γl =
1

2s

∫
dεdε′dωFl(ε, ε

′, ω)
ωf(ε)f(ε′)

|e−ε/T − e−ε′/T |
∑
σ=±

δ(ε′ − ε+ σω), (A.42)

Fl(ε, ε
′, ω) =

D0

2π

∫
pp′

[1− Pl(cos θp−p′)]δ(ε− εp)δ(ε′ − εp′)δ(ω − ωp−p′). (A.43)

Adopting the same reasoning as explained in Sec. A.1, we can ignore the ε, ε′ dependency of Fl for small
fermionic energies. The result then simplifies considerably and gives for ω < ωD

Fl (ω) =
4λeps

ωD

(
ω

ωD

)(
1− Pl

(
1−

(
ω

ωD

)2
))

, (A.44)

with the same convention for the electron-phonon coupling constant λep as used earlier. This yields

γl =
2λepT

3

ω2
D

∫ ωD
T

0

dx

x3
(

1− Pl
(

1−
(
T
ωD

)2
x2
))

cosh (x)− 1
. (A.45)

For l = 1 and l =2 we recover, of course, the known results for the scattering rates relevant in the resistivity
without drag

γ1 =

{
480ζ (5)λepT

5/ω4
D if T � ωD

λepT if T � ωD
, (A.46)

and for the viscosity

γ2 =

{
3γ1 if T � ωD
2γ1 if T � ωD

. (A.47)

To analyze the rate for arbitrary l we first use 1−Pl
(
1− y2

)
≈ 1

2 l (l + 1) y2
(
1 +O

(
l2y2

))
. This expansion

is sufficient for temperatures T � ωD/l and yields after a few steps γl = 1
2 l (l + 1) γ1. The situation is more

subtle in the regime ωD/l� T � ωD. To analyze the large-l behavior we split γl = δγ0 − δγl where

δγl =
2λepT

3

ω2
D

∫ ωD
T

0

dx

x3Pl

(
1−

(
T
ωD

)2
x2
)

cosh (x)− 1
. (A.48)
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Notice that δγl < δγ0 for l ≥ 1. Next, we employ the identity

∞∑
l=0

Pl
(
1− x2

)
tl =

1√
(t− 1)

2
+ 2tx2

(A.49)

and obtain for the generating function

δγ (t) =

∞∑
l=0

δγlt
l =

2λepT
3

ω2
D

∫ ωD
T

0

dx
x3√

(t− 1)
2

+ 2t
(
T
ωD

)2
x2 (cosh (x)− 1)

. (A.50)

The behavior of δγ (t→ 1− 0+) determines the large-l asymptotics of δγl. The generating function has a
well defined limit as t → 1 with leading corrections that are linear in 1 − t. This implies that δγl cannot
decay slower than l−2. Hence in the regime T � ωD/l follows that

γl→∞ = δγ0 =

{
24ζ (3)λepT

3/ω2
D if T � ωD

2λepT if T � ωD
(A.51)

This analysis reveals that the behavior at low temperatures and for a sufficiently small angular momentum
modes l can be captured via diffusion processes on the Fermi surface. However, at any finite T , high angular
modes with angular momentum l � ωD/T undergo super-diffusion. These results are further discussed in
section 2.4 in the main text.
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[101] Ya. M. Blanter and M. Büttiker, Phys. Rep. 336, 1–166 (2000).
[102] A. H. Steinbach, J. M. Martinis, and M. H. Devoret, Phys. Rev. Lett. 76, 3806 (1996).
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Corbino FETs in magnetic field: highly tunable photodetectors
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We study gated field effect transistors (FETs) with an eccentric Corbino-disk geometry, such that
the drain spans its circumference while the off-center inner ring acts as a source. An AC THz
potential difference is applied between source and gate while a static source-drain voltage, rectified
by the nonlinearities of FET electrons, is measured. When a magnetic field is applied perpendicular
to the device, a strong resonance appears at the cyclotron frequency. The strength of the resonance
can be tuned by changing the eccentricity of the disk. We show that there is an optimum value of
the eccentricity that maximizes the responsivity of the FET.

I. INTRODUCTION

Electromagnetic radiation is one of the prime tools to
investigate matter and its properties. This is made possi-
ble by the existence of efficient and compact sources and
detectors in the whole spectrum, with the crucial excep-
tion of the low-THz range (between 0.1 and 30 THz).
This fact, commonly referred to as the “terahertz gap”,
has slowed down technological developments in, e.g., non-
destructive imaging, biosensing, and spectroscopy of ma-
terials [1–3]. In modern optoelectronics there is a deep
need for efficient and tunable photodetectors that oper-
ate in this range [1–6]. Dyakonov and Shur, in 1996, pre-
dicted that a field effect transistor (FET), or any gated
two-dimensional (2D) electron liquid, could be used to
generate and detect THz radiation [7–9].

The device in their seminal work consists of a square
semiconductor quantum-well cavity, hosting a 2D elec-
tron gas, connected to a source and a drain and in close
proximity to a metal gate. When a THz AC source-
gate voltage is applied, typically from incoming THz ra-
diation impinging on an antenna, asymmetric boundary
conditions and intrinsic nonlinearities of the electron fluid
produce a rectified DC source-drain voltage. Resonances
are observed in the rectified (photo)voltage at frequencies
that allow plasmons (collective long-wavelength charge
density fluctuations [10]) to undergo constructive inter-
ference. This phenomenon has been experimentally veri-
fied in semiconductor quantum wells at room [11–13] and
low temperatures [14] and in graphene-based FETs [15–
19].

Recently, it has been shown that the responsivity of
Dyakonov-Shur THz detectors can be greatly enhanced
by shaping them as Corbino disks [20]. In such geome-
try, the electric field becomes singular at the inner con-
tact ring (the source), and the field enhancement results
in a strong nonlinear rectification at the outer ring (the
drain). Motivated by such findings, here we study sim-
ilar photodetectors in a uniform magnetic field perpen-
dicular to the electron liquid, previously performed in
other geometries and shown to enhance photodetection
[21 and 22]. Under this condition, the spectrum of plas-
mon modes, labelled by their “winding number” η, i.e.
the number of oscillations of the electric field in the angu-

lar direction, is recontructed. Notably, the plasmon spec-
trum splits into two parts, revealing both bulk and edge
modes. Edge magnetoplasmons have frequencies below
the cyclotron frequency for values of η that are not too
large. Bulk-plasmons’ frequencies are instead “pushed”
above the cyclotron frequency.

As shown in what follows, the energy of magnetoplas-
mons depends on the sign of η, with edge modes ap-
pearing only at positive winding numbers (for magnetic
fields along the direction orthogonal to the disk). Fur-
thermore, depending on device parameters and at odds
with Corbino disks characterized by symmetric boundary
conditions [23–25], the dispersion of bulk modes can ex-
hibit a nearly-flat band close to the cyclotron frequency.
When the radii of the source and drain rings are compa-
rable, modes characterized by different winding numbers
appear to have all very similar frequencies. Because of
this feature, we would expect the response of the sys-
tem to be greatly enhanced when the frequency of the
external field is close to the cyclotron one, if we would
be able to excite plasmon modes with different winding
numbers at once. Since the cyclotron frequency can be
tuned with the external magnetic field, the Corbino pho-
todetector could be capable of selectively detecting fre-
quencies deep in the THz gap with a high responsivity.
Unfortunately, in the Corbino geometry this would re-
quire a careful fine-tuning of the potential profile at the
source (inner) ring, which is highly unlikely to be realized
experimentally with a simple circular contact connected
to an antenna. The circular symmetry of the Corbino
disk indeed forbids the mixing of modes of different wind-
ing numbers, and therefore a homogeneous potential at
the source would only excite non-winding plasmons with
η = 0.

To overcome this limitation, we study an “eccentric”
Corbino geometry, whereby the inner source ring is off-
centered and made closer to the outer edge on one side of
the disk. By breaking the circular symmetry, the eccen-
tric geometry enables the excitation of modes character-
ized by different winding numbers with a simple uniform
source potential. The photoresponse is greatly enhanced
at frequencies near the cyclotron one when the source
is in close proximity of the drain. This requirement is
reminiscent of the condition needed to obtain a plasmon
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flat band in concentric Corbino geometries. Therefore,
in eccentric geometries, the photoresponse enhancement
is controlled not only by the size of the inner ring, but
also by its closeness to the drain. We find that, for any
pair of source and drain radii, there is an optimal value
of the eccentricity that maximizes the photoresponse.

In Sect. II we present the model of the electron cav-
ity as a hydrodynamic fluid in the presence of a uniform
perpendicular magnetic field. In Sect. III we apply said
theory to model a Corbino disk. In Sect. IV we study
an eccentric Corbino disk. In Sect. V we report the sum-
mary of our findings and our main conclusions. We note
that the description we use holds for a variety of different
systems [7–9, 18, and 26], and therefore our predictions
have a broad range of applicability.

II. THE MODEL OF THE CAVITY

We consider a general FET, where the active compo-
nent is a 2D electron liquid placed in close proximity to
a metal gate. The geometry used in this paper is that of
a Corbino disk with source and drain electrodes attached
to the inner and outer edges, respectively. It should be
noted, however, that the following applies to general 2D
geometries. A radiation field oscillating at frequency ω
is applied between the source and the gate, typically via
an antenna, while the drain is left fluctuating, i.e. no
current flows through it. We will study rectification of
the oscillating field due to the intrinsic hydrodynamic
nonlinearities of the electron liquid [18, 27–32] (we dis-
cuss below the applicability of such model). A rectified
DC source-drain potential difference, proportional to the
power of the incident radiation, is therefore measured
between source and drain at zero applied bias.

Since we focus on the long-wavelength low-frequency
dynamics of the electron liquid, we model it by means
of hydrodynamic equations [18 and 33]. These govern
the relationship between the density, current and electric
field within the device. We stress that equations for-
mally equivalent to hydrodynamic ones can be derived
by inverting the nonlinear relation between current and
electric field of the electron fluid [18], with no reference to
typical scattering times [34] (i.e. the relations hold true
also for non-interacting electrons). Therefore hydrody-
namic equations should be seen here as an efficient way to
incorporate nonlinearities in the long-wavelength descrip-
tion of the electron liquid. The first of these relations is
the continuity equation, ∂tρ(r, t)+∇· [ρ(r, t)v(r, t)] = 0,
which connects the periodic accumulation of charge den-
sity due to the oscillating radiation field, ρ(r, t), to the
flow velocity, v(r, t). Since electrons are charged, ρ(r, t)
induces a nonlocal Hartree-like electric potential accord-
ing to [18]

U(r, t) =

∫
dr′V (r − r′)ρ(r′, t) , (1)

which in turn acts as the restoring force that sustains

charge oscillations in a feedback loop. In Eq. (1), V (r −
r′) is the Coulomb interaction between two charges at
positions r and r′. The nearby gate, which we assume to
be a perfect conductor, has an important effect: mirror
charges screen the tail of the Coulomb interaction and
make it effectively short-ranged. In view of this fact, and
to simplify the following derivation, we will employ the
so-called “local-gate approximation” [15 and 18]. The
latter consists in assuming a local relation between the
self-induced field and charge density,

U(r, t) = ρ(r, t)/C , (2)

in lieu of the nonlocal one of Eq. (1). This approximation
has been shown [24 and 35] to well reproduce results ob-
tained with Eq. (1) when the gate is explicitly accounted
for. In the specific case under consideration, it allows for
the emergence of edge magnetoplasmons in both semi-
infinite planes and hollow disks. Using the local-gate re-
lation between electric potential and charge density, the
continuity equation becomes

∂tU(r, t) = −∇ · [U(r, t)v(r, t)] . (3)

The equation relating the flow velocity to the self-induced
field is assumed to have the following Euler-like form [18]

e

m
∇U(r, t) = ∂tv(r, t) +

1

τ
v(r, t) + ωcẑ × v(r, t)

+
[
v(r, t) · ∇]v(r, t) + v(r, t)×

[
∇× v(r, t)

]
. (4)

In these equations, −e is the electron charge, m their
effective mass and τ the average time between two suc-
cessive momentum-non-conserving collisions with impu-
rities or phonons. Finally, ωc = eB/m is the cyclotron
frequency and B is the magnetic field applied orthogo-
nal to the 2D electron liquid. The term v(r, t) ×

[
∇ ×

v(r, t)
]
, known as the Lamb vector, represents a nonlin-

ear Lorentz force due to the vortical movement of the
electron fluid itself [36], and can be combined with the
term

[
v(r, t) · ∇]v(r, t) into the single term ∇v2(r, t)/2.

We solve the problem posed by the hydrodynamic equa-
tions (3)-(4) in conjunction with the usual Dyakonov-
Shur boundary conditions

U(r, t)|source = Uext(r) cos(ωt) ,

n̂ · v(r, t)|drain = 0 ,
(5)

corresponding to an oscillating gate-source potential from
the antenna output and an open-circuit drain. Here n̂ is
the unit vector normal to the drain surface.

To solve the problem above, we resort to a perturba-
tive treatment of the system of nonlinear equations. We
assume Uext to be a small parameter and calculate the
rectified nonlinear response as a perturbation to the po-
tential. We then expand

U(r, t) = U0 + U1(r, t) + U2(r, t) +O(U3
ext),

v(r, t) = v1(r, t) + v2(r, t) +O(U3
ext).

(6)
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Here U0 < 0 is the equilibrium gate potential (which fixes
the charge density in the FET according to ρ0 = CU0),
and the equilibrium velocity, v0, is zero by definition.
U1(r, t) and v1(r, t), and U2(r, t) and v2(r, t) are the lin-
ear (order Uext) and nonlinear (order U2

ext) contributions
to the potential and velocity, respectively. Note that,
although small, U2(r, t) is responsible for the only non-
trivial DC rectified potential, which can be detected by
measuring an averaged source-to-drain voltage drop [7–
9, 15, and 18].

Plugging the expansions in Eq. (6) into the set of
equations (2)-(5), we collect terms of order Uext and
U2
ext into two systems of differential equations, which

are linear in U1(r, t) and v1(r, t), and U2(r, t) and
v2(r, t), respectively. The former yields the linear re-
sponse of the system which oscillates at the same fre-
quency as the external source-gate perturbation poten-
tial, i.e. U1(r, t) = U1(r)e−iωt+U∗1 (r)eiωt and v1(r, t) =
v1(r)e−iωt + v∗1(r)eiωt. Conversely, the system of equa-
tions for U2(r, t) and v2(r, t) yields solutions oscillating
at ±2ω and a rectified (time-independent) one. To focus
on the latter part of the potential U2(r, t), we average
equations over time by integrating over a period of oscil-
lation, T = 2π/ω. In this way, the time-dependent parts
of U2(r, t) and v2(r, t) vanish.

The details of the derivation are given in App. A. The
linear systems of equations for U1(r, t) and v1(r, t), and
U2(r, t) and v2(r, t) read

[
ω2
c − ω2f2ω

]
U1(r)− s2fω∇2U1(r) = 0

U1(r)
∣∣∣
source

= Uext(r)

n̂ ·
[
iωfω∇U1(r) + ωcẑ ×∇U1(r)

]∣∣∣
drain

= 0

(7)

where s =
√
−eU0/m is the plasma wave velocity, fω =

1 + i/(ωτ), and

1 + (τωc)
2

U0τ
∇ · [U∗1 (r)v1(r) + U1(r)v∗1(r)] = ∇2φ(r)

φ(r)− v∗1(r) · v1(r)
∣∣∣
source

= 0

n̂ ·
[
ωcẑ ×∇φ(r)− 1

τ
∇φ(r)

]∣∣∣
drain

= 0

.

(8)
Here, φ(r) = v∗1(r) · v1(r)− eU2(r)/m and

v1(r) =
s2

U0

iωfω∇U1(r) + ωcẑ ×∇U1(r)

ω2
c − ω2f2ω

. (9)

The Poisson problem in Eqs. (8) admits a unique solution
for φ(r) and therefore for U2(r) = m/e

[
v∗1(r) · v1(r) −

φ(r)
]
. In the absence of a magnetic field, the photore-

sponse of the system will exhibit resonances at given fre-
quencies dependant on the geometry of the system. The
lowest of these frequencies is denoted as ωB and deter-
mined numerically for any given disk geometry for later
use (see the following sections).
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FIG. 1. Density plots of the real part of the linear potential,
U1(r) for ω = ωc = 5 s/r0. Panel (a) is evaluated at η = 3.
We can observe three complete oscillations of the potential
around the circumference. Panel (b) is evaluated at η = 5.
Similarly, here we observe five complete oscillations. These
are evaluated at τ = 5 r0/s, where r1 = 2 r0.

III. CONCENTRIC CORBINO DISK

We first solve Eqs. (7)-(8) for a concentric Corbino disk
akin to the one studied in Ref.[20], whose inner (source)
and outer (drain) radii are r0 and r1, respectively. In this
geometry, we can readily solve Eqs. (7) analytically and
determine the full spectrum of magnetoplasmon modes,
owing to the inherent rotational symmetry of the sys-
tem. Such symmetry enables the separation of radial
and angular variables within the solution. We note that
our study differs from that of Ref.[20] in two respects.
Firstly, we consider the role of the magnetic field in mod-
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ifying the spectrum of magnetoplasmons. Secondly, we
consider the impact of source-to-gate voltages having a
finite (integer) winding number η. We therefore impose
that U1(r) is equal to Ūext cos(ηθ) at the source, where
Ūext is the magnitude of the external potential and θ
is the angle between r and the x̂-axis. Hence the lin-
ear solution will have winding numbers ±η. Defining
k2 = (ω2

c − ω2f2ω)sign(ω2
c − ω2)/(s2fω), the solutions of

the system of linear differential equations (7) takes the

form U1(r) = U
(η)
1 (r, θ) + U

(−η)
1 (r, θ), where

U
(η)
1 (r, θ) =

{ [
AηIη(kr) +BηKη(kr)]eiηθ , if ω2 < ω2

c[
CηJη(kr) +DηYη(kr)]eiηθ , if ω2 > ω2

c

(10)
Here, Jη(x) = J−η(x) [Iη(x) = I−η(x)] and Yη(x) =
Y−η(x) [Kη(x) = K−η(x)] are (modified) Bessel func-
tions of the first and second kind, respectively. The co-
efficients Aη, Bη, Cη and Dη are determined by apply-
ing the boundary conditions. After some lengthy but
straightforward algebra we find, for |ω| < |ωc|,

U
(η)
1 (r, θ) =

Ūext
2

[
Iη(kr)

Iη(kr0)
−
I ′η(kr1)− γηIη(kr1)

Dη(ω)Iη(kr0)

×
(
Kη(kr)

Kη(kr0)
− Iη(kr)

Iη(kr0)

)]
eiθη, (11)

where γη = ωcη/(ωfωkr1), I ′η(x) = dIη(x)/dx, K ′η(x) =
dKη(x)/dx, and

Dη(ω) =
K ′η(kr1)− γηKη(kr1)

Kη(kr0)
−
I ′η(kr1)− γηIη(kr1)

Iη(kr0)
.

(12)

For |ω| > |ωc|, U (η)
1 (r, θ) has the same form of Eqs. (11)-

(12), with Jn(kr) and Yn(kr) in lieu of In(kr) and
Kn(kr), respectively. In Fig. 1 we plot the real part of

the linear potential U
(η)
1 (r). Counting oscillations at the

outer perimeter of the disk (the drain), it can be seen
that the two edge plasmons produced by manual injec-
tion at the source have η = 3 [panel (a)] and η = 5 [panel
(b)], respectively. In this figure we scale the electrical
potential with U0, lengths with the source radius r0 and
times with r0/s.

Bulk and edge magnetoplasmons can be identified as
the zeros of Dη(ω) and its counterpart for |ω| > |ωc|. For
ωc > 0, the frequencies of magnetoplasmon modes as a
function of the winding number η are shown in Fig. 2 (a).
In this figure potential, lengths and times are given in the
same units of Fig. 1. For convenience, frequencies are
scaled with the first resonant frequency at zero magnetic
field, ωB . There, ungapped edge modes are seen to wind

in the +θ̂ direction (as they only exist for positive η) and
are localised at the outer edge of the disk. Winding in
the opposite direction cannot occur as plasmons would
be bound to the inner edge, which is however held at a
fixed potential.

We also observe that bulk modes exhibit a variable de-
gree of asymmetry: in general, the frequencies are higher

for magnetoplasmons characterized by negative winding
numbers. The asymmetry can be traced back to γη de-
fined after Eq. (11), the only parameter that depends on
the sign of η. Physically, this asymmetry arises from the
relative alignment between the Lorentz force induced by
the magnetic field, acting on the plasmons’ constituent
electrons, and the plasmons’ electric field. The splitting
in frequency of bulk modes can be observed in Fig. 2 (b)
where upper branches refer to negative winding num-
bers. In passing, we note that analogous splittings of
frequencies of bulk modes have previously been observed
in conventional disk geometries [23 and 24] as well as
Corbino disks with symmetric boundary conditions [25].
In contrast, the present case, characterized by asymmet-
ric boundary conditions, admits an additional nearly-flat
band of normal modes. In fact, while the lowest branch
of negative-η bulk modes displays an approximately lin-
ear dispersion, positive-η modes oscillate at around the
cyclotron frequency. The latter plasmon nearly-flat band
has no counterpart in conventional disks [23 and 24] or
Corbino disks under symmetric boundary conditions [25].
We stress that the nearly-flat band becomes a clear fea-
ture of the spectrum only when the inner and outer radii
of the Corbino disk are comparable. When this is not
realized, it becomes unstable against the introduction of
a small damping 1/τ , and the conventional disk solution
is recovered [23 and 24].

The flat plasmon band at ω ' ωc and η > 0 in
Fig. 2 (a) has an important consequence for the nonlin-
ear responsivity of the Corbino disk. For every external
source-to-gate potential Ūext cos(ηθ), we expect the non-
linear rectified potential U2(r) to exhibit a resonance at
ω ' ωc. In fact, U1(r0, θ) can be decomposed into the
sum of two counter-winding potentials, characterized by
winding numbers ±η, one of which (depending on the di-
rection of the magnetic field and the sign of ωc) can excite
a magnetoplasmon mode at the cyclotron frequency. In
turn, such mode produces a rectified voltage U2(r) at
the outer rim of the Corbino disk. We note that such
voltage, thanks to the interference between oppositely-
winding magnetoplasmons, not only is time-independent
but it also contains a non-winding component character-
ized by η = 0 that does not vanish when integrated over
the drain.

In Fig. 3(a) we show U2(r), obtained by numerically
solving Eq. (8), integrated over the outer rim of the
Corbino disk (i.e. the drain) for the first few values of η
and as a function of ω. We clearly recognize a resonance
at ω ' ωc for all values of η. In Fig. 3(b), we show how
the maximum of such resonance scales with η.

Such result has an attractive implication. If we would
be able to excite at once magnetoplasmons of frequency
ω ' ωc in a broad range of winding numbers, the result-
ing resonance would grow to become particularly strong,
therefore greatly enhancing the responsivity of the de-
vice. Furthermore, its position could be tuned by chang-
ing the external magnetic field, and it could be made to
span the THz range practically at will. Unfortunately,
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the current geometry does not allow to easily achieve such
result: to excite magnetoplasmons with different winding
numbers it is necessary to carefully engineer the poten-
tial applied at the source. This requires superimposing
various harmonics characterized by different values of η,
a fact that is at present experimentally challenging.

For this reason, we will now move to study the experi-
mentally more relevant case of an eccentric Corbino disk.
In fact, while in the Corbino disk circular symmetry leads
to the decoupling of various modes, the lack of symme-
try of the eccentric disc allows their mixing. In turn,
this enables the use of more realistic source potentials
(i.e. uniform along the inner ring) to access the strong
resonance at ω ' ωc, as we proceed to show.

IV. ECCENTRIC CORBINO DISK

The eccentric Corbino FET geometry is shown
schematically in Fig. 4. In this geometry, the inner source
ring is shrunk and placed off-centre. The non-linear
hydrodynamic problem, with the asymmetric boundary
conditions of Eq. (5), can be solved numerically as de-
scribed in Sect. II. First, Eqs. (7) are solved for the linear
potential. Then, by using Eq. (9), Eqs. (8) are solved for
φ(r). From the latter, we can then calculate the non-
linear potential U2(r). Since both Eqs. (7) and (8) are
Poisson problems, they admit unique solutions for a given
set of boundary conditions. We define the eccentricity as
ξ = d/r1 where d is the distance of the centre of the
source from the centre of the disk, and r1 is the outer
radius of the disk. To aid comparison with the previous
section, we keep the drain radius identical to that of the
concentric Corbino disk, and we therefore scale lengths
[times] with r1/2 [r1/(2s)]. Similarly, as in the previ-
ous section, frequencies will be scaled by ωB , the lowest
resonance frequency at zero magnetic field determined
numerically for any given geometry.

We plot the non-linear potential U2(r), integrated
along the drain, as a function of the AC driving frequency
for various magnetic field strengths in Fig. 5 (a). For each
curve, resonances at ω < ωc correspond to edge modes,
while those at ω ≥ ωc can be due to both bulk or edge
ones. Now that the source has been placed off-centre and
close to the drain, we can see that edge plasmons with dif-
fering winding numbers, and hence different frequencies,
can propagate. As an example, for ωc = 7ωB , we can
see three edge modes below the cyclotron frequency (of
frequencies ω/ωB ≈ 1.5, 3.2, 4.8) and one mode above
it (at ω/ωB ≈ 8.4). As expected from the discussion in
the previous section, for all field strengths the first bulk
mode, fixed around the cyclotron frequency, results in
the largest resonance peak.

It should be noted that although Fig. 5 (a) is obtained
by setting the eccentricity ξ = 0.95, this is not the op-
timum value that maximizes the photoresponse. In fact
Fig. 5 (b) shows that for a source of radius r0 = 0.05 r1/2,
with ωc = 7ωB as used in panel (a), the optimum eccen-
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FIG. 2. Panel (a) The resonant frequencies of the linear po-

tential, U
(η)
1 (r, θ), obtained from Eq. (11) and plotted against

the winding number η defined before Eq. (10). Bulk mag-
netoplasmon modes are represented by purple squares, while
edge magnetoplasmons are represented by red circles. Panel

(b) The resonant frequencies of the linear potential, U
(η)
1 (r),

against cyclotron frequency, at fixed |η| = 8. Solid (dashed)
lines refer to plasmons propagating in the counterclockwise
(clockwise) direction. The dotted line denotes the edge state.
The purple solid line corresponds to the mode oscillating at
the cyclotron frequency. Units are the same as in Fig. 1. Both
figures are obtained in the limit τ →∞.

tricity is ξ ≈ 0.8. Fig. 5 (b) further shows that the opti-
mum eccentricity is inversely proportional to the source
radius, r0. It can be further shown that it increases with
the drain radius, r1, and cyclotron frequency, ωc. As
such the geometry of such a device must be tailored to
the expected frequency of incoming light.

We now wish to briefly comment on the feasibility of
our device. We consider an FET based on doped bi-
layer graphene at relatively small (i.e. non-quantizing)
magnetic fields, with dimensions on the order of a few
micrometers: similar devices have been recently realised
and shown to be significantly tunable via the applica-
tion of gate voltage [26]. Given the lowest bulk plas-
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(a)

(b)

FIG. 3. Panel (a) The non-linear potential at the drain, ob-
tained by numerically solving Eqs. (8), plotted against fre-
quency, at ωc = 5ωB . Different curves correspond to different
winding numbers, η, of the source potential. We note that the
first bulk mode remains pinned at ω = ωc and only increases
in intensity with |η|, while all other modes slowly shift to-
wards higher frequencies. The splitting of higher-order bulk
modes becomes more and more evident at larger η: peaks
split in two, as seen for e.g. η = 6. Units are the same as in
Figs. 1 and 2. For all curves we have set the collision time
τ = 5 r0/s, and the outer radius, r1 = 2 r0. Panel (b) The
value of the nonlinear potential at ω = ωc as a function of η.
The dip at η = 1 is due to the fact that, for small values of η,
the peak is slightly shifted to the right.

mon frequency of such devices [17, 26, 37, and 38],
ωB = 300 GHz (this is typically dependent on system size
and for graphene can be changed via the gate voltage),
and an effective electron mass [26], m ≈ 0.036me, where
me is the free electron mass, we can estimate the lower
limit for the magnetic field. The lowest observable edge
plasmon frequency is always similar to the lowest bulk
plasmon frequency provided the source radius is small,
thus, by equating the lowest bulk plasmon frequency with
the cyclotron frequency, ωc = eB/m∗, our estimate for
the minimum magnetic field becomes Bmin ≈ 0.06 T.

FIG. 4. Schematic of the eccentric Corbino disk FET studied
in this paper. The perimeter of the device acts as the drain
while a finite small source is connected to the top of the cavity.
Ugate is the back gate DC bias voltage, which in our case is
constant in time and used to fix the charge density. The
FET rectifies the AC source-gate voltage, Uac(t), into the DC
source-drain voltage ∆U .

This magnitude is easily achievable in experiments. In
passing, we mention that alternatives to applying an ex-
ternal magnetic field do exist [33 and 39].

V. CONCLUSIONS

In this paper we have studied Corbino-disk-shaped
photodetectors with sources at the inner ring which os-
cillate at the frequency of the incoming radiation with
respect to metallic back-gates. The design is similar to
that of conventional Dyakonov-Shur devices, in that a
rectified potential is measured at the outer rim of the
disk, which acts as a fluctuating drain. By applying a
magnetic field in the direction perpendicular to the cav-
ity, the rectification of long-wavelength radiation occurs
from the constructive interference of not only bulk plas-
mons, but also edge magnetoplasmons.

In this geometry, plasmons can circulate along the
entirety of the disk’s perimeter nearly unimpeded [40].
Plasmons in this configuration are categorised by their
winding number, i.e. the number of complete oscillations
of the electron density that occur over a full revolution
around the disk. In the first part of the paper, we stud-
ied the response of a conventional Corbino-disk photode-
tector with the source-ring located at the centre of the
disk. Said geometry admits an analytic solution. In this
configuration individual plasmon modes can be manually
injected by selecting the winding number of the external
source-to-gate potential. It is important to note that, as
shown in Sect. III, all modes, and in particular ones at
ω ' ωc (which exist only in the presence of asymmetric
boundary conditions and up to large winding numbers, as
long as inner and outer radii are comparable and damping
is small), produce nonlinear rectified potentials that are
also uniform along the edge. Therefore, all contributions
at ω ' ωc can in principle be summed up, with a careful
choice of the source-to-gate external potential, and re-
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(a)

(b)

FIG. 5. Panel (a) The nonlinear potential, U2(r) integrated
along the drain, obtained by numerically solving the set of
Eqs. (7)-(8), plotted as a function of the frequency of the
incoming radiation. Different curves correspond to different
values of the magnetic field, i.e. of the cyclotron frequency
ωc. For all curves we have set the collision time τ = 10 r1/2s,
and the inner radius r0 = 0.05 r1/2, and thus the eccentricity
is ξ = d/r1 = 0.95. Additionally Uext = U0. The inset
shows a magnification of the graph for 0 < ω/ωB < 4. Here
it is evident that the peak at ω ≈ 3ωB shifts to the right
as ωc increases. Panel (b) The strength of the peak of the
nonlinear potential at the cyclotron frequency, for ωc = 7ωB ,
plotted against eccentricity for different source radii. The
other parameters are the same of Panel (a).

sult in a large resonance at the cyclotron frequency that
greatly enhances the responsivity of the device. Since
its frequency depends on the magnetic field, exploiting
such strong resonance can lead to the realization of ef-
ficient and tunable THz photodetectors. Unfortunately,
this programme is difficult to be achieved in practice.

Instead, through breaking the circular symmetry of the

system by placing the source off-center and closer to the
edge of the disk, magnetoplasmons with various wind-
ing numbers can be excited with source-to-gate voltages
easily achievable experimentally (i.e. uniform along the
source perimeter). By tuning the degree of eccentricity
of the system, we are able to excite various magneto-
plasmons at once. Therefore, we are able to enhance
the photodetector responsivity at the frequency range
corresponding to the cyclotron one. The best protocol
for photodetection clearly depends on one’s aims. When
searching for the frequency of incoming radiation, it is
best to fix the luminosity of the radiation, where possible,
and scan over a presumed range of frequencies by chang-
ing the magnetic field strength. When measuring the
luminosity of incoming radiation it is best to adjust the
cyclotron frequency to match the incoming radiation’s
frequency to achieve a high gain.
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Appendix A: Derivation of Eqs. (7)-(8)

Plugging the expansions in Eq. (6) into the set of equa-
tions (2)-(5), we collect terms of order Uext and U2

ext into
two systems of linear differential equations, i.e.

∂tU1(r, t) = −U0∇ · v1(r, t)

e

m
∇U1(r, t) = ∂tv1(r, t) +

1

τ
v1(r, t) + ωcẑ × v1(r, t)

U1(r, t)|source = Uext cos(ωt)

n̂ · v1(r, t)|drain = 0

,

(A1)
and

∂tU2(r, t) = −∇ · [U0v2(r, t) + U1(r, t)v1(r, t)]

−∇φ(r, t) = ∂tv2(r, t) +
1

τ
v2(r, t) + ωcẑ × v2(r, t)

U2(r, t)|source = 0,

n̂ · v2(r, t)|drain = 0.

,

(A2)
respectively. Here we defined φ(r, t) = v21(r, t)/2 −
eU2(r, t)/m. Eqs. (A1) form a closed set of linear differ-
ential equations that can be solved exactly. Their result
is then substituted into Eqs. (A2), which are themselves
linear in U2(r, t) and v2(r, t) and whose solution yields
the rectified potential. The second order set of equa-
tions (A2) can be simplified further by noting that we
are looking for a time-independent potential, therefore
by integrating over a period of oscillation, T = 2π/ω, the
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time-dependent parts of U2(r, t) and v2(r, t) will vanish.
For a generic function of time A(t), we define its time-
average as

〈A(t)〉 =
1

T

∫ T

0

A(t)dt . (A3)

After time averaging, Eq. (A2) becomes

∇ · [U0v2(r) + 〈U1(r, t)v1(r, t)〉] = 0

1

τ
v2(r) + ωcẑ × v2(r) = −∇φ(r)

U2(r)|source = 0

n̂ · v2(r)|drain = 0

, (A4)

where now φ(r, t) = 〈v21(r, t)〉 /2− eU2(r)/m, and U2(r)
and v2(r) denote the time-independent components of
U2(r, t) and v2(r, t), respectively.

We will now further simplify Eqs. (A1). We first obtain
two equations by applying the operator ∂t + 1/τ and the
cross product with ẑ to the second of Eqs. (A1). We then
combine the two equations we obtained, and get[(

∂t +
1

τ

)2

+ ω2
c

]
v1(r, t) =

e

m

[(
∂t +

1

τ

)
∇U1(r, t)

− ωcẑ ×∇U1(r, t)

]
. (A5)

The new set of equations is solved by using the Ansatz
(see also the main text, Sect. II)

U1(r, t) = U1(r)e−iωt + U∗1 (r)eiωt,

v1(r, t) = v1(r)e−iωt + v∗1(r)eiωt,
(A6)

from which we obtain the following set of time-
independent linear equations:

− iωU1(r) + U0∇ · v1(r) = 0 , (A7)

and

[ω2f2ω − ω2
c ]v1(r) =

e

m

[
iωfω∇U1(r) + ωcẑ ×∇U1(r)

]
,

(A8)
subject to the boundary conditions

U1(r)|source =
Uext

2
,

n̂ · v1(r)|drain = 0.
(A9)

In these equations we introduced fω = 1 + i/(ωτ). In
addition to Eqs. (A7)-(A9), we have a set of equation
for the quantities U∗1 (r) and v∗1(r). These are obtained
from Eqs. (A7)-(A9) by taking their complex conjugates.
Substituting Eq. (A8) into (A7), results in the following
closed set of equations for U1(r):

[
ω2
c − ω2f2ω

]
U1(r)− s2fω∇2U1(r) = 0

U1(r)
∣∣∣
source

=
Uext

2

n̂ ·
[
iωfω∇U1(r) + ωcẑ ×∇U1(r)

]∣∣∣
drain

= 0

(A10)

Here we define the plasma wave velocity, s =
√
−eU0/m,

where U0, the equilibrium potential, is negative for an
electron fluid. The first of Eqs. (A10) defines a Poisson
problem which, once boundary conditions are specified
as in the second and third of (A10), admits a unique
solution. Such solution is determined analytically for the
case of a concentric Corbino-disk geometry in Sect. III
and numerically for an eccentric disk in Sect. IV.

Once the set of Eqs. (A10) is solved and U1(r) has
been determined, the velocity is given by

v1(r) =
s2

U0

iωfω∇U1(r) + ωcẑ ×∇U1(r)

ω2
c − ω2f2ω

. (A11)

It is then possible to approach the problem posed by
the set of Eqs. (A4) in a similar fashion. Plugging the
definitions in Eqs. (A6) in there, we find

∇ · [U0v2(r) + U∗1 (r)v1(r) + U1(r)v∗1(r)] = 0

1

τ
v2(r) + ωcẑ × v2(r) = −∇φ(r)

U2(r)|source = 0

v2(r)|drain = 0
(A12)

where, explicitly, φ(r) = v∗1(r) · v1(r) − eU2(r)/m. To
further simplify Eq. (A12) and reduce it to a Poisson
problem, we first obtain two equations by taking the di-
vergence and applying the operator ẑ ×∇ to the second
of its equations. We get

1

τ
∇ · v2(r)− ωcẑ · ∇ × v2(r) = ∇2φ(r) , (A13)

and

1

τ
ẑ · ∇ × v2(r) + ωc∇ · v2(r) = 0 . (A14)

Combining such equations with the first of Eqs. (A12)
gives

1 + (τωc)
2

U0τ
∇ · [U∗1 (r)v1(r) + U1(r)v∗1(r)] = ∇2φ(r) .

(A15)
Eq. (A15) has the form of a Poisson equation for φ(r).
Given appropriate boundary conditions, the latter can be
solved and yield a unique solution for φ(r) and therefore
for U2(r) = m/e

[
v∗1(r) · v1(r) − φ(r)

]
. To determine

the boundary conditions for φ(r), we first take the cross
product of the second of Eqs. (A12) with ẑ, which yields

1

τ
ẑ × v2(r)− ωcv2(r) = −ẑ ×∇φ(r) . (A16)

Substituting this back into the second of Eqs. (A12) we
get[

1 + (ωcτ)2
]
v2(r) = ωcτ

2ẑ ×∇φ(r)− τ∇φ(r) . (A17)
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This leads us to the following solvable set of differential equations in φ(r):

1 + (τωc)
2

U0τ
∇ · [U∗1 (r)v1(r) + U1(r)v∗1(r)] = ∇2φ(r)

φ(r)− v∗1(r) · v1(r)
∣∣∣
source

= 0

ωcẑ ×∇φ(r)− 1

τ
∇φ(r)

∣∣∣
drain

= 0

.

(A18)
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When two resonantly interacting modes are in contact with a thermostat, their statistics is exactly
Gaussian and the modes are statistically independent despite strong interaction. Considering noise-
driven system, we show that when one mode is pumped and another dissipates, the statistics (of such
cascades) is never close to Gaussian no matter the interaction/noise relation. One finds substantial
phase correlation in the limit of strong interaction (weak noise). Surprisingly, for both cascades,
the mutual information between modes increases and entropy further decreases when interaction
strength decreases. We use the model to elucidate the fundamental problem of far-from equilibrium
physics: where the information (entropy deficit) is encoded and how singular measures form. For
an instability-driven system (a laser), even a small added noise leads to large fluctuations of the
relative phase near the stability threshold, while far from it we show that the conversion into the
second harmonic is weakly affected by noise.

I. INTRODUCTION

Second harmonic generation is the simplest fundamen-
tal process of nonlinear wave physics, which is also in the
center of numerous practical applications in laser physics
and beyond. The dynamics of the process has been stud-
ied exhaustively [1, 2], which cannot be said about statis-
tics, despite the fact that understanding the influence of
noise on the energy conversion is of paramount practi-
cal importance, recently enhanced by the use of meta-
materials [3]. Here we address this problem by studying
theoretically a two-mode resonant system driven by a
combination of pumping and random noise. Our moti-
vation is two-fold. Apart from the classical conversion
problem, we find this system ideally suited for elucidat-
ing the fundamental problems of non-equilibrium physics.
When one mode is stochastically forced and another is
dissipated, that presents a minimal model of turbulence
cascade. The freedom to force either mode allows us to
elucidate the basic differences between direct and inverse
cascades. Apart from energy, we shall be interested in
the entropy of such far-from equilibrium state, which is
expected to be much lower than in thermal equilibrium
with the same energy.

A remarkable property, common for all systems of res-
onantly interacting waves and shared with hydrodynamic
systems [4], is that the canonical thermal equilibrium has
exactly Gaussian statistics, and the modes fluctuate in-
dependently, regardless of the interaction strength. Here
we describe how deviations from equilibrium diminish en-
tropy and build correlations between the two modes. Far
from equilibrium the joint two-mode statistics is never
close to Gaussian, even when the marginal distribution
of every mode is close to Gaussian. On the one hand,
the entropy decrease means that the statistical distribu-
tion is getting more non-uniform, which poses the ques-
tion: Can it lead all the way to singularity like the cel-
ebrated Sinai-Ruelle-Bowen measures in dynamical sys-

tems [5, 6]? We show that this is indeed so: the measure
in the phase space is getting singular in the double limit
of strong non-equilibrium and weak interaction. On the
other hand, since entropy is missing information, any en-
tropy decrease poses another question: Where all this ex-
tra information about non-equilibrium is encoded? First,
we find out how the entropies of the three marginal distri-
butions, of each mode amplitude and their phase differ-
ence, go down as the system deviates from equilibrium.
Second, we find out which part of the entropy decrease is
due to inter-mode correlation. This is properly measured
by the mutual information (rather than by the pair cor-
relation function, suitable for Gaussian statistics only).

The process of the second harmonic generation is de-
scribed by the following model Hamiltonian (assuming
perfect resonance)

H0 = ω|a1|2 + 2ω|a2|2 + V a∗21 a2 + V ∗a21a
∗
2 . (1)

Here a1 and a2 are the complex amplitudes of two non-
linearly coupled modes having frequencies ω and 2ω, re-
spectively, and V is the interaction constant (considered
real positive without loss of generality). The two coupled
complex equations govern dynamics: ȧk = −i∂H0/∂a

∗
k,

k = 1, 2. We eliminate the linear terms in these equations
by introducing the envelopes

b1 = a1e
iωt, b2 = a2e

2iωt. (2)

That results in a strongly interacting system with a cubic
Hamiltonian H = V b∗21 b2 + V ∗b21b

∗
2.

Due to the symmetry b1 → b1e
iφ, b2 → b2e

2iφ the
system ḃk = −i∂H/∂b∗k has an extra integral of motion
N = |b1|2 +2|b2|2 and is completely integrable; the phase
portrait is presented in Appendix A 1. Let us add dissi-
pation and stochastic pumping:

ḃ1 = −2iV ∗b∗1b2 − γ1b1 + ξ1(t), (3)

ḃ2 = −iV b21 − γ2b2 + ξ2(t). (4)
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Here γ1 and γ2 are the damping coefficients, and ξ1 and ξ2
are independent Gaussian random forces with zero mean
〈ξi(t)〉 = 0 and the variance 〈ξi(t1)ξ∗j (t2)〉 = Piδijδ(t2 −
t1).

We mainly focus on the properties of the statistically
steady solutions of the system (3,4) in the case when one
mode is forced, while the other is damped. Since the
modes enter the Hamiltonian in a non-symmetric way,
there are two possibilities: one either can pump the first
(lower frequency) mode and dump the second (higher fre-
quency) mode or vice versa. The former scenarios qual-
itatively corresponds to the direct energy cascade, while
the second is reminiscent to the inverse cascade.

We wish to understand how much information is
needed in order to build a turbulent state and how much
one learns about one mode by observing another. For
that we will use the metrics from information theory:
entropy and mutual information. The answer to the first
question is given by the decrease in entropies

S12 = −
∫
db1db

∗
1db2db

∗
2 ρ(b1, b2) ln ρ(b1, b2) ,

S1 = −
∫
db1db

∗
1 ρ(b1) ln ρ(b1) ,

S2 = −
∫
db2db

∗
2 ρ(b2) ln ρ(b2) ,

where ρ is either full or marginal probability distribution.
The answer to the second question is given by the mutual
information between the modes:

I12 = S1 + S2 − S12 . (5)

Fig.1 demonstrates the growth of the mutual information
versus the degree of non-equilibrium (an analog of the
Reynolds number defined below, see (8)).

As one of the simplest model of energy transfer, the
system of two coupled oscillators has received consid-
erable attention in the literature [7–15]. In particu-
lar, in the mathematical literature, one finds an anal-
ysis of a two-mode system with a quadratic Hamiltonian
H = Ta∗21 a

2
2 with the purpose to get insight into the

energy transfer in wave turbulence [14, 15]. What dis-
tinguishes our model is that it directly corresponds to
physical reality and allows experimental validation. In
addition, an asymmetry between the modes allows us to
compare direct and inverse cascades, which turn out quite
different. Another distinction is that we add entropic and
informational consideration to the energetic analysis.

The paper is organized from the point of view of en-
tropy: we start from the maximal-entropy equilibrium
and investigate near-equilibrium states in Section II. We
then move to study the noise-driven direct and inverse
cascades in Section III. We define a dimensionless pa-
rameter akin to the Reynolds number and show how en-
tropy decreases as the Reynolds number increases. We
begin with the limit of small Reynolds number in III A
and continue to large Reynolds number in III B, where
entropy decreases all the way down as the measure be-
comes singular in the limit of infinite Reynolds number.
In Section IV we consider an instability-driven first har-

10−4 10−2 1 102

χ

0

1

2

3

4

I 1
2

FIG. 1. Mutual information versus Reynolds number for
direct and inverse cascades (red and blue lines respectively).
Three dimensional distribution are computed with bin size
∆θ = 2π/32 and ∆ρ21,2/n1,2 = 1 (circles) and 0.5 (diamonds).

monic and study the influence of noise on the conversion
process, this can serve as a simple model for a laser gen-
erating second harmonic. Conclusion V briefly lists our
main results.

II. NEAR THERMAL EQUILIBRIUM

Adopting the language of stochastic thermodynamics,
one can call the ratios P1/γ1 ≡ T1 and 2P2/γ2 ≡ T2
effective temperatures experienced by two modes b1 and
b2 which are governed by the Langevin equations (3) and
(4). If ∆T = T1−T2 = 0, then it is straightforward to find
from the Fokker-Planck equation or entropy maximum
the steady-state joint probability distribution:

P0 =
1

Z
exp

(
−2|b1|2 + 4|b2|2

T

)
=

1

Z
exp

(
−2N

T

)
. (6)

Despite strong interaction, this distribution is exactly
Gaussian and the modes are statistically independent.
The later means that the mean energy flux and the mu-
tual information between modes are zero. Thermal equi-
librium corresponds to the equipartition of the quadratic
invariant: 〈|b1|2〉 ≡ n1 = 2n2 ≡ 2〈|b2|2〉.

What can we say about the system’s statistics when
modes are subject to different effective temperatures?
Let us introduce the dimensionless measure of non-
equilibrium

σ =
∆T

T
, where T =

P1 + 2P2

2(γ1 + γ2)
. (7)

Another dimensionless parameter quantifies interaction
strength relative to the dissipation:

χ =
(γ1 + γ2)3

(P1 + 2P2)|V |2 . (8)
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FIG. 2. Top row: deviation of entropies from equilibrium (∆T = 0) and mutual information for γ1 = γ2 and different strength
of interaction marked by color. Equilibrium is Gaussian with Seq1 = 1/ ln(2), Seq2 = 1/ ln(2)− 1, and Seqθ = log2(2π). Dashed
lines show the entropy deviation of a single mode respectively at T1 and T2 for marginal distributions, ∆S1 = log2(1 + ∆T/4T )
and ∆S2 = log2(1 − ∆T/4T ) . The entropies of individual modes are affected by the change of variance of (nearly Gaussian)
distribution and by deviation from the Gaussian shape. For close-to-equilibrium cases presented here the first effect is dominant.
Bottom row: panels (e) and (f) show deviation of entropies from the entropies of Gaussian distributions with the same variance;
panel (g) illustrates the quadratic dependence of the entropy of phase distribution, panel (h) illustrates the quadratic dependence
for mutual information (solid lines for ∆T > 0; dashed lines for ∆T < 0). The offset 0.005 is the effect of finite ensemble and
bin size; the offset decreases as the size of data set and resolution improve. 3D distributions are computed with bin sizes 2π/32
for the phase and 0.1T for ρ1,2.

Denote ρ1,2 = |b1,2| and θ = arg(b21b
∗
2). From (3) and

(4), the steady-state equations on the second moments
read:

−4V 〈ρ21ρ2 sin θ〉 − 2γ1〈ρ21〉+ P1 = 0, (9)

2V 〈ρ21ρ2 sin θ〉 − 2γ2〈ρ22〉+ P2 = 0, (10)

The time derivative of the real part of the third moment
is given by: d〈H〉/dt = −(2γ1 + γ2)〈H〉, since 〈ξ1b1b∗2〉 =
〈ξ∗2b21〉 = 0. Therefore, in any steady state, either in
thermal equilibrium or out of it, one has

〈H〉 = 2V 〈ρ21ρ2 cos θ〉 = 0. (11)

Equations (9)-(11) are valid for any values of σ and χ.

At σ 6= 0, the probability density P(b1, b2) is non-
Gaussian in non-equilibrium, yet it is close to Gaussian
when |σ| � 1 for all values of χ. The simplest to treat
is the limit of small interaction, χ� 1. In this case, the
first correction to Eq. (6) is determined by the energy
flux between modes, which is small and proportional to

the temperature difference:

lnP(b1, b2) ≈ −2|b1|2
T1

− 4|b2|2
T2

− (12)

− 4∆T

P1T2 + P2T1
Im [V ∗b∗21 b2] +O(χ−2) (13)

Smallness of interaction multiplies the parameter of
non-equilibrium ∆T/T in the right hand side of Eq. (12),
so that this result is valid even when ∆T/T is not small.
That means that, as long as both temperatures remain
finite and interaction is weak, even far from equilibrium
the relative entropy is small:

D(P|P0) =

∫
db1db

∗
1db2db

∗
2P ln(P/P0) ∝ χ−1 � 1 ,

as well as the mutual information.

In the opposite limit χ � 1 or V → ∞, the non-
Gaussian correction is again proportional to the product
of the degree of non-equilibrium and the small parameter
χ. In terms of x = |b1|2 and y = 2|b2|2 we obtain:

lnP ≈ −x+ y

T
+
χ1/2∆T

T
f(x, y, θ) ,
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where the correction satisfies the equation

2xy√
yT

[
sin θ

(
∂

∂y
− ∂

∂x

)
+
x− 2y

2xy
cos θ

∂

∂θ

]
f = x− y .

The correction is odd in phase difference, f(−θ) = −f(θ),
and scales linearly with amplitudes, so that it is substan-
tial at small amplitudes. In the limits, f → g(θ)

√
y/2T ,

where g = sin θ at y � x, and g =
∫
dθ/ cos θ at y � x.

It makes sense to compare entropies at the same mean
quadratic energy N . To see how entropy goes down on
the way to turbulence we shall subtract the total entropy
from its maximal equilibrium value, which quantifies the
amount of information one needs to create a turbulent
state: ∆S(N,n2/n1) = S0 − S12.

Numerics support quadratic decrease of S12(∆/T ) and
increase of I12(∆/T ) up to ∆T ' 4T , see Figure 2.

When ∆T/T exceeds one, the functions are not even
which demonstrates the statistical difference between up-
ward and downward energy conversion. We see stronger
deviations from Gaussianity for negative ∆T < 0, which
corresponds to the downward energy flow and to an in-
verse cascade at ∆T/T → −∞. The physical difference
is that the first mode pumps the second one as an ad-
ditive force, while the second mode pumps the first one
as a multiplicative instability. Therefore, it seems nat-
ural that the entropy is generally lower and the mutual
information higher for an inverse transfer. The analy-
sis of the separate distributions of two amplitudes and
the relative phase shows that the entropy of the driven
mode (say, S1(∆/T ) for a direct transfer) grows with
∆T slower than the entropy of the dissipated mode and
Sθ(∆/T ) decrease, see panels (g) and (h) in Figure 2.

III. TURBULENT CASCADES

Now let us have an energy cascade in our model:
pumping one mode and dissipating another. When en-
ergy flows from lower frequency mode to higher, i.e
0 = ξ2 = γ1 in Eqs. (3) and (4), the cascade is called
direct, and inverse when 0 = ξ1 = γ2. In these cases, the
only dimensionless parameter is χ = γ3/(P |V |2), where
P is the intensity of noise acting upon the driving mode,
and γ denotes the damping coefficient of the dissipating
mode. As we shall see below, χ to some extent plays the
role of the Reynolds number of hydrodynamics in a sense
that it determines how low is the entropy and how much
the occupation numbers deviate from the equipartition
n1 = 2n2, even though the system is not close to thermal
equilibrium for however small or large χ.

Balance of the quadratic invariant, N , means that the
dissipating mode keeps the magnitude of order of its equi-
librium value: n2 = P/4γ for the direct cascade and
n1 = P/γ for the inverse cascade. How much the mode
which is pumped exceeds the equipartition value is deter-
mined by the value of χ, as described below. Note that
this parameter can be interpreted as the squared ratio

of the dissipation rate γ and the nonlinear transfer rate
V n ' V

√
P/γ.

When χ is small, the interaction between modes is
strong and the energy transfer is fast, so that the occu-
pation numbers are expected to be close to equipartition,
yet the statistics is not expected to be close to separable
Gaussian form given by (6). Even though the noise is
weak, it is white, that is a singular perturbation destroy-
ing integrability everywhere in the phase space [16]; we
shall see below how non-trivial the probability distribu-
tion is already in this limit.

One may naively expect that in the opposite limit of
large χ, when the noise is strong and interaction is weak,
the correlation between modes would be weak too. We
shall show below that the opposite is true far from equi-
librium: the necessity to carry the flux makes the modes
strongly correlated precisely because of a strong noise
and weak interaction. It is in this limit we find the low-
est entropy and the maximal mutual information between
modes, as well as appearance of singular measure in phase
space.

A. Small Reynolds number:
strong-interaction-weak-noise limit

1. Inverse cascade

In an inverse cascade, energy goes from high to low
frequency, so we set γ2 = 0 and P1 = 0 in (3,4):

ḃ1 = −2iV ∗b∗1b2 − γb1, (14)

ḃ2 = −iV b21 + ξ(t). (15)

In the steady state, the energy input rate P must be
equal to the dissipation rate γn1 and to the energy flux
from the second mode to the first given by the imagi-
nary part of the third cumulant: 2V 〈ρ21ρ2 sin θ〉 = −P .
Then, from the energy balance we obtain n1 = P/γ and
2V 〈ρ21ρ2 sin θ〉 = −P , so that 〈ρ21ρ2〉 ≥ P/2V . Also, from
the condition d

dt 〈ln |b1|2〉 = 0 we find 2V 〈ρ2 sin θ〉 = −γ
and, therefore 〈ρ2〉 ≥ γ/2V .

From Eqs. (14,15) it is straightforward to see that
when χ � 1 the steady-state probability distribution
P(b1, b2) cannot be close to the equilibrium Gaussian (6)
with the temperature T = 2P/γ and the equipartition
P/γ = n1 = 2n2. Indeed, the stationarity of 〈H2〉 =

4|V |2〈ρ41ρ22 cos2 θ〉 requires 〈H2〉/〈ρ41〉 = |V |2P
2γ , but this

contradicts the Gaussian ratio which gives 〈H2〉/〈ρ41〉 =
|V |2P
γ .

Thus, small value of χ does not mean that the system
is near equipartition. In agreement with this conclusion,
results of numerical modeling presented at two lower left
panels of Figure 3 show that at neither of marginal dis-
tributions of the mode amplitudes is close to Gaussian
and that the phase distribution does not become uni-
form as χ tends to zero. This is also reflected in nonzero
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FIG. 3. Probabilities of the occupation numbers and the phase for: (a, b) inverse cascade, small χ; (c, d) direct cascade,
small χ; (e, f) inverse cascade, large χ; (g, h) direct cascade, large χ. Each dataset contains 20M datapoints, at ∆t = 0.01 for
inverse cascade and large χ and ∆t = 0.1 for all other cases. For the inverse cascade, χ = γ3

1/(2P2V
2) and ν1 = P2/γ1. We

use γ1,2 = 0.01 for small χ and γ1,2 = 1 for large χ. In all cases, V = 1. Broken lines in (g) correspond to the approximation
(31,36).

value I12(+0) of mutual information between modes in
this limit, see the right panel of Figure 1.

2. Direct cascade

Direct cascade corresponds to the choice γ1 = 0 and
P2 = 0 in (3,4):

ḃ1 = −2iV ∗b∗1b2 + ξ(t), (16)

ḃ2 = −iV b21 − γb2. (17)

Now energy goes from low to high frequency. Again, in
the steady-state regime, the energy input rate P/2 must
be equal to the dissipation rate 2γn2 and to the energy
flux from the first mode to the second given by the imagi-
nary part of the third cumulant: 2V 〈ρ21ρ2 sin θ〉 = P/2, so
n2 = P/4γ. From d

dt 〈ln |b2|2〉 = 0 we find 〈ρ21 sin θ/ρ2〉 =

γ/V . Therefore 〈ρ21ρ2〉 ≥ P/4V and 〈ρ21/ρ2〉 ≥ γ/V .

When χ → 0, the dimensionless flux

〈ρ21ρ2 sin θ〉/n1n1/22 = χ1/2 is small, which may suggest
that phase-space distribution is close to the Gaussian
equilibrium (6) with T = P/γ and that the phase distri-
bution is close to uniform. Furthermore, as opposed to
the case of inverse cascade discussed above, the equality

obtained from the stationarity of 〈H2〉:

〈H2〉 = 4|V |2〈ρ41ρ22 cos2 θ〉 =
2|V |2P
γ
〈ρ21ρ22〉 , (18)

is achieved by the Gaussian distribution with n1 = 2n2 =
P/2γ. However, numerical data, as can be seen from two
upper left panels of Figure 3, shows that even though the
marginal distributions of amplitudes are close to Gaus-
sian with equipartition, n1 ≈ 2n2, the phase distribution
is far from flat and deviation from equilibrium is substan-
tial. The mutual information between modes as a func-
tion of χ exhibits a non-zero value of I12(+0) (see Fig-
ure 1) which is also a clear footprint of non-equilibrium.
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B. Large Reynolds number: weak interaction,
strong noise limit

1. Inverse cascade

The pair of complex equations (14,15) can be rewritten
as three real ones since the overall phase drops out:

ρ̇1 = −2|V |ρ1ρ2 sin θ − γρ1, (19)

ρ̇2 = |V |ρ21 sin θ +
P

4ρ2
+
ζ(t)√

2
, (20)

θ̇ = |V |ρ
2
1 − 4ρ22
ρ2

cos θ +
ζ(t)√
2ρ2

, (21)

where ζ(t) is the real white noise with zero mean 〈ζ(t)〉 =
0 and the pair correlation function 〈ζ(t1)ζ(t2)〉 = Pδ(t1−
t2).

When χ� 1, Eqs. (19)-(21), can be further simplified
by assuming that relative phase is locked on θ = −π/2
most the time. Then, one gets the following closed equa-
tions for the amplitudes dynamics

ρ̇1 = 2|V |ρ1ρ2 − γρ1, (22)

ρ̇2 = −|V |ρ21 +
P

4ρ2
+
ζ(t)√

2
. (23)

A hypothesis that the modes are statistically independent

in this limit is shown incorrect in the Appendix A 4. This
result is in sharp contrast with the model described in
[14], where authors found the factorized joint probability
density P(ρ1, ρ2) of mode amplitudes in the limit when
their analogue of the parameter χ is large.

While constructing the probability densities for inverse
cascade at χ → ∞ turns out to be a tricky task, it is
straightforward to describe general features of stochas-
tic dynamics dictated by Eqs. (22) and (23). Namely,
these pair of nonlinearly coupled equations suggest the
following cyclical evolution: ρ1 stays close to zero most
of the time while ρ2 undergoes diffusion in a repulsive
logarithmic potential; when ρ2 sufficiently outgrows the
threshold level γ/2|V |, ρ1 shoots up and quickly dimin-
ishes ρ2; after that ρ1 also resets to the near-zero level and
the stochastic dynamics of ρ2 starts from scratch. The
mode dynamics during the intermittent burst events can
be described by simplified equations

ρ̇1 = 2|V |ρ1ρ2 − γρ1, (24)

ρ̇2 = −|V |ρ21. (25)

Compared with Eqs. (22) and (23), we neglected the
terms associated with noise. Equations (24) and (25) are
exactly solvable yielding

ρ21(t) = r21 − 2
(
ρ2(t)− γ

2V

)2
+ 2

(
r2 −

γ

2|V |

)2

, (26)

ρ2(t) =
γ

2V
+

√(
r2 −

γ

2V

)2
+
r21
2

tanh

1

2
ln

√(
r2 − γ

2V

)2
+

r21
2 + r2 − γ

2V√(
r2 − γ

2V

)2
+

r21
2 − r2 + γ

2V

− 2V t

√(
r2 −

γ

2V

)2
+
r21
2

 , (27)

where r1 = ρ1(0), r2 = ρ2(0) are the initial conditions.
Estimating r2 ∼ γ/V and r1 � r2, we see from Eq. (27)
that the duration of such burst event is ∼ γ−1, which
is much smaller than the typical inter-events period ∼
γ2/PV 2. As follows from Eq. (26), the amplitude of
the dissipated mode grows from the initial value r1 � r2

to the maximum value ρ1max =
√
r21 + 2(r2 − γ

2V )2 ≈
√

2(r2 − γ
2V ) (attaining it at the moment when ρ2(t) =

γ
2V ) and finally returns to the starting level ρ1(∞) = r1.
Such bursts are likely responsible for pulses running in
shell models, which are chains of interacting triplets.

Numerical simulations confirm the intermittent nature
of system dynamics described above. Namelly, panel (f)
of Figure 3 reveals that the relative phase is indeed locked
at −π/2. Figure 4 illustrates that analytical prediction
based on the assumption of phase locking (see Eqs. (26)
and (27)) are in excellent agreement with numerical data
extracted from simulations of Eqs. (14) and (15). As
visible in panel (e) of Figure 3, the tails of the amplitudes
probability distributions strongly depend on χ; the fits

of P(ρ1) and P(ρ2) by the broken lines in Figure 3 are
empirical. As for the mutual information, from Figure 1
we see that I12 ∝ lnχ for inverse cascade with χ� 1.

2. Direct cascade

We conclude the treatment of our turbulent cascades
with the case of a direct cascade in the limit of large
Reynolds number, χ → ∞. It is in this limit we find a
window to the way a singular measure is formed far away
from equilibrium. We indeed find that in this limit the
full probability distribution is singular and thus corre-
sponds to the lowest entropy state S12 → −∞.

In addressing the weak-interaction-strong-noise limit
γ →∞ (χ→∞), it is convenient to express b2 from (17)
as an integral, which in the leading order shows that the
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FIG. 4. An individual realization of the modes trajectories
during one of the events. The continues lines are obtained
from numerical simulations of Eqs. (14) and (15, and the
dashed lines represent theoretical fit based on Eqs. (26) and
(27)).

second amplitude is enslaved to the first one:

b2(t) = −iV
∫ t

−∞
b21(t′)eγ(t

′−t)dt′ ≈ − iV b
2
1

γ
. (28)

Substituting this relation into (16), we get a closed equa-
tion on the stochastic dynamics of b1

ḃ1 = −2V 2

γ
b∗1b

2
1 + ξ(t), (29)

from which one finds the following expressions for the
marginal probability distributions

P(b1) = Z−11 exp

(
−2V 2

γP
|b1|4

)
, (30)

P(b2) = Z−12 exp

(
−2γ

P
|b2|2

)
, (31)

which are valid at ρ1, ρ2 � γ/|V |. Thus, the whole prob-
ability density in the four-dimensional phase space is sin-
gular at χ→∞, sitting on a three-dimensional manifold

P(b1, b2) =
2√
πPγ

exp

(
−4V 2|b1|4

Pγ

)
δ(b2 −

iV

γ
b21) , (32)

so that the total entropy S12 → −∞. Note also that Eq.
(32) yields large ratio of the typical mode amplitudes:

ρ21/ρ
2
2 '

√
γ3/P |V |2 =

√
χ� 1.

Since the distribution over the overall phase is flat, one
can integrate it out and conclude that the distribution
in the the three-dimensional space of variables ρ1, ρ2, θ
concentrates on the curve ρ2 ∝ ρ21. Interestingly, with
increasing χ the joint probability distribution P(b1, b2)
is getting sharper than Gaussian along this curve. This
is different from the model discussed in [14] where the
driving mode is nearly Gaussian in this limit, the relative

amplitudes of both modes fluctuate, and only the relative
phase is fixed, that is the joint probability density is only
singular with respect to the phase difference θ.

Considering large but finite χ, instead of delta-function
in Eq. (32) one obtains the distribution with a finite
width which is the variance of the difference b2 − V b21/γ.
To estimate this width we further expand Eq. (28)

b2(t) ≈− iV
∫ t

−∞

[
b21(t) + (t′ − t)db

2
1(t)

dt

]
eγ(t

′−t)dt′

(33)

=− iV b21(t)

γ
+

2iV b1(t)

γ2
db1(t)

dt
. (34)

From Eq. (33) we get

〈|b2 + iV b21/γ|2〉 =
4|V |2
γ4
〈|b1ḃ1|2〉 =

4|V |2P 2

γ4
. (35)

Dividing this result by 〈|b2|2〉 = P/γ, one obtains that
the relative squared width behaves as 1/χ (as expected,
it tends to zero when χ → ∞). The non-zero width at
finite values of χ entails the finite entropy of the distribu-
tion P(b1, b2): S12 ' − lnχ. This analytical prediction is
supported by Figure 1. For comparison, the naive Gaus-
sian ansatz yields S1 + S2 ' lnn1n2 ∝ lnχ−1/2, since
n2 = P/4γ and n1 '

√
Pγ/|V |.

Now let us plug Eq. (28) into Eq.(17), then solving the
corresponding steady Fokker-Planck equation (see A 3)
one arrives at the next order correction for the marginal
probability distribution for ρ1 � γ/|V |:

P(ρ1) ∝ ρ1(1− 4|V |2
γ2

ρ21) exp(−2|V |2
γP

ρ41 +
16|V |4
3γ3P

ρ61) .

(36)
which is more accurate than Eq. (30). Unfortunately,
extracting similar correction for the probability density
P(ρ2) as well as the further high order corrections to
P(ρ1) is more challenging.

As can be seen from panel (g) of Figure 3, Eqs.
(31) and (36) allow us to fit the numerical data quite
accurately in the range ρ1, ρ2 � γ/|V |. Expectedly,
the agreement between numeric and analytic results im-
proves with the growth of χ.

IV. LASER GENERATION

Let us now pump the first harmonic by an instability,
for instance, in a laser. Consider first pure dynamics,
setting ξ1 = ξ2 = 0 in (3,4) and changing sign in front of
γ1, which now describes gain for an optical signal. Then
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the resulting evolution satisfies three closed equations:

dρ21
dt

= −2F + 2γ1ρ
2
1, (37)

dρ22
dt

= F − 2γ2ρ
2
2, (38)

dF

dt
= (2γ1 − γ2)F + 2|V |2

(
ρ41 − 4ρ21ρ

2
2

)
, (39)

where F = 2V ρ21ρ2 sin θ is the instantaneous flux.

Apart from the trivial unstable fixed point ρ1 =
ρ2 = 0, Eqs. (37)-(39) have the stationary point
ρ̄21 = γ1γ2/2|V |2, ρ̄22 = γ21/4|V |2, θ̄ = π/2 (and, thus,
F̄ = γ2γ

2
1/2|V |2). This means that in the the degener-

ate case γ2 = 2γ1, the system possesses the steady state
ρ1 = 2ρ2 existing for any θ. This marginal stability turns
into an instability of the steady state at γ2 < 2γ1 and
into stability at γ2 > 2γ1. In what follows, we consider
γ2 > 2γ1. Note that in practice both γ1 and γ2 often
depend on the amplitudes, for instance, due to gain sat-
uration or/and nonlinear damping. However, our main
focus here is on the noise impact on the steady state, so
we will treat γ1, γ2 taken near this state as constants.

Let us now add a random pumping and study its in-
fluence on the efficiency and statistics of conversion. The
modes amplitudes, ρ1 and ρ2 and the relative phase θ are
governed by the following equations

ρ̇1 = −2V ρ1ρ2 sin θ + γ1ρ1 +
P

4ρ1
+
ζ1(t)√

2
, (40)

ρ̇2 = V ρ21 sin θ − γ2ρ2 , (41)

θ̇ =
ρ21 − 4ρ22

ρ2
V cos θ +

√
2ζ2(t)

ρ1
. (42)

Here ζ1 and ζ2 are two independent real white noises
with zero mean values 〈ζi(t)〉 = 0, and the pair correlator
〈ζi(t1)ζj(t2)〉 = Pδijδ(t1− t2). In the limit of weak noise,
P |V |2 � γ21(γ2−2γ1), one can apply a linear approxima-
tion near the fixed point. More specifically, we substitute
decomposition ρ1(t) = ρ̄1 + u(t), ρ2(t) = ρ̄2 + v(t), θ(t) =
θ̄+ φ(t) into Eqs. (41)-(42) and keep only the first order
terms with respect to u, v and φ. This procedure yields

u̇ = −2V ρ̄1v +
P

4ρ̄1
+
ζ1(t)√

2
, (43)

v̇ = 2V ρ̄1u− γ2v, (44)

φ̇ = (2γ1 − γ2)φ+

√
2ζ2(t)

ρ̄1
. (45)

From Eqs. (43)-(45) we immediately find the variances

〈u2〉 − 〈u〉2 =
(2γ1 + γ2)P

8γ1γ2
, (46)

〈v2〉 − 〈v〉2 =
P

4γ2
, (47)

〈φ2〉 − 〈φ〉2 =
2V 2P

γ1γ2 (γ2 − 2γ1)
. (48)

We see that level of fluctuations in relative phase grows
when one approaches the stability threshold. Note also
that far from the threshold, i.e. at 2γ1 � γ2, the fluctua-
tions of the second harmonic are suppressed: 〈v2〉/〈u2〉 ≈
γ1/γ2 � 1. In this case, the noise of the first harmonic
only weakly influences the conversion into the second one.
However, the conversion is least effective in this limit:
ρ̄22/ρ̄

2
1 = γ1/2γ2 � 1.

V. CONCLUSION

Our most important finding is the explicit formula (32)
for the singular measure of a direct cascade in the limit
of strong noise and weak interaction. We believe that
this is a meaningful advance in non-equilibrium statis-
tics, as it opens a window to the study of the formation of
singular measures in systems driven far away from equi-
librium. We have described also the approach to this
limit and have shown that the total entropy decays and
the inter-mode mutual information grows logarithmically
with the Reynolds number. In the inverse cascade case
in this limit, the phase is locked on −π/2 and the sys-
tem exhibits an intermittent dynamics of bursts, which
we were able to describe analytically. Such bursts are
perhaps responsible for pulses running in shell models,
which are chains of interacting triplets used in modeling
hydrodynamic incompressible turbulence. It is thus may
be interesting to apply the methods developed here to the
popular shell model u̇i = u2i−1 − uiui+1 [17]. After some
elementary transformations, this model can be turned
into that with the Hamiltonian H =

∑
i Vi(a

2
i a
∗
i+1 + c.c),

that is the interacting chain built of our pairs.
The opposite limit of weak noise and strong interaction

is a singular one: the probability distribution is not close
to a Gaussian distribution determined by N for how-
ever small χ, despite occupation numbers being close to
equipartition and the marginal one mode distributions
close to quadratic. It is expressed, in particular, in the
nonzero mutual information I12(χ) at the limit χ→ +0.
Figure 1 combines the mutual information data for both
cascades. We see that I12(χ) − I12(+0) ∝ χ2 at χ � 1.
We failed to find an analytic solution in this limit ei-
ther in the direct or inverse cascade, even though it is
likely that the probability distribution can be expressed
in terms of N and H2, which are the conserved quantities
of the unforced undamped system.

We conclude with suggesting an interesting applica-
tion of our model to wave turbulence. In a set of M + 2
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interacting waves, one may consider to model the inter-
action of a resonant couple with the other M waves by
dissipation and random forcing. When M � 1 we can
treat forces from all other modes as a white noise, so
that our model (4) applies. In this case, different limits
in χ correspond to different situations. If we assume an
almost continuous distribution of other modes and esti-
mate from the wave kinetic equation γ ' V 2Mn/ω and
P ' γn [18], then χ = γ3/PV 2 ' V 2Mn/ω2 � 1, which
is the original parameter of nonlinearity assumed to be
small. In this case, we come to the surprising conclusion
that a resonant mode within turbulence, when ∆T ' T ,
has a relative entropy of order unity and independent of
V . If, however, we have a set of well-isolated resonant
interactions, then it makes more sense to assume that

the interaction with a given mode is M times smaller so
that χ is large (as M or

√
M), then the relative entropy

is small. Note that in most cases the number of resonant
interactions, is much less than the total number of modes
in the system.
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Appendix A: Appendix

1. Hamiltonian evolution

Here we briefly sketch some of the elementary proper-
ties of the Hamiltonian system defined by Eq. (1). From
Eq. (1) we find the system of two coupled complex equa-
tions

ȧ1 = −i ∂H
∂a∗1

= −iωa1 − 2iV a∗1a2, (A1)

ȧ2 = −i ∂H
∂a∗2

= −2iωa2 − iV ∗a21. (A2)

It is easy to see that in addition to H, Eqs. (A1) and
(A2) have the second integral of motion,

N = ω|a1|2 + 2ω|a2|2, (A3)

and, thus, the system is completely integrable. Indeed,
two integrals of motion allows one to reduce Eqs. (A1)
and (A2) to a single first-order equation, which we write
for x = 2|a2|2/N and t→ tV N1/2

dx

dt
= ±2

√
2x(1− x)2 − 4K2/N3 , (A4)

where

K = H−N = V a∗21 a2 + V ∗a21a
∗
2, (A5)

is also an integral of motion.

1
y

K2

N3
=0

K2

N3
=0.05

K2

N3
= 2
27

dx

dt

FIG. 5. The phase portrait of the integrable Hamiltonian
dynamics plotted for different values of the dimensionless ratio
of integrals of motion, K2/N3.

Next, using the Euler representation, a1 = ρ1e
iϕ1 and

a2 = ρ2e
iϕ2 , one obtains from Eqs. (A1) and (A2)

ρ̇1 = −2|V |ρ1ρ2 sin θ , (A6)

ρ̇2 = |V |ρ21 sin θ , (A7)

θ̇ =
ρ21 − 4ρ22

ρ2
cos θ, (A8)

where θ = arg a21a
∗
2 = 2φ1 − φ2. From Eqs. (A4) -

(A8) one finds that the dynamical system has two fixed
points: 1) x = 1 = 2ρ22/N , K = 0, which means ρ1 = 0
and θ = ±π/2, and 2) x = 1/3, K2/N3 = 2/27, which
means ρ21 = 4ρ22 = 2N/3 and θ = 0 or θ = π. It is easy to
show that the first one is unstable, while the second one
is stable. The small oscillations near the second point are
harmonic with the frequency 4

√
2/3. We will see below

that this phase portrait explains qualitatively the statis-
tics of system in the presence of dumping and (small)
random forcing.

Since K = 2V ρ21ρ2 cos θ is a constant, it cannot
change sign, an, therefore, we have two separated re-
gions in phase space that correspond to the sign of cos θ:
[−π/2, π/2] and [π/2, 3π/2]. Both separating planes at
θ = π/2, 3π/2 are critical points of φ, on which non-linear
interaction is zero.

2. Small-flux limit

This limit can be called alternatively either small-flux
limit, because the mean value of the inter-mode energy
flux 2〈ρ21ρ2 sin θ〉 is much smaller than its periodic oscil-
lation, or small-noise limit, because most of the time the
evolution is unaffected by pumping and damping. The
phase portrait described in Section A 1 explains qualita-
tively the statistics of turbulence in this limit of large
wave amplitudes, presented in the upper row of Figure
3. Indeed, the dynamical system has two fixed points:
the unstable one ρ1 = 0, θ = ±π/2, and the stable one
ρ21 = 4ρ, θ = 0, π. In this limit, the system spends most
of its time close to one of the fixed points, randomly
switching between them. In the direct cascade, described
in Sect III A 2, random noise acts on the first mode, so
that the system spends less time around ρ1 close to zero,
and the probability has minima at θ = π/2,−π/2. In
the direct cascade, the system spends more time oscil-
lating around the second fixed point and the probability
has maxima at θ = 0, π. On the contrary, dissipation
acts on ρ1 in the inverse cascade, which keeps system
longer around the first fixed point, and the probability
has maxima at θ = π/2,−π/2.

3. Large-flux limit for the direct cascade

Here we briefly discuss the derivation of the solution
Eq. (36) for the marginal probability distribution for ρ1
in the main text.
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Let us plug Eq. (28) into Eq. (17) to get:

ḃ1 = −2|V |2
γ

|b1|2b1
1− 4|V |2

γ2 |b1|2
+

ξ(t)

1− 4|V |2
γ2 |b1|2

. (A9)

The steady-state probability density of the amplitude ρ1
obeys the Fokker-Planck equation

2|V |2
γ

1

ρ1

∂

∂ρ1

[
ρ31

1− 4|V |2
γ2 ρ21

P(ρ1)

]
+ (A10)

+
P

4ρ1

∂

∂ρ1

[
ρ1

∂

∂ρ1

[
ρ−11

(1− 4|V |2
γ2 ρ21)2

P(ρ1)

]]
= 0.(A11)

Solving this equation one arrives at Eq. (36) in the main
text.

4. Large-flux limit for the inverse cascade

The stationary Fokker-Planck equation on P(ρ1, ρ2) is
as follows

P

4

∂2P
∂ρ22

+
∂

∂ρ2

[
|V |ρ21−

P

4ρ2

]
P+

∂

∂ρ1

[
γρ1−2|V |ρ1ρ2

]
P = 0 .

(A12)
From Eq. (23) we obtain

〈ρ2〉 =
γ

2|V | , (A13)

〈ρn1 〉 =
2|V |
γ
〈ρn1ρ2〉, (A14)

〈ρ21〉 =
P

4|V | 〈
1

ρ2
〉, (A15)

Multiplying FPE (A12) by ρ22 and integrating over dρ1dρ2
yields

〈ρ21ρ2〉 =
P

2|V | , (A16)

and therefore (due to Eqs. (A14), (A15) and (A16))

〈ρ21〉 =
P

γ
, (A17)

〈 1

ρ2
〉 =

4|V |
γ

. (A18)

Also from Eq. (A12) we find

〈ρn2 〉 =
4|V |

(n+ 2)P
〈ρ21ρn+1

2 〉, 〈ρ21ρ22〉 =
3

8

γP

|V |2 . (A19)

It follows from Eqs. (A13), (A14), (A16) and (A17) that

〈ρ1ρ2〉 = 〈ρ1〉〈ρ2〉, 〈ρ21ρ2〉 = 〈ρ21〉〈ρ2〉, (A20)

which may lead one to hypothesize that in the steady
state the random variables ρ1 and ρ2 are statistically
independent. If such statistical independence was true,
then

P(ρ1, ρ2) = Cρ
−1+ 4P |V |2

γ3

1 e
− 2|V |2ρ21

γ2 ρ2e
− 4|V |

γ ρ2 . (A21)

However, direct substitution of Eq. (A21) into the
Fokker-Planck equation (A12) shows that this distribu-
tion represents the solution only along two lines: ρ2 =

( 1
2 + 1

2
√
2
) γ
|V | and ρ1 =

√
P
γ . Thus, the hypothesis of

statistical independence is not self-consistent.
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Is there really such a thing as weak turbulence? Here we analyze turbulence of weakly interacting
waves using the tools of information theory. It offers a unique perspective for comparing thermal
equilibrium and turbulence: the mutual information between modes is shown to be stationary and
small in equilibrium but grows linearly with time in weak turbulence. We trace this growth to
the concentration of probability on the resonance surfaces, which can go all the way to a singular
measure. The surprising conclusion is that no matter how small is the nonlinearity and how close
to Gaussian is the statistics of any single amplitude, a stationary phase-space measure is far from
Gaussian, as manifested by a large relative entropy. Though it might be upsetting to practitioners
of weak turbulence approach, this is a rare piece of good news for turbulence modeling: the resolved
scales carry significant information about the unresolved scales. The mutual information between
large and small scales is the information capacity of turbulent cascade, setting the limit on the
representation of subgrid scales in turbulence modeling.

There are two quite different perspectives to look at
the evolution of a statistical system: fluid mechanics and
information theory. The first one is the continuum view-
point, where a Hamiltonian evolution of an ensemble is
treated as an incompressible flow in a phase space. Such
flows generally mix which leads to a uniform microcanon-
ical equilibrium distribution. On the contrary, to devi-
ate a system from equilibrium, one needs external forces
and dissipation that break Hamiltonian conservative na-
ture of evolution and lead to compressible flows in phase
space, which generally produce extremely non-uniform
measures [1, 2]. The second perspective is the discrete
viewpoint of information theory, where the evolution to-
wards equilibrium and entropy saturation are described
as the loss of all the information except integrals of mo-
tion. On the contrary, to keep a system away from equi-
librium, we need to act, producing information and de-
creasing entropy.

Here we make a step in synthesis of the two ap-
proaches, asking: what is the informational manifesta-
tion of nonuniform turbulent measures? Such measures
are expected to have a low entropy whose limit is set by
an interplay between interaction on the one hand and dis-
creteness, coarse-graining or finite resolution on the other
hand. We shall look at turbulence from the viewpoint of
the mutual information (MI), which measures effective
correlations between different degrees of freedom.

To keep a system away from equilibrium, environment
extracts entropy thus producing information — where is
this information encoded? Here we consider turbulent
systems which can be treated perturbatively as long as
their statistics is close to Gaussian, such as weak wave
turbulence (similar approach can be applied to a pas-
sive scalar [3] and other systems). We show that the
MI between wave modes is encoded in cumulants (not
described by the traditional description in terms of occu-
pation numbers [2]). The information production builds
higher and higher correlations which concentrate sharper
and sharper on the resonant surfaces, driving the distri-

bution towards a singular measure. When nonlinearity is
small, we show that the entropy decay is due to the triple
moment concentrating on the three-wave resonance sur-
face, see Figure 1. It is unclear yet how to describe the
long-time asymptotic of the entropy decay. When tur-
bulence is driven by a random force, which provides for
a phase-space diffusion and smears singularities, the en-
tropy must saturate at a finite value, but the difference
with Gaussian random-phase approximation can be large
when the Reynolds number is large.

Consider a wave system defined by random complex
amplitudes ak = |ak|eiφ which satisfy iȧk = δH/δa∗k with
the Hamiltonian:

H =
∑
k

ωk|ak|2 +
∑
kpq

1

2

ˆ
(Vkpqa

∗
kapaq + c.c.) δkp+q .

Here c.c means the complex conjugated terms, δkp+q is the
Kronecker delta and we use the shorthand notation ak≡
a(k), etc. The medium is assumed scale invariant, that
is both ωk and V are homogeneous functions of degree
α and m, respectively. A central problem is to describe
the evolution of the phase-space distribution ρ ({ak, a∗k}).
We assume that the second term in the Hamiltonian is
on average much smaller than the first one and that the
modes are independently distributed at t = 0. Then
the occupation numbers nkδkk′ := 〈aka∗k〉 satisfy a closed
kinetic equation [2, 5–10]:

dnk
dt

=
∑
k1k2

Im (Vk12Jk12 − 2V ∗1k2J
∗
1k2)δk1

k2+k , (1)

J123(t) =
eiω

1
2,3t − 1

ω1
2,3

V ∗123(n2n3 − n1n2 − n1n3) . (2)

The brackets 〈f〉 indicate averaging with respect to ρ,
〈a∗i ajak〉 = Jijkδ

i
j+k is the third moment and ω1

2,3 ≡
ω1−ω2−ω3. Substituting (2) into (1) gives the collision
integral of the kinetic equation, which is a direct analog
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t! = 40
<latexit sha1_base64="at6Bo9gARV2REZJ00AADfyLZIHA=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLoRim5cVrAXmA4lk2ba0FyG5IxQSh/DjQtF3Po07nwbM+0stPWHwMd/ziHn/HEquAXf//ZKa+sbm1vl7crO7t7+QfXwqG11ZihrUS206cbEMsEVawEHwbqpYUTGgnXi8V1e7zwxY7lWjzBJWSTJUPGEUwLOCqGnJRuSm0u/0q/W/Lo/F16FoIAaKtTsV796A00zyRRQQawNAz+FaEoMcCrYrNLLLEsJHZMhCx0qIpmNpvOVZ/jMOQOcaOOeAjx3f09MibR2ImPXKQmM7HItN/+rhRkk19GUqzQDpujioyQTGDTO78cDbhgFMXFAqOFuV0xHxBAKLqU8hGD55FVoX9QDxw+XtcZtEUcZnaBTdI4CdIUa6B41UQtRpNEzekVvHngv3rv3sWgtecXMMfoj7/MHC4GQbA==</latexit><latexit sha1_base64="at6Bo9gARV2REZJ00AADfyLZIHA=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLoRim5cVrAXmA4lk2ba0FyG5IxQSh/DjQtF3Po07nwbM+0stPWHwMd/ziHn/HEquAXf//ZKa+sbm1vl7crO7t7+QfXwqG11ZihrUS206cbEMsEVawEHwbqpYUTGgnXi8V1e7zwxY7lWjzBJWSTJUPGEUwLOCqGnJRuSm0u/0q/W/Lo/F16FoIAaKtTsV796A00zyRRQQawNAz+FaEoMcCrYrNLLLEsJHZMhCx0qIpmNpvOVZ/jMOQOcaOOeAjx3f09MibR2ImPXKQmM7HItN/+rhRkk19GUqzQDpujioyQTGDTO78cDbhgFMXFAqOFuV0xHxBAKLqU8hGD55FVoX9QDxw+XtcZtEUcZnaBTdI4CdIUa6B41UQtRpNEzekVvHngv3rv3sWgtecXMMfoj7/MHC4GQbA==</latexit><latexit sha1_base64="at6Bo9gARV2REZJ00AADfyLZIHA=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLoRim5cVrAXmA4lk2ba0FyG5IxQSh/DjQtF3Po07nwbM+0stPWHwMd/ziHn/HEquAXf//ZKa+sbm1vl7crO7t7+QfXwqG11ZihrUS206cbEMsEVawEHwbqpYUTGgnXi8V1e7zwxY7lWjzBJWSTJUPGEUwLOCqGnJRuSm0u/0q/W/Lo/F16FoIAaKtTsV796A00zyRRQQawNAz+FaEoMcCrYrNLLLEsJHZMhCx0qIpmNpvOVZ/jMOQOcaOOeAjx3f09MibR2ImPXKQmM7HItN/+rhRkk19GUqzQDpujioyQTGDTO78cDbhgFMXFAqOFuV0xHxBAKLqU8hGD55FVoX9QDxw+XtcZtEUcZnaBTdI4CdIUa6B41UQtRpNEzekVvHngv3rv3sWgtecXMMfoj7/MHC4GQbA==</latexit><latexit sha1_base64="at6Bo9gARV2REZJ00AADfyLZIHA=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLoRim5cVrAXmA4lk2ba0FyG5IxQSh/DjQtF3Po07nwbM+0stPWHwMd/ziHn/HEquAXf//ZKa+sbm1vl7crO7t7+QfXwqG11ZihrUS206cbEMsEVawEHwbqpYUTGgnXi8V1e7zwxY7lWjzBJWSTJUPGEUwLOCqGnJRuSm0u/0q/W/Lo/F16FoIAaKtTsV796A00zyRRQQawNAz+FaEoMcCrYrNLLLEsJHZMhCx0qIpmNpvOVZ/jMOQOcaOOeAjx3f09MibR2ImPXKQmM7HItN/+rhRkk19GUqzQDpujioyQTGDTO78cDbhgFMXFAqOFuV0xHxBAKLqU8hGD55FVoX9QDxw+XtcZtEUcZnaBTdI4CdIUa6B41UQtRpNEzekVvHngv3rv3sWgtecXMMfoj7/MHC4GQbA==</latexit>t! = 1

<latexit sha1_base64="9j3Ox5mfqSsZOqoxrKiatFq3nBE=">AAAB8XicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLoRim5cVrC12A4lk2ba0FyG5IxQhr6FGxeKuPVt3Pk2ZtpZaOsPgY//nEPO+aNEcAu+/+2VVlbX1jfKm5Wt7Z3dver+Qdvq1FDWolpo04mIZYIr1gIOgnUSw4iMBHuIxjd5/eGJGcu1uodJwkJJhorHnBJw1iP0tGRDchVU+tWaX/dnwssQFFBDhZr96ldvoGkqmQIqiLXdwE8gzIgBTgWbVnqpZQmhYzJkXYeKSGbDbLbxFJ84Z4BjbdxTgGfu74mMSGsnMnKdksDILtZy879aN4X4Msy4SlJgis4/ilOBQeP8fDzghlEQEweEGu52xXREDKHgQspDCBZPXob2WT1wfHdea1wXcZTRETpGpyhAF6iBblETtRBFCj2jV/TmWe/Fe/c+5q0lr5g5RH/kff4AlbOQLw==</latexit><latexit sha1_base64="9j3Ox5mfqSsZOqoxrKiatFq3nBE=">AAAB8XicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLoRim5cVrC12A4lk2ba0FyG5IxQhr6FGxeKuPVt3Pk2ZtpZaOsPgY//nEPO+aNEcAu+/+2VVlbX1jfKm5Wt7Z3dver+Qdvq1FDWolpo04mIZYIr1gIOgnUSw4iMBHuIxjd5/eGJGcu1uodJwkJJhorHnBJw1iP0tGRDchVU+tWaX/dnwssQFFBDhZr96ldvoGkqmQIqiLXdwE8gzIgBTgWbVnqpZQmhYzJkXYeKSGbDbLbxFJ84Z4BjbdxTgGfu74mMSGsnMnKdksDILtZy879aN4X4Msy4SlJgis4/ilOBQeP8fDzghlEQEweEGu52xXREDKHgQspDCBZPXob2WT1wfHdea1wXcZTRETpGpyhAF6iBblETtRBFCj2jV/TmWe/Fe/c+5q0lr5g5RH/kff4AlbOQLw==</latexit><latexit sha1_base64="9j3Ox5mfqSsZOqoxrKiatFq3nBE=">AAAB8XicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLoRim5cVrC12A4lk2ba0FyG5IxQhr6FGxeKuPVt3Pk2ZtpZaOsPgY//nEPO+aNEcAu+/+2VVlbX1jfKm5Wt7Z3dver+Qdvq1FDWolpo04mIZYIr1gIOgnUSw4iMBHuIxjd5/eGJGcu1uodJwkJJhorHnBJw1iP0tGRDchVU+tWaX/dnwssQFFBDhZr96ldvoGkqmQIqiLXdwE8gzIgBTgWbVnqpZQmhYzJkXYeKSGbDbLbxFJ84Z4BjbdxTgGfu74mMSGsnMnKdksDILtZy879aN4X4Msy4SlJgis4/ilOBQeP8fDzghlEQEweEGu52xXREDKHgQspDCBZPXob2WT1wfHdea1wXcZTRETpGpyhAF6iBblETtRBFCj2jV/TmWe/Fe/c+5q0lr5g5RH/kff4AlbOQLw==</latexit><latexit sha1_base64="9j3Ox5mfqSsZOqoxrKiatFq3nBE=">AAAB8XicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLoRim5cVrC12A4lk2ba0FyG5IxQhr6FGxeKuPVt3Pk2ZtpZaOsPgY//nEPO+aNEcAu+/+2VVlbX1jfKm5Wt7Z3dver+Qdvq1FDWolpo04mIZYIr1gIOgnUSw4iMBHuIxjd5/eGJGcu1uodJwkJJhorHnBJw1iP0tGRDchVU+tWaX/dnwssQFFBDhZr96ldvoGkqmQIqiLXdwE8gzIgBTgWbVnqpZQmhYzJkXYeKSGbDbLbxFJ84Z4BjbdxTgGfu74mMSGsnMnKdksDILtZy879aN4X4Msy4SlJgis4/ilOBQeP8fDzghlEQEweEGu52xXREDKHgQspDCBZPXob2WT1wfHdea1wXcZTRETpGpyhAF6iBblETtRBFCj2jV/TmWe/Fe/c+5q0lr5g5RH/kff4AlbOQLw==</latexit>

t! = 100
<latexit sha1_base64="1EjC72GMNWhP2IIru323v97GRMo=">AAAB83icbZDLSgMxFIbP1Futt6pLN8EiuCozIuhGKLpxWcFeoDOUTJppQ3MZkoxQSl/DjQtF3Poy7nwbM+0stPWHwMd/zuGc/HHKmbG+/+2V1tY3NrfK25Wd3b39g+rhUduoTBPaIoor3Y2xoZxJ2rLMctpNNcUi5rQTj+/yeueJasOUfLSTlEYCDyVLGMHWWaENlaBDfBP4fqVfrfl1fy60CkEBNSjU7Fe/woEimaDSEo6N6QV+aqMp1pYRTmeVMDM0xWSMh7TnUGJBTTSd3zxDZ84ZoERp96RFc/f3xBQLYyYidp0C25FZruXmf7VeZpPraMpkmlkqyWJRknFkFcoDQAOmKbF84gATzdytiIywxsS6mPIQguUvr0L7oh44frisNW6LOMpwAqdwDgFcQQPuoQktIJDCM7zCm5d5L96797FoLXnFzDH8kff5A3hOkKM=</latexit><latexit sha1_base64="1EjC72GMNWhP2IIru323v97GRMo=">AAAB83icbZDLSgMxFIbP1Futt6pLN8EiuCozIuhGKLpxWcFeoDOUTJppQ3MZkoxQSl/DjQtF3Poy7nwbM+0stPWHwMd/zuGc/HHKmbG+/+2V1tY3NrfK25Wd3b39g+rhUduoTBPaIoor3Y2xoZxJ2rLMctpNNcUi5rQTj+/yeueJasOUfLSTlEYCDyVLGMHWWaENlaBDfBP4fqVfrfl1fy60CkEBNSjU7Fe/woEimaDSEo6N6QV+aqMp1pYRTmeVMDM0xWSMh7TnUGJBTTSd3zxDZ84ZoERp96RFc/f3xBQLYyYidp0C25FZruXmf7VeZpPraMpkmlkqyWJRknFkFcoDQAOmKbF84gATzdytiIywxsS6mPIQguUvr0L7oh44frisNW6LOMpwAqdwDgFcQQPuoQktIJDCM7zCm5d5L96797FoLXnFzDH8kff5A3hOkKM=</latexit><latexit sha1_base64="1EjC72GMNWhP2IIru323v97GRMo=">AAAB83icbZDLSgMxFIbP1Futt6pLN8EiuCozIuhGKLpxWcFeoDOUTJppQ3MZkoxQSl/DjQtF3Poy7nwbM+0stPWHwMd/zuGc/HHKmbG+/+2V1tY3NrfK25Wd3b39g+rhUduoTBPaIoor3Y2xoZxJ2rLMctpNNcUi5rQTj+/yeueJasOUfLSTlEYCDyVLGMHWWaENlaBDfBP4fqVfrfl1fy60CkEBNSjU7Fe/woEimaDSEo6N6QV+aqMp1pYRTmeVMDM0xWSMh7TnUGJBTTSd3zxDZ84ZoERp96RFc/f3xBQLYyYidp0C25FZruXmf7VeZpPraMpkmlkqyWJRknFkFcoDQAOmKbF84gATzdytiIywxsS6mPIQguUvr0L7oh44frisNW6LOMpwAqdwDgFcQQPuoQktIJDCM7zCm5d5L96797FoLXnFzDH8kff5A3hOkKM=</latexit><latexit sha1_base64="1EjC72GMNWhP2IIru323v97GRMo=">AAAB83icbZDLSgMxFIbP1Futt6pLN8EiuCozIuhGKLpxWcFeoDOUTJppQ3MZkoxQSl/DjQtF3Poy7nwbM+0stPWHwMd/zuGc/HHKmbG+/+2V1tY3NrfK25Wd3b39g+rhUduoTBPaIoor3Y2xoZxJ2rLMctpNNcUi5rQTj+/yeueJasOUfLSTlEYCDyVLGMHWWaENlaBDfBP4fqVfrfl1fy60CkEBNSjU7Fe/woEimaDSEo6N6QV+aqMp1pYRTmeVMDM0xWSMh7TnUGJBTTSd3zxDZ84ZoERp96RFc/f3xBQLYyYidp0C25FZruXmf7VeZpPraMpkmlkqyWJRknFkFcoDQAOmKbF84gATzdytiIywxsS6mPIQguUvr0L7oh44frisNW6LOMpwAqdwDgFcQQPuoQktIJDCM7zCm5d5L96797FoLXnFzDH8kff5A3hOkKM=</latexit>

cos✓
<latexit sha1_base64="z4RYmnUnS7FMwWjGYxAkbB5qjFU=">AAAB+XicbZBNS8NAEIY3ftb6FfXoZbEInkoigh6LXjxWsB/QhLLZTtulm03YnRRL6D/x4kERr/4Tb/4bt20O2vrCwsM7M8zsG6VSGPS8b2dtfWNza7u0U97d2z84dI+OmybJNIcGT2Si2xEzIIWCBgqU0E41sDiS0IpGd7N6awzaiEQ94iSFMGYDJfqCM7RW13UDhCfMeWKmAQ4BWdeteFVvLroKfgEVUqjedb+CXsKzGBRyyYzp+F6KYc40Ci5hWg4yAynjIzaAjkXFYjBhPr98Ss+t06P9RNunkM7d3xM5i42ZxJHtjBkOzXJtZv5X62TYvwlzodIMQfHFon4mKSZ0FgPtCQ0c5cQC41rYWykfMs042rDKNgR/+cur0Lys+pYfriq12yKOEjklZ+SC+OSa1Mg9qZMG4WRMnskreXNy58V5dz4WrWtOMXNC/sj5/AFZv5Qb</latexit><latexit sha1_base64="z4RYmnUnS7FMwWjGYxAkbB5qjFU=">AAAB+XicbZBNS8NAEIY3ftb6FfXoZbEInkoigh6LXjxWsB/QhLLZTtulm03YnRRL6D/x4kERr/4Tb/4bt20O2vrCwsM7M8zsG6VSGPS8b2dtfWNza7u0U97d2z84dI+OmybJNIcGT2Si2xEzIIWCBgqU0E41sDiS0IpGd7N6awzaiEQ94iSFMGYDJfqCM7RW13UDhCfMeWKmAQ4BWdeteFVvLroKfgEVUqjedb+CXsKzGBRyyYzp+F6KYc40Ci5hWg4yAynjIzaAjkXFYjBhPr98Ss+t06P9RNunkM7d3xM5i42ZxJHtjBkOzXJtZv5X62TYvwlzodIMQfHFon4mKSZ0FgPtCQ0c5cQC41rYWykfMs042rDKNgR/+cur0Lys+pYfriq12yKOEjklZ+SC+OSa1Mg9qZMG4WRMnskreXNy58V5dz4WrWtOMXNC/sj5/AFZv5Qb</latexit><latexit sha1_base64="z4RYmnUnS7FMwWjGYxAkbB5qjFU=">AAAB+XicbZBNS8NAEIY3ftb6FfXoZbEInkoigh6LXjxWsB/QhLLZTtulm03YnRRL6D/x4kERr/4Tb/4bt20O2vrCwsM7M8zsG6VSGPS8b2dtfWNza7u0U97d2z84dI+OmybJNIcGT2Si2xEzIIWCBgqU0E41sDiS0IpGd7N6awzaiEQ94iSFMGYDJfqCM7RW13UDhCfMeWKmAQ4BWdeteFVvLroKfgEVUqjedb+CXsKzGBRyyYzp+F6KYc40Ci5hWg4yAynjIzaAjkXFYjBhPr98Ss+t06P9RNunkM7d3xM5i42ZxJHtjBkOzXJtZv5X62TYvwlzodIMQfHFon4mKSZ0FgPtCQ0c5cQC41rYWykfMs042rDKNgR/+cur0Lys+pYfriq12yKOEjklZ+SC+OSa1Mg9qZMG4WRMnskreXNy58V5dz4WrWtOMXNC/sj5/AFZv5Qb</latexit><latexit sha1_base64="z4RYmnUnS7FMwWjGYxAkbB5qjFU=">AAAB+XicbZBNS8NAEIY3ftb6FfXoZbEInkoigh6LXjxWsB/QhLLZTtulm03YnRRL6D/x4kERr/4Tb/4bt20O2vrCwsM7M8zsG6VSGPS8b2dtfWNza7u0U97d2z84dI+OmybJNIcGT2Si2xEzIIWCBgqU0E41sDiS0IpGd7N6awzaiEQ94iSFMGYDJfqCM7RW13UDhCfMeWKmAQ4BWdeteFVvLroKfgEVUqjedb+CXsKzGBRyyYzp+F6KYc40Ci5hWg4yAynjIzaAjkXFYjBhPr98Ss+t06P9RNunkM7d3xM5i42ZxJHtjBkOzXJtZv5X62TYvwlzodIMQfHFon4mKSZ0FgPtCQ0c5cQC41rYWykfMs042rDKNgR/+cur0Lys+pYfriq12yKOEjklZ+SC+OSa1Mg9qZMG4WRMnskreXNy58V5dz4WrWtOMXNC/sj5/AFZv5Qb</latexit>

cos✓
<latexit sha1_base64="z4RYmnUnS7FMwWjGYxAkbB5qjFU=">AAAB+XicbZBNS8NAEIY3ftb6FfXoZbEInkoigh6LXjxWsB/QhLLZTtulm03YnRRL6D/x4kERr/4Tb/4bt20O2vrCwsM7M8zsG6VSGPS8b2dtfWNza7u0U97d2z84dI+OmybJNIcGT2Si2xEzIIWCBgqU0E41sDiS0IpGd7N6awzaiEQ94iSFMGYDJfqCM7RW13UDhCfMeWKmAQ4BWdeteFVvLroKfgEVUqjedb+CXsKzGBRyyYzp+F6KYc40Ci5hWg4yAynjIzaAjkXFYjBhPr98Ss+t06P9RNunkM7d3xM5i42ZxJHtjBkOzXJtZv5X62TYvwlzodIMQfHFon4mKSZ0FgPtCQ0c5cQC41rYWykfMs042rDKNgR/+cur0Lys+pYfriq12yKOEjklZ+SC+OSa1Mg9qZMG4WRMnskreXNy58V5dz4WrWtOMXNC/sj5/AFZv5Qb</latexit><latexit sha1_base64="z4RYmnUnS7FMwWjGYxAkbB5qjFU=">AAAB+XicbZBNS8NAEIY3ftb6FfXoZbEInkoigh6LXjxWsB/QhLLZTtulm03YnRRL6D/x4kERr/4Tb/4bt20O2vrCwsM7M8zsG6VSGPS8b2dtfWNza7u0U97d2z84dI+OmybJNIcGT2Si2xEzIIWCBgqU0E41sDiS0IpGd7N6awzaiEQ94iSFMGYDJfqCM7RW13UDhCfMeWKmAQ4BWdeteFVvLroKfgEVUqjedb+CXsKzGBRyyYzp+F6KYc40Ci5hWg4yAynjIzaAjkXFYjBhPr98Ss+t06P9RNunkM7d3xM5i42ZxJHtjBkOzXJtZv5X62TYvwlzodIMQfHFon4mKSZ0FgPtCQ0c5cQC41rYWykfMs042rDKNgR/+cur0Lys+pYfriq12yKOEjklZ+SC+OSa1Mg9qZMG4WRMnskreXNy58V5dz4WrWtOMXNC/sj5/AFZv5Qb</latexit><latexit sha1_base64="z4RYmnUnS7FMwWjGYxAkbB5qjFU=">AAAB+XicbZBNS8NAEIY3ftb6FfXoZbEInkoigh6LXjxWsB/QhLLZTtulm03YnRRL6D/x4kERr/4Tb/4bt20O2vrCwsM7M8zsG6VSGPS8b2dtfWNza7u0U97d2z84dI+OmybJNIcGT2Si2xEzIIWCBgqU0E41sDiS0IpGd7N6awzaiEQ94iSFMGYDJfqCM7RW13UDhCfMeWKmAQ4BWdeteFVvLroKfgEVUqjedb+CXsKzGBRyyYzp+F6KYc40Ci5hWg4yAynjIzaAjkXFYjBhPr98Ss+t06P9RNunkM7d3xM5i42ZxJHtjBkOzXJtZv5X62TYvwlzodIMQfHFon4mKSZ0FgPtCQ0c5cQC41rYWykfMs042rDKNgR/+cur0Lys+pYfriq12yKOEjklZ+SC+OSa1Mg9qZMG4WRMnskreXNy58V5dz4WrWtOMXNC/sj5/AFZv5Qb</latexit><latexit sha1_base64="z4RYmnUnS7FMwWjGYxAkbB5qjFU=">AAAB+XicbZBNS8NAEIY3ftb6FfXoZbEInkoigh6LXjxWsB/QhLLZTtulm03YnRRL6D/x4kERr/4Tb/4bt20O2vrCwsM7M8zsG6VSGPS8b2dtfWNza7u0U97d2z84dI+OmybJNIcGT2Si2xEzIIWCBgqU0E41sDiS0IpGd7N6awzaiEQ94iSFMGYDJfqCM7RW13UDhCfMeWKmAQ4BWdeteFVvLroKfgEVUqjedb+CXsKzGBRyyYzp+F6KYc40Ci5hWg4yAynjIzaAjkXFYjBhPr98Ss+t06P9RNunkM7d3xM5i42ZxJHtjBkOzXJtZv5X62TYvwlzodIMQfHFon4mKSZ0FgPtCQ0c5cQC41rYWykfMs042rDKNgR/+cur0Lys+pYfriq12yKOEjklZ+SC+OSa1Mg9qZMG4WRMnskreXNy58V5dz4WrWtOMXNC/sj5/AFZv5Qb</latexit>

cos✓
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FIG. 1: Temporal build-up of the mutual information between three capillary waves in turbulence. Here a = k2/k3, cos θ23 =
k1 · k2/k1k2. For fixed k2 and k1 = k2 + k3, the resonant surface is the line where the probability and MI peak at tω2 >> 1.

of the Boltzmann equation for dilute gases:

dnk
dt
≡ Stk =

∑
k1k2

(
Uk12 − 2U1k2

)
(3)

Uijk = π|Vijk|2δ
(
ωijk
)
δij+k(njnk − nink − ninj) .

The nonlinear interaction time tNL(k) ' nk/Stk is as-
sumed large relative to the wave period, so that the non-
linearity parameter ε2k=1/ωktNL(k) is small. It is known
that the Boltzmann kinetic equation is the first term of
a regular cluster expansion only at thermal equilibrium,
while even weak non-equilibrium leads to singularities as
manifested already in the density expansion of kinetic
coefficients like viscosity, diffusivity and thermal conduc-
tivity [11–16]. The kinetic equation for waves describes
spectra of developed wave turbulence, both stationary
and non-stationary [2, 6, 8], yet the singularities hidden
behind this nice picture haven’t been analyzed. Here we
open this Pandora box and start such an analysis using
the most general approach of information theory. That
(and processing real data of experiments) requires a dis-
crete approach, so that we consider the number of modes
N finite as well as the nonlinearity parameter ε. Sub-
tleties related to taking limits N → ∞ and ε → 0 are
subject of the ongoing work [8–10, 17, 18].

The self-consistent weak-turbulence description of the
one-mode statistics in terms of the occupation numbers
nk [2, 5–8, 17] guarantees the statistics of any single am-
plitude stays close to Gaussian, i.e q(|ak|) is Rayleigh for
every single wave mode. That tempts one to approximate
the whole distribution using only the set of nk, assuming
that the amplitudes are independent and the phases are
random:

q ({ak, a∗k}) =
∏
k

(2π)
−1
q (|ak|) , (4)

which implies a Gaussian approximation for ρ ({ak, a∗k}).
Here we show that ρ is quite different. The differ-
ence between distributions can be measured by the rel-

ative entropy (Kullback-Leibler divergence), which is
the price of non-optimal coding in information theory:
D (ρ | q) = 〈ln (ρ/q)〉. Since q is a product, its en-
tropy is a direct sum of the entropies of non interact-
ing modes:

∑
k ln (eπnk) =

∑
k Sk. The relative entropy

then coincides with the multi-mode mutual information
D (ρ | q)=

∑
k Sk−S (ρ) :=I ({ak, a∗k}). Remind that the

mutual information is defined for any subsystems, A and
B, via their entropies: I(A,B) = S(A)+S(B)−S(A,B).
For example, the mutual information between two parts
of the message measures how much of the future part we
can predict given the part already received.

Starting with a gaussian ρ at t = 0, at the times
1/ωk � t � tNL, the distribution ρ can be determined
by the second and third moments using conditional en-
tropy maximum (see Supplementary for details):

ρ=
1

Z
exp
[
−
∑
k

αk |ak|2+
∑
kpq

Fkpqa
∗
kapaq + c.c

]
. (5)

For ρ to be normalizable, by (A.15) we mean a truncated
series in powers of ε. Here we consider terms up to second
order. Then the parameters α, F of the distribution can
be expressed via the moments J and n:

F123 = J∗123/2n1n2n3 (6)

α−1
i = ni −

∑
k1k2

|Ji12|2 + 2 |J12i|2

2n2
1n

2
2

. (7)

We saw that continuing concentration of the third mo-
ment on the resonant surface had no influence on the
kinetic equation (3) since the integral of the imaginary
part of the third moment saturates on the short timescale
1/ωk. However, the relative entropy,

D(ρ|q) =
∑
kikj

|Ji+jij |2

2ninjni+j
, (8)

is determined by the squared modulus, which depends



3

dramatically on whether the system is in thermal equi-
librium or not. The equilibrium nk = T/ωk is special
because the last bracket in (2) is proportional to ω1

2,3,
so the third cumulant is regular everywhere in k-space
and constant for long times: J123(t) = −V ∗123T

2ω1/ω2ω3.
Therefore, at t→∞ the relative entropy is small compar-
ing to the total entropy as long as nonlinearity is small:

D(ρ|q) = I{ak} = T
∑
ij

|Vi+j,ij |2

ωiωjωi+j
=

(
Eint
T

)2

. (9)

Away from equilibrium, on the contrary, with time the
third cumulant (2) concentrates in a close vicinity of the
resonance surface. It leads to a profound difference be-
tween statistics of a wave system in equilibrium and in
turbulence. The equilibrium probability of a configura-
tion {a1, a2, a3} is insensitive to resonances, because it is
determined by the instantaneous interaction energy di-
vided by the (uniform) temperature: exp[−H/T ], since
F ∗123 = J123/2n1n2n3 = −V ∗123/2T in this case. For tur-
bulence, the interaction energy is additionally weighted
by the resonance factor (n−1

1 −n
−1
2 −n

−1
3 )/(ω1−ω2−ω3)

as the probability is the result of a time averaging. The
measure in the phase space is thus regular in equilibrium
and tends to singular in turbulence.

The squared cumulants in the relative entropy
(A.28) have a secular growth in weak turbulence:
limt→∞ |(eı∆t − 1)/∆|2 = 2πtδ(∆). The Liouville the-
orem requires that this increase of the mutual informa-
tion and decrease in total entropy is exactly equal to the
growth of S(q) due to the change in nk according to (3):

dS(q)

dt
=
∑
k

1

nk

dnk
dt

=
∑

k1k2k3

1

2n1n2n3

d

dt
|J123|2 . (10)

Hamiltonian evolution by itself does not change the
entropy S(ρ), but non-equilibrium state requires pump-
ing and damping by an environment. If its action makes
nk stationary, then the information production is ulti-
mately due to the entropy extraction by the environment:
dD(ρ|q)/dt = −(dS/dt)env. We see that stationarity of
the second moment does not mean stationary distribu-
tion. On the contrary, the third moment (and other cu-
mulants) are getting more and more singular, reflecting
the total entropy decrease and the growth of the relative
entropy between the true distribution and the random-
phase Gaussian approximation:

D(ρ|q) = t
∑
kps

Ukps
npns − nknp − nkns

nknpns
> 0 . (11)

Contribution to the relative entropy of every cumulant
is proportional to its square. The fourth cumulant is
∝ V 2, so its contribution is proportional to V 4 and can
be neglected in this order. Formula (11) can be written
as D = t

∑
k t
−1
NL(k) and is the first term of the expan-

sion in powers of time, valid at t < tNL. The terms with
higher powers of time will involve higher cumulants. One
can estimate t−1

NL(k) '
∑
j |Vk+j,kj |2nj/ωj ' ωkεk ∝

k2m+d−s−α. At t ' tNL(k), when nonlinearity at the
three-wave resonant surfaces ωj + ωk = ωj+k is getting
of order unity, the triple moment is expected to stabilize.
At that stage the entropy change already is not small,
but could be comparable to the total entropy. At later
time, the total entropy decrease is modified, but does
not necessarily stop, contrary to what one may suggest.
The reason is that the entropy extraction depends on
the environment. We illustrate that for two qualitatively
different ways of pumping the system.

Let us first add to the rhs of ı∂ak/∂t = ∂H/∂a∗k a ran-
dom force and a damping, fk−γkak, with 〈fk(0)f∗j (t)〉 =
δkjPkδ(t). When force and damping are not in detailed
balance, i.e ωkPk/γk is not a constant, we have entropy
production:(

dS

dt

)
env

= 2
∑
k

Pk

ˆ ∏
j

dajda
∗
j

2iρ

∣∣∣ ∂ρ
∂ak

∣∣∣2−2
∑
k

γk . (12)

which depends on the distribution. Averaging in this case
is over the force statistics. Let us show that if the steady
distribution ρ exists, it must have very sharp gradients,
proportional to the Reynolds number, so that the entropy
is much smaller than S(q). At the initial perturbative
stage, the distribution is given by (A.15) and we can
substitute (2,6,7) into (12) and obtain:∑

k

ˆ ∏
j

dajda
∗
j

2i
ρ−1

∣∣∣ ∂ρ
∂ak

∣∣∣2 =
∑
k

αk +O(J4). (13)

Here αk is given (7) where the last two terms are
initially small. The pumping then produces much less
entropy than the dissipation region absorbs (any non-
equilibrium state consumes information, that is exists
between a low-entropy source and a high-entropy sink).
Indeed, the energy spectral density ωqnq is a decreas-
ing function of q in a direct energy cascade, so for any
q > kpump we have

∑
k Pkn

−1
k < (ωqnq)

−1
∑

k ωkPk and(
dS

dt

)
env

< 2(ωqnq)
−1
∑
k

(ωkPk − γkωknk) = 0

follows from the energy balance
∑
k ωk(Pk − γknk) = 0.

For a developed turbulence with a wide inertial inter-
val kmax/kmin = kdamp/kpump = Re � 1, the spec-
trum of the direct cascade is nk ∝ k−s, and the ratio of
the negative damping term to the positive pumping term
in (12) can be estimated as ωpumpnpump/ωdampndamp ≡
Res−α � 1. Direct energy cascade requires s > α, and
indeed the entropy absorption by the small-scale dissipa-
tion region by far exceeds the entropy production by the
pumping region. However, this is only true at the ini-
tial perturbative stage. As time proceeds, the growth of



4

the cumulants and deviation of distribution from Gaus-
sian decreases dD/dt by increasing the pumping contri-
bution. For developed turbulence, the gradients ∂ρ/∂ak
in the pumping region must increase by a large factor
npump/ndamp to reach the steady measure, which is thus
very close to singular.

Another way of creating non-equilibrium is by adding
to the Hamiltonian equations of motion the terms γkak,
where positive γk corresponds to an instability and nega-
tive to dissipation. Averaging in this case is over the en-
semble of initial conditions. The entropy rate of change
dSenv/dt = 2

∑
kγk ≤ 0 is now independent of the distri-

bution and negative for a steady direct cascade for the
same reasons of the energy conservation

∑
k 2ωkγknk = 0

and ωknk being larger in the instability region. That
means that the entropy decreases non-stop and the mea-
sure goes all the way to singular unless coarse-graining
saturates the entropy decrease. Profound difference be-
tween turbulent measures generated by additive force and
instability was probably first noticed in [19].

To verify our other predictions, one needs to obtain
numerically and experimentally multi-dimensional prob-
ability distributions. The simplest is to start from two
modes. The pair correlation function,

〈
aka
∗
p

〉
= 0 for

k 6= p due to translation invariance, but the fourth cu-
mulant is generally nonzero and so must be the mutual
information (first introduced in [20] for one-dimensional
models of turbulence). In thermal equilibrium and
for non-resonant modes in turbulence, steady-state MI
must be small for small nonlinearity. MI between two
modes is given by Ik,p = |Jk,p,k+p|4/(4nknpnk+p)2 +
|Jk,p,k−p|4/(4nknpnk−p)2 ∝ ε4. The ε2-contribution re-
quires minimum three modes: Ik,p,q = S(ak) + S(ap) +
S(aq) − S(ak, ap, aq) = |Jk,p,q|2/2nknpnq. We expect
order-unity cumulants (as seen, for instance, in [21]) and
substantially non-Gaussian stationary joint distribution
for resonant modes in turbulence. Finding that distribu-
tion is a well-posed task for a future work.

Our consideration of the MI growth allows solving the
old puzzle: why the direction of the formation of the tur-
bulent spectrum nk ∝ k−m−d is determined by the ener-
getic capacity? When the total energy

∑
kωknk diverges

at infinity (m < α, infinite capacity), the formation pro-
ceeds from large to small scales, that is from pumping
to dissipation [22]. In the opposite finite-capacity case,
m > α, formation of the cascade was surprisingly found
to start from small and proceeds to large scales, that is
opposite to the cascade direction [6, 23, 24]. We note
that it is the growth of MI that must determine the
direction of the evolution, since it quantifies the build-
up of multi-mode correlations necessary for a steady
non-equilibrium state. For nk ∝ k−s = k−m−d, the
growth rate of the three-mode mutual information (learn-
ing rate) scales as dIk,p,q/dt ∝ k2m+d−s−α = km−α.
One then can characterize the directionality of the in-
formation transfer by the sign of m − α — when it is

positive, correlations must be established first at small
scales and then propagate to larger scales. Since the en-
ergetic capacity is also finite for the Kolmogorov spec-
trum of the incompressible turbulence, tantalizing ques-
tion is whether it is also formed starting from small
scales. Note that we characterized evolution by the
growth rate of MI, which is to be distinguished from
the transfer entropy [25], which characterizes cause-effect
relationships in a steady state. Remark that though
the MI between non-interacting Gaussian wave modes
is zero, the multi MI between points in physical space,
I(x1, . . . , xN ) = N ln

(
eπN−1

∑N
k=1 nk

)
−
∑
k ln(eπnk),

is positive whenever nk are not all the same.
Let us briefly compare our findings with similar ef-

fects near thermal equilibrium. Non-equilibrium anoma-
lies in cumulants were noticed first in the simplest case
of the linear response of a dilute gas. Series in powers of
density for viscosity and diffusivity contain infinities due
to Dorfman-Cohen memory effects in multiple collisions
[11–13, 26]. Another profound difference is in the two-
particle correlation function in two distinct space points
at the same time. Outside of the radius of molecular
forces, this correlation is zero in thermal equilibrium and
nonzero away from it [15, 16]. Non-equilibrium build-up
of long spatio-temporal correlation is a counterpart to
our spectral singularities.

Another analogy worth exploring is with many-body
localization [27], where phase correlations prevent ther-
malization and keep the system in a low-entropy state.
There is a vast literature devoted to cumulant anomalies
away from equilibrium, see e.g. books [1, 2, 12–16] and
numerous references there. We believe that complemen-
tarity of information theory and singular measures will
lead to a unified approach to these anomalies.

To conclude, we reiterate our main results: the prob-
ability distribution of weak wave turbulence is very far
from Gaussian, the mutual information is substantial for
resonant modes.
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Supplementary Material

The Probability Distribution

Here we outline the derivation of the probability distribution ρ for short times (compared to nonlinear time tNL)
and its entropy.

The probability distribution determined by the second and third moments, nk and Jkpq respectively, assuming
maximum conditional entropy, is an extremum of the functional

Q[ρ] = S(ρ)−
∑
k

αknk+
∑
k,p,q

FkpqJkpq + c.c + λ

ˆ ∏
j

dajda
∗
j

2i
ρ, (A.14)

where αk and Fkpq are the corresponding Lagrange multipliers and the last term is a normalization condition. The
solution to the extremum problem, apart from the normalization term, is given by

ρ=Z−1exp
[
−
∑
k

αk |ak|2+
∑
k,p,q

Fkpqa
∗
kapaq + c.c

]
. (A.15)

For ρ to be normalizable, by Eq. (A.15) we mean a truncated series in ε = |Jkpq|2/nknpnq � 1, assuming weakness
of non-Gaussianity:

ρ=Z−1exp
[
−
∑
k

αk |ak|2
](

1 +
∑
k,p,q

Fkpqa
∗
kapaq + c.c + ...

)
. (A.16)

The first two terms of the entropy of the distribution are then

S(ρ) =
∑
k

lnπenk −
∑
ij

|Ji+jij |2

2ninjni+j
, (A.17)

which give the relative entropy:

D(ρ|q) =
∑
ij

|Ji+jij |2

2ninjni+j
. (A.18)

where q =
∏
k

1
πnk

e−
∑

k |ak|
2/nk is the Gaussian approximation.

Entropy Production

Here we outline the derivation of (13) in the main text:

∑
k

ˆ ∏
j

dajda
∗
j

2i
ρ−1

∣∣∣ ∂ρ
∂ak

∣∣∣2 =
∑
k

αk +O(J4). (A.19)

Starting with (A.16), the derivative of ρ with respect to ak is given by

∂ρ

∂ak
=

−αka∗k +

N∑
ij

(
2Fijka

∗
i aj + F ∗kjla

∗
ja
∗
i

) ρ (A.20)
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so ∀k
ˆ ∏

j

dajda
∗
j

2i
ρ−1

∣∣∣ ∂ρ
∂ak

∣∣∣2 =α2
knk − αk

N∑
ij

(
2F ∗ijk

〈
aia
∗
ja
∗
k

〉
+ Fkjl 〈ajaia∗k〉+ 2Fijk 〈a∗i ajak〉+ F ∗kji

〈
a∗ja
∗
i ak
〉)

+

N∑
ijlm

(
4F ∗lmkFijk 〈a∗i ajala∗m〉+ F ∗kjiFkml

〈
a∗ja
∗
i amal

〉)
(A.21)

=α2
knk − 2

N∑
ij

(
2 |Fijk|2 + |Fkji|2

)
ninj +O

(
F 3
)

(A.22)

=αk

αknk − N∑
ij

(
|Jijk|2

ninjnk
+
|Jkij |2

2ninjnk

)+O
(
F 3
)
. (A.23)

Using the first terms in the expansion for αk

αk =
1

nk

1 +
∑
ji

(
|Jkji|2

2njnink
+
|Jjik|2

njnink

) , (A.24)

yields (A.19).

Information Capacity of Turbulent Cascades

This section includes a complementary and broader discussion to the main text regarding the information capacity
of turbulent cascades.

The most important practical problem in modeling multi-mode systems, both in and out of equilibrium, is an
inability to resolve all scales. It is then imperative to learn how much information about the whole system one can
reliably receive from the scales explicitly accounted for. This can be quantified by the mutual information between
small and large scales, which we now compute perturbatively for an interactive wave system in and out of equilibrium.
Remind that the relative entropy and the mutual information decrease monotonically upon any partial average.

Let us integrate the N -wave probability distribution (A.15) over the amplitude and phase of the N -th harmonic:

ρ {a1 . . . aN−1} =
π

ZNαN
exp

−N−1∑
k=1

αk |ak|2+

N−1∑
ijk

(Fijka
∗
i ajak+c.c)+

N−1∑
ijmn

nNFNijF
∗
Nmnaiaja

∗
ma
∗
n

. (A.25)

We see that the pdf of the remaining modes depends on FNji = J∗Nij/2ninjnN , which according to (2) in the main

text, J123(t) = e
iω1

2,3t−1
ω1

2,3
V ∗123(n2n3 − n1n2 − n1n3), can be expressed via ninjnN for weakly-interacting wave system.

However, the entropy of the remaining modes is independent of the eliminated modes in this order:

SN−1 =

N−1∑
k

lnπenk −
N−1∑
ijk

|Jijk|2

2ninjnk
+ O(ε4) . (A.26)

As a result, up to ε4-terms, the mutual information between the two sets of waves with the wave numbers below and
above some k respectively is determined by the triple correlation between the waves taken from different sets:

I(k) = S(1, k) + S(k,N)− SN =
∑
j<k<i

|Jijl|2

2ninjnl
. (A.27)

It can be called the information capacity of the cascade. If k is the resolution scale then dI(k, t)/dt measures the
rate of the information loss. More and more correlations appear at finer and finer scales, all lost below the resolution
scale.

Eliminating the N -th harmonic thus decreases the mutual information by removing some contributions from the
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sum of all positive terms, while the changes in the remaining terms appear only in the next order. The expression for
the relative entropy, (9) in the main text,

D(ρ|q) = I{ak} = T
∑
ij

|Vi+j,ij |2

ωiωjωi+j
= (Eint/T )2 , (A.28)

is uniformly valid for thermal equilibrium in a weakly interacting system of waves. The same is true for the general
perturbative expression (A.18) at any given time only as long as the measure did not deviate far from Gaussian.

Scaling of the Relative Entropy and Mutual Information

It is interesting to find out how the relative entropy (multi-mode mutual information) depends on the number N
of the degrees of freedom and compare it with the linear dependence of the extensive entropy S(q). For example,
MI of a system with the pair interaction (spins, neurons) grows with N as the number of pairs, N(N − 1)/2, at
least for low enough N . Finding the critical Nc when the quadratic part is comparable to the linear one, one can
estimate, for instance, the cluster size of strongly correlated neurons in the brain [1]. For a wave system in a fixed
box, we assume N ∝ (kmax/kmin)d. Let us keep the box size L = 2π/kmin fixed, so that N changes as kdmax.
In computing occupation numbers one must assume that nk ∝ (kmax/k)s so that S(q) =

∑
k ln(πenk) is indeed

extensive (and not N lnN). In thermal equilibrium, the relative entropy is determined by the modes with k ' kmax,
so that one estimates D ' Nε2kmax

' N |V (kmax)|2T/ω3
max ∝ ε2N1+(2m+d−3α)/d, where we denoted the system-scale

nonlinearity parameter: ε = εk(k/kmin)2α+s−2m−d = εk(k/kmin)3α−2m−d. The critical number of modes, over which
perturbation approach fails and waves cannot be considered weakly correlated, then scales with the nonlinearity as
Nc ' εd/(3α−2m−d). On the contrary, when the relative entropy is sub-extensive, the larger the number of modes
the less correlated they are effectively. On the Kolmogorov spectrum, dD/dt ∝ km+d−α

max ∝ N1+(m−α)/d, which is
super-extensive when α < m, that is when the interaction energy grows with k faster than the sum of the energies of
the separate waves.

The mutual information (A.27) in thermal equilibrium scales as I(k) ∝ k2m−m1+d−2α
max km1+d−α, whenm1+d−α > 0.

When 2m−m1 > 2α, the mutual information is sub-extensive, which can be thought as an analog of an area law. In
turbulence, MI grows according to dI(k, t)/dt ∝ k2m−m1+d−3α+1

max km1+2α−m−1 ∝ N1+(2m−m1−3α+1)/d. Note that the
spectrum locality requires m1 + 2α−m− 1 > 0 [2].

For reader’s convenience, Table 1 presents parameters for different wave systems with resonant three-wave interac-
tion.

Wave system α m m1

3D acoustic waves 1 3/2 1

2D weakly dispersive waves 1 1 1

Capillary waves on deep water 3/2 9/4 7/2

Capillary waves on shallow water 2 2 0

TABLE I: Parameters for different wave systems with resonant three-wave interaction.

The mutual information is parametrically larger in turbulence than in equilibrium. Indeed as stated in the main
text the resolved scales carry significant information about the unresolved scales. However, if we are only interested
in large-scale properties, the ignorance of small scales carries much higher price in turbulence than in equilibrium.

There are two ways to mitigate the effect of that ignorance: parameterize the unresolved scales by a small set of
variables and/or modify the equations of motion of the scales resolved. How well this task is accomplished is to be
measured by the relative entropy between the true distribution and that obtained from solving the restricted set of
equations. In particular, Computer modeling poses the question: if there is a way to renormalize the Hamiltonian of
the modes explicitly computed so that their statistics is faithfully reproduced. For weakly interacting waves, (A.25)
suggests the following renormalization to account for subgrid modes at k ≥ L:

δH =
∑
ijmn

N∑
k=L

T kijmna
∗
i a
∗
jaman∆(k − i− j)∆(k −m− n) . (A.29)
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We need to choose T kijmn so that the evolution of L modes with the new Hamiltonian approximates the true entropy
of (A.25) up to ε4. This is possible in thermal equilibrium by choosing T kijmn = VkijV

∗
kmnnk/T = VkijV

∗
kmn/ωk;

essentially the same procedure is integrating out fast degrees of freedom in effective ăquantum field theories. It is
straightforward to see that it does not work away from thermal equilibrium. Generally, in turbulence subgrid modes
not only renormalize Hamiltonian, but provide also random forces with a non-trivial statistics. More likely, a correct
way to account for subgrid modes in turbulence is a direct renormalization of the probability distribution, rather than
Hamiltonian; this will be treated elsewhere.

Scattering Processes

It is straightforward to include the four-wave scattering into the entropic treatment of weak wave turbulence.
Consider the Hamiltonian

H =
∑
k

ωk |ak|2 +
1

2

∑
i+j=m+n

Tijmna
∗
i a
∗
jaman , (A.30)

where Tijmn = T ∗mnij . We define the renormalized frequency ω̃k = ωk +
∑
i Tikikni, where as before ni = 〈|ai|2〉.

Denote ∆ = ω̃1 + ω̃2 − ω̃3 − ω̃4. Similarly to three-wave ineraction, we obtain in the first order the cumulant
Jijkl = 〈a∗i a∗jakal〉 − 2ninkδikδjl = 〈〈a∗i a∗jakal〉〉:

J1234 = 2T ∗1234n1n2n3n4

(
n−1

4 + n−1
3 − n

−1
2 − n

−1
1

) ei∆t − 1

∆
δ (k1 + k2 − k3 − k4) , (A.31)

which gives linearly decaying entropy for non-equilibrium spectra. Note that Jijij = 0.

The distribution determined by ni and Jijkl is again given by the conditional entropy maximum under the assump-
tion |Jijkl|2/ninjnknl ≡ ε2 � 1:

ρ{ak} = Z−1 exp
[
−
∑
k

αk|ak|2 +
∑
ijkl

Gijkla
∗
i a
∗
jakal

]
. (A.32)

where the overall normalization and second moment are given by

Z =
(
1 + 2

∑
ijkl

G2
ijkl

αiαjαkαl

) N∏
l=1

π

αl
, (A.33)

ni = α−1
i + 2α−2

i

∑
jkl

G2
ijkl +G2

jkil

αjαkαl
. (A.34)

In this case, G1234 = J∗1234/4n1n2n3n4, and the relative entropy (the multi-mode mutual information) is expressed
via the sum of the fourth cumulants:

D(ρ|q) =
∑
ijkl

J2
ijkl

8ninjnknl
, (A.35)

which also grows linearly with time in weak turbulence. Apart from the energy, scattering processes conserve also
the number of waves, which makes possible two-cascade state with a direct cascade of energy and inverse cascade
of waves. In an inverse cascade, occupation numbers at the sink are larger than at the source, so that dSenv/dt '
2γk(ndamp/npump − 1) ≥ 0. That means that in a weakly nonlinear regime an inverse cascade absorbs entropy and
generates information, that is it cannot exist without a direct cascade, which provides overall entropy production.
It is straightforward to show that any stationary weak turbulence producing and absorbing both integrals of motion
generates entropy. Examples of wave systems with four-wave scattering are given in Table 2.
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Wave system d α m

Surface gravity waves 2 1/2 3

plasmons and manons 3 2 0 or 2

Elastic waves in thin plates 2 2 0

TABLE II: Parameters for different wave systems with four-wave scattering.

One can also consider the general quantum kinetic equation for scattering [2]:

∂nk
∂t

=

ˆ
|Tk123|2Fk123δ(k+k1−k2−k3)δ(ωk+ω1−ω2−ω3)dk1...dk4 ,

Fk123 = (nk + 1)(n1 + 1)n2n3 − nkn1(n2 + 1)(n3 + 1) . (A.36)

In the limit nk � 1 it gives the classical scattering kinetic equation (A.31). In the opposite limit nk � 1 it gives
Boltzmann equation:

∂np
∂t

=

ˆ
|Tp123|2(npn1 − n2n3)δ(p + p1 − p2 − p3)δ(εp + ε1 − ε2 − ε3)dp1dp2dp3 . (A.37)

Directions of Future Studies

Let us briefly discuss how one can use the information theory to learn more on different cases of turbulence.
Traditionally, turbulence studies have focused on single-point probability distributions and correlations between two
or three points. Just like the progress in stochastic thermodynamics and data processing required passing from
correlation functions to entropy and mutual information, the future progress of turbulence studies may lie in this
direction. The whole multi-point probability functional, of course, contains all the information, but it is too vast.
However, the entropy of this distribution must be manageable and may answer questions hitherto unasked. For
example, entropy measures the rate with which we acquire extra information upon increasing spatial, temporal or
amplitude resolution. In addition, mutual information will let us quantify how much information we can infer from
some spatial, temporal or spectral domains about the other, unknown, domains.

Further, note that the mutual information between Fourier modes is interesting even when no waves are possible,
as in incompressible turbulence. In this case, the energy flux is cubic in velocity, which suggests studying the three-
mode mutual information (going beyond the perturbative approach of [3]). In the other extreme, shock creation in
compressible turbulence imposes multi-mode phase correlations, which would be very interesting to characterize by the
respective multi-mode mutual information. Maxima of multi-mode mutual information may also reveal a connectivity
graph of a system with a finite number of interacting modes.

Much remains to be learnt from the passive scalar turbulence [3]. Consider the scalar field θ(r, t) passively trans-
ported by an incompressible flow v(r, t) and pumped by ξ(r, t):

(∂t + vi∇i)θ = ξ . (A.38)

Both velocity and pumping are Gaussian. The passive scalar turbulence is amenable to analytic treatment when
velocity is either smooth in space (Batchelor case) or rough in time (Kraichnan case) [3]. In the Batchelor case,
the scalar statistics is close to Gaussian, yet the statistics of scalar gradients is not. We think that singularity of
the measure must manifest itself in angular singularities of cumulants near collinear configurations. The only known
case is a cusp for four-point cumulant [4]. One may hope that information-theoretical treatment of this case might
be possible within a perturbative approach. In the Kraichnan case, the scalar statistics is close to Gaussian in the
limits of large space dimensionality and spatially rough velocity. These two limits are amenable to analytic treatment,
where the cumulants can be computed perturbatively. That would be of much interest to compute the entropy and
the mutual information for the scalar field and see how they depend on the space dimensionality and the velocity
roughness.

Another promising direction could be a renormalization-group (RG) analysis of the information content of turbu-
lence, in particular, the insight it gives into irreversibility of RG as the best way to learn by forgetting, see [5–7]. As
we have seen, in thermal equilibrium the multi-mode MI is proportional to εk. The mutual information of the wave
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system decreases monotonically under coarse-graining. However, two other steps of RG, re-scaling and renormaliza-
tion, may increase MI depending on the k-dependence of εk. For example, a perturbative analysis for the system
where the lowest nonlinearity is four-wave scattering, described in Section , is expected to go along the lines of Wilson
epsilon-expansion [8]. In that case, the Gaussian fixed point will be either stable or unstable depending on the scaling
εk ∝ kε = ks+α−m−d, that is ε plays the role of 4 − d in our case. The mutual information between modes will
then respectively increase/decrease upon RG flow for negative/positive ε. This is apparently because some of the
information about eliminated degrees of freedom is stored in the renormalized values of the cumulants. Therefore,
MI cannot universally play the role of C-function that guarantees the irreversibility of RG flow. Finding the proper
informational characteristics for different RG schemes remains the task for the future [9]. Mention also the use of
MI for identifying the relevant degrees of freedom and executing RG steps by a machine-learning algorithm without
any prior knowledge about the system [10]. RG analysis may also illuminate the profound differences between the
fixed points of RG: equilibrium versus turbulence and direct versus inverse cascade. In turbulence, I(k,p,q) must be
vanishingly small away form the resonant surfaces k = p + q, ωk = ωp + ωq. The perturbative consideration demon-
strated the growth on the resonant surfaces, but cannot determine where the growth stops and how the resulting
mutual information depends on εk and the ratios k/kmin and k/kmax. Finding the ultimate mutual information of
the invariant measure of weak turbulence remains the task for future, since the weak turbulence fixed point must be
very far from Gaussian. Particularly interesting it is to establish how the total entropy of a turbulence system scales
with the number of degrees of freedom to see if there an "area law of turbulence".
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Never is the difference between thermal equilibrium and turbulence so dramatic, as when a
quadratic invariant makes the equilibrium statistics exactly Gaussian with independently fluctuating
modes. That happens in two very different yet deeply connected classes of systems: incompressible
hydrodynamics and resonantly interacting waves. This work presents the first detailed information-
theoretic analysis of turbulence in such strongly interacting systems. The analysis involves both
energy and entropy and elucidates the fundamental roles of space and time in setting the cascade
direction and the changes of the statistics along it. We introduce a beautifully simple yet rich family
of discrete models with triplet interactions of neighboring modes and show that it has quadratic con-
servation laws defined by the Fibonacci numbers. Depending on how the interaction time changes
with the mode number, three types of turbulence were found: single direct cascade, double cascade,
and the first ever case of a single inverse cascade. We describe quantitatively how deviation from
thermal equilibrium all the way to turbulent cascades makes statistics increasingly non-Gaussian
and find the self-similar form of the one-mode probability distribution. We reveal where the infor-
mation (entropy deficit) is encoded and disentangle the communication channels between modes, as
quantified by the mutual information in pairs and the interaction information inside triplets.

I. INTRODUCTION

Existence of quadratic invariants and Gaussianity of
equilibrium in a strongly interacting system may seem
exceptional. Indeed, generic systems have no invariants
except Hamiltonian. Strongly interacting systems have
non-quadratic Hamiltonians, so that equilibrium Gibbs
distribution (the exponent of the Hamiltonian) is gener-
ally non-Gaussian. And yet two very distinct wide classes
of physical systems have quadratic invariants and Gaus-
sian statistics at thermal equilibrium. The first class is
the family of hydrodynamic models, starting from the
celebrated hydrodynamic Euler equation and including
many equations for geophysical, astrophysical and mag-
netohydrodynamic flows. The second class, as will be
described in this paper, contains systems of resonantly
interacting waves. We show that the discretized models
of the first class exactly correspond to the second one.
We shall consider one particular (arguably the simplest)
family of such models and describe far-from equilibrium
(turbulent) states of such systems.

One calls turbulence a state of any system, where many
degrees of freedom are deviated far from thermal equilib-
rium. Therefore, studies of turbulence encompass a wide
variety of phenomena in nature and industry, from pipe
flows to ripples on a paddle. It can be studied from the
viewpoint of a mathematician, engineer or a physicist.
Here we employ the perspective of statistical physics,
which is interested in fundamental principles that deter-
mine statistical distributions in turbulence and thermal
equilibrium. We shall use both the traditional viewpoint
of cascades and the relatively recent viewpoint of infor-
mation theory, that is we address both energy and en-
tropy of turbulence. So far, statistical physics approach
to turbulence was to a large extent devoted to two quite
distinct classes: systems of interacting waves like those

on the surface of the ocean or a paddle and incompress-
ible vortical flows where no waves are possible. Here we
build a bridge between these two classes and show that
discrete models of a certain kind can describe both.

On the one hand, the vorticity, ω = ∇ × v, of an
isentropic flow of incompressible fluid satisfies the Eu-
ler equation: ∂ω/∂t = ∇ × (v × ω). Quite similar are
two-dimensional hydrodynamic models, where a scalar
field a (vorticity, temperature, potential) is linearly re-
lated to the stream function ψ of the velocity carrying
the field: ∂a/∂t = −(v · ∇)a, v = (∂ψ/∂y,−∂ψ/∂x),
ψ(r) =

∫
dr′|r− r′|m−2a(r′). For the 2D Euler equation,

m = 2. Other cases include surface geostrophic (m = 1),
rotating shallow fluid or magnetized plasma (m = −2),
etc. After Fourier transform,

ȧk =
∑

q
[k× q]q−maqak−q . (1)

All such equations have quadratic nonlinearity and
quadratic invariants. Then it was suggested [1] to model
different cases of fluid turbulence by the chains of ODEs
having quadratic invariant giju

iuj and these properties:

u̇i = Γijlujul , Γiil = 0 = gikΓkjl + glkΓkji + gjkΓkli . (2)

On the other hand, consider resonantly interacting
waves with the general Hamiltonian,

Hw =
∑

i
ωi|bi|2+

∑
ijl

(
Vl,ijb

∗
i b
∗
j bl + V ∗l,ijbibjb

∗
l

)
, (3)

where Vl,ij 6= 0 only if ωi +ωj = ωl. By the gauge trans-
formation, ai = bi exp(ıωit), we can turn the equations of

motion, ıḃi = ∂Hw/∂b∗i into a system of the type (1,2):

ıȧi =
∑

jl

(
V ∗i,jlajal + 2Vl,ija

∗
jal
)
. (4)
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This means that quadratic and cubic parts of the Hamil-
tonian are conserved separately. If such a system is
brought into contact with thermostat, it is straightfor-
ward to show that the statistics is Gaussian: lnP{ai} ∝
−∑i ωi|ai|2.

Our interest in resonances is connected to that in non-
equilibrium. Thermal equilibrium does not distinguish
between resonant and non-resonant interactions because
of the detailed balance: whatever correlations can be
built over time between resonantly interacting modes, the
reverse process destroying these correlations is equally
probable. This is not so away from thermal equilibrium,
especially in turbulence.

Neglecting non-resonant and accounting only resonant
interactions is the standard approach to weakly inter-
acting systems, even though the weak nonlinearity as-
sumption breaks for resonant modes. Weak turbulence
theory gets around this by considering continuous distri-
bution and integrating over resonances to get the kinetic
wave equation, which describes nonlinear evolution that
is slow compared to linear oscillations with wave frequen-
cies [2–5]. There is a tendency in theoretical statistical
physics to restrict consideration to two opposite limits:
either treat few modes or infinitely many. That prefer-
ence is even stronger in the studies of non-equilibrium.
And yet not only most of the real-world phenomena
fall in between these limits, but, as we show here, one
learns some fundamental lessons comparing equilibrium
and non-equilibrium states of systems with a finite num-
ber of degrees of freedom, where phase coherence can
play a prominent role. A similar lesson condensed matter
physics taught us by discovering the world of mesoscopic
phenomena, where the system size was made smaller than
the phase coherence length.

The previous treatment of mode discreteness was fo-
cused on the sparseness of resonances for the particular
cases when resonant surfaces ωk + ωq = ω|k+q| did not
pass through integer lattice determined by a box [5, 6].
Yet in many cases resonance surfaces lay in the lattice.
For example, in a quite generic case of quadratic disper-
sion relation, ωk ∝ k2, Pythagorean theorem makes the
resonance surface for three-wave interactions just per-
pendicular to any wavevector, so that in any rectangular
box resonantly interacting triads fill the lattice of the box
eigen modes.

Class of models (1,2,4) is ideally suited for the com-
parative analysis of thermal equilibrium and turbulence.
We show here that such analysis sheds light on the most
fundamental aspects of turbulence, particularly the roles
of spatial and temporal scales in determining cascade di-
rections and build-up of intermittency. We consider the
particular sub-class of models that allow only neighbor-
ing interactions, and find it the most versatile tool to date
to study turbulence as an ultimate far-from-equilibrium
state. We carry here such detailed study of the known
types of direct-only and double cascades with unprece-
dented numerical resolution. Even more important, our
models allow for an inverse-only cascade never encoun-

tered before.

II. FIBONACCI TURBULENCE

We consider a sub-class of the models (1,2,4) which is
Hamiltonian with a local interaction:

H =
∑

i
Vi
(
a∗i a
∗
i+1ai+2 + aiai+1a

∗
i+2

)
. (5)

The equations of motion ıȧi = ∂H/∂a∗i are as follows:

ıȧi = Vi−2ai−1ai−2 + Vi−1a
∗
i−1ai+1 + Via

∗
i+1ai+2. (6)

This family of models (each characterized by Vi) can have
numerous classical and quantum applications, since i can
be denoting real-space sites, spectral modes, masses of
particles, number of monomers in a polymers, etc. The
Hamiltonian describes, in particular, decay and coales-
cence of waves or quantum particles, breakdown and
coagulation of particles or polymerization of polymers,
etc, when interactions of comparable entities are dom-
inant. In particular, the model describes the resonant
interaction of waves whose frequencies are the Fibonacci
numbers Fi = {1, 1, 2, 3, 5 . . .} defined by the identity
Fi + Fi+1 = Fi+2 with F0 = 0. Indeed, such waves are
described by the Hamiltonian

H0 =
∑

i

[
Fi|ai|2 + Vi

(
a∗i a
∗
i+1ai+2 + aiai+1a

∗
i+2

)]
. (7)

The first term corresponds to the linear terms in the
equations of motion, while the second term represents
the only possible resonant interactions, since no non-
consecutive Fibonacci numbers sum into another Fi-
bonacci number (Zeckendorf theorem). For any real t,
the Hamiltonian (7) is invariant under the U(1) × U(1)
transformation ai → aie

ıFit due to Fi + Fi+1 = Fi+2.
The transformation (to the wave envelopes) reduces the
equation of motion ȧi = ∂H0/∂a

∗
i to (6).

If i are spectral parameters, they are usually under-
stood as shell numbers. That means that one can define
wave numbers as k = Fi = [φi − (−φ)−i]/

√
5, where

φ = (1+
√

5)/2 is the golden mean. It plays here the role
of an intershell ratio, since asymptotically at |i| � 1, the
wave number depends exponentially on the mode num-
ber: Fi ∝ φ|i|. The model (6) thus belongs to the class of
the so-called shell models [7], that is (2) with neighbor-
ing interactions. Coefficients of shell models are chosen
to have one or two quadratic integrals of motion. In par-
ticular, the Sabra shell model [8, 9] for a particular choice
of coefficients (non-surprisingly, connected by the golden
ratio) coincides with (6), which is Hamiltonian and has
the cubic integral of motion (5).

It is straightforward to show that for arbitrary Vi, the
dynamical equations (6) conserve a one-parameter family
of quadratic invariants (generalizations of the Manley-
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Rowe invariants for three-wave interactions):

Fk =
∑

i=1
Fi+k−1|ai|2 , (8)

where k could be of either sign if we define negative Fi-
bonacci numbers: F−j = (−1)j+1Fj . All invariants can
be obtained as linear combinations of any two of them.
For example, the first two integrals are positive, indepen-
dent, and in involution:

F1 =
∑

i=1
Fi|ai|2 , F2 =

∑
i=1

Fi+1|ai|2 . (9)

In a closed system, the microcanonical equilibrium is
P = δ(H− C)δ(F1 − C1)δ(F2 − C2). We now add dissi-
pation and white-in-time pumping:

ȧi = −ı∂H/∂a∗i + ξi − γiai . (10)

Here 〈ξia∗j 〉 = δijPi/2. It is straightforward to show,
also in a general case (3,4), that such forcing on av-
erage does not change the cubic Hamiltonian, since
〈ξiai+1a

∗
i+2〉 = Pi〈∂(ai+1a

∗
i+2)/∂a∗i 〉 = 0 for any i.

Denoting Hi = 2Re(Via
∗
i ai−1ai−2), we then obtain∑

i d〈Hi〉/dt = −∑i(γi + γi−1 + γi−2)〈Hi〉, which must
be zero in a steady state. At least when all sums
γi+γi−1+γi−2 are the same,

∑
i〈Hi〉 =〈H〉 = 0 (one can

probably imagine exotic cases where separate 〈Hi〉 6= 0
but we shall not consider them). If pumping and damp-
ing are in a detailed balance, so that

∑
k αkFi+k−1 =

γi/Pi for every i, the thermal equilibrium distribution is
Gaussian: P = exp(−∑k αkFk) — it is a steady solution
of the Fokker-Planck equation:

∂tP = {P,H}+
∑
i

[
Pi∂ai∂a∗i + γi

(
∂aiai + ∂a∗i a

∗
i

)]
P

∝∑i (2γi − Pi
∑
k αkFi+k) = 0 .

That solution realizes maximum entropy for given values
of the invariants. The distribution is exactly Gaussian
despite the system being described by a cubic Hamil-
tonian and thus strongly interacting. The only restric-
tion on the numbers αk is normalization. In partic-
ular, when only α1 = 1/2T is nonzero, we get the
equilibrium equipartition with the occupation numbers
ni ≡ 〈|ai|2〉 = Pi/2γi = T/Fi.

In a turbulent cascade, the fluxes of the quadratic in-
variants can be expressed via the third cumulant. Gauge
invariance and Zeckendorf theorem ensure that the triple
cumulants are nonzero only for consecutive modes in the
inertial range:

Ji ≡ Im 〈a∗i ai−1ai−2〉 , (11)

Fi+k−1
d〈|ai|2〉
dt

= 2Fi+k−1(Vi−2Ji − Vi−1Ji+1 − ViJi+2)

= Πk(i− 1)−Πk(i) = −∂iΠk(i) . (12)

The right hand side is the discrete divergence of the flux

Πk(m) ≡ −
m∑
i=1

Fi+k−1
d〈|ai|2〉
dt

= 2Fm+kVm−1Jm+1 + 2Fm+k−1VmJm+2 . (13)

The 3rd order cumulants are zero in equilibrium, but
in turbulence they are nonzero to carry the flux. In the
inertial interval, the flux must be constant and its diver-
gence zero. For our class of models, we are able to find
analytically the form of the 3rd cumulant (the analog of
Kolmogorov’s 4/5-law for fluid turbulence):

Jm = CFM−m+1/Vm−2 , (14)

where real constant C and integer M can be of either
sign. Let us substitute (14) into (13) and show that all
the fluxes are non-zero constants independent of m:

Πk(m) = 2Fm+kVm−1CFM−m/Vm−1

+ 2Fm+k−1VmCFM−m−1/Vm = CFM+k−1 . (15)

The last equality follows from the Cassini identity:
FmFn + Fm−1Fn−1 = Fm+n−1. All the fluxes have the
same sign for any k, that is all the integrals Fk flow in
the same direction for such solutions. We shall show in
the next section what kind of fine-tuning is needed to
get a double cascade when both cascades carry the same
integrals. In [8], the (quadric) spectral flux of the (cu-
bic) Hamiltonian was also defined, but pumping does not
produce it, so that 〈H〉 = 0 in a steady turbulent state,
as well as in thermal equilibrium.

Every model of our family is completely characterized
by specifying the dependence of Vi on i. While ther-
mal equilibrium does not depend on Vi and is universal
for the whole family, turbulence depends on Vi, as clear
from (14). In what follows, we shall consider the power-
law dependence Vi = Fαi , which turns into exponential
dependence Vi ≈ φiα for i � 1. Therefore, the single
real parameter α determines the model. Our choice of
particular values for α below will make the connection
between wave and hydrodynamical turbulence through
the Fibonacci model more explicit.

III. CASCADE DIRECTION

To get an analytic insight into our turbulence, par-
ticularly, to understand the flux direction, consider an
invariant sub-space of solutions with purely imaginary
ak = iρk for all k:

∂ρi
∂t

= Vi−2ρi−1ρi−2 − Vi−1ρi−1ρi+1 − Viρi+1ρi+2 (16)

In this case, H ≡ 0. The invariant subspace owes its ex-
istence to the invariance of (6) with respect to the sym-
metry a→ −a∗.

Consider the chain running between some integers M
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and N , either positive or negative, and assume Vi/Vi−1 =
φα. Then for ρi = Aφiβ and M+1 < i < N−1 we obtain:

∂ρi
∂t

= A2Vi−2φ
2iβ
(
φ−3β − φα − φ2α+3β

)
. (17)

The right hand side of (17) turns into zero for β =
−(1 + α)/3, which defines a steady solution ρi =
φ−i(1+α)/3 (also with the replacement φ → −1/φ). This
solution can describe either direct or inverse cascade,
since the symmetry ρ → −ρ, t → −t means that one
reverses the flux by changing the sign of ρ in this case. In-
deed, consider the evolution from the initial state where
all amplitudes are zero except the first two ρM , ρM+1.
The first term in (16) then will produce ρM+2 of the same
sign as VMρMρM+1, which makes the flux positive, as it
should be for a direct cascade. Alternately, by pump-
ing the last two modes, the last term of (16) produces a
negative flux. Which cascade can be realized in reality:
direct, inverse or both? Physically it is clear that the
sign of the flux must be determined by the only param-
eter α, that is by how mode interaction depends on the
mode number. Indeed, for α = 1/2, the scaling of the
flux steady solution coincides with that of the thermal
equilibrium: 〈ρi〉 = 0, 〈ρiρj〉 = niδij = δijT/Fi ∝ φ−i,
for i � 1. Such state can be excited, for instance, by
an imaginary pumping acting on every mode in detailed
balance with dissipation. Physical common sense sug-
gests that the cascade must carry the conserved quantity∑
i Fiρ

2
i from excess to scarcity [3, 10]. For α > 1/2

the steady solution ρ2i = φ−2(1+α)i/3 decays with i faster
than the equipartition ρ2i ∝ 1/Fi ∝ φ−i, so that it must
correspond to a direct cascade. By the same token, we
must have an inverse cascade for α < 1/2. Of course,
such consideration is a plausible argument, not a rigor-
ous proof of the cascade sign. Getting a little ahead of
ourselves, mention here that we observe a double-cascade
turbulence exactly at α = 1/2.

In a general complex case, arguing that the cascade
changes direction when α crosses 1/2 is even less straight-
forward. The flux constancy determines the third mo-
ment, which only bounds the product of the second and
fourth moments (the claim that it bounds the square root
of the products of three second moments made in [11] is
incorrect). Yet a plausible argument can be made as fol-
lows. The input rate of Fk is equal to Π = PFp+k−1
where p is the position of the pumping. The input rate
must be equal to the dissipation rate Π = 2γdFd+k−1nd
for any choice of γd taken at the dissipation position d.
In order for nd to smoothly match the cascade, one must
choose γd comparable to the nonlinear interaction time:

γd ' VdJ
1/3
d ' Vd(Π/VdFd)

1/3. This gives an order-of-

magnitude estimate nd ' (Π/VdFd)
2/3. Such reasoning

can be applied to every i, which in turn gives the estimate
for the spectrum of occupation numbers:

ni ' (Π/ViFi)
2/3 . (18)

Since the direction of the flux is toward the occupa-
tion numbers that are lower than thermal equilibrium,
ni ∝ F−1i , then again we see that the flux changes di-

rection when Vi ∝ F
1/2
i . The dimensionless degree of

non-Gaussianity on such a spectrum,

ξ ≡ Ji

n
3/2
i

' Π

ViFin
3/2
i

' PFp

ViFin
3/2
i

, (19)

must be independent of i. For the spectrum close to

equilibrium, ξ ∝ F 3/2
i /ViFi = F

1/2
i /Vi.

Figures 1 and 2 confirm these predictions. We place
the pumping at a single mode, i = p, between two dissi-
pation regions on the ends, letting the system to choose
the cascade direction. The system (10) with pumping
and damping has been evolved numerically using LSODE
solver [12]. At each step, random Gaussian noise of power
P is applied to the pumping-connected mode injecting
flux Πp = PFp. Damping with γL and γR is applied
to the two left-most and two right-most modes respec-
tively. For α = 1/2 (Vi =

√
Fi), the system is weakly

distorted from equilibrium, with a constant flux on each
side of the pumping. For α 6= 1/2 we find that the in-
variants are absorbed only on one end of the spectrum.
For α > 1/2 (Vi = Fi), we have a thermal equilibrium
to the left of pumping and the direct cascade (18) with
a constant ξ to the right. In the opposite case (α < 1/2,
Vi =const), we find an inverse cascade (18) with constant
ξ to the left and equilibrium equipartition to the right of
pumping. In both cases, the damping on the flux side is
carefully selected to avoid build-up in the spectrum (the
damping on the equilibrium side can be then set to zero
to establish cleaner scaling). We have chosen Vi = Fi
and Vi = const because they qualitatively correspond to
the Kolmogorov scaling of the direct energy cascade in
incompressible turbulence and to the inverse wave action
cascade in deep water turbulence respectively.

Thermal equilibrium at the scales exceeding the pump-
ing scale together with a direct cascade at smaller scales
have been predicted and observed [13]. To the best of
our knowledge, nobody has seen before an inverse-only
cascade together with a thermal equilibrium on the other
side of the pumping, neither in hydrodynamic-type sys-
tems nor in wave turbulence or shell models. Inverse
cascades play a prominent role in geophysics and astro-
physics, from creation of planetary jets to Jupiter Great
Red Spot and stormy seas. In all known cases inverse
cascades appear in systems with at least two conserved
quantities that scale differently. All our conserved quan-
tities (8) scale the same in the limit i � 1. Probably
closest to our findings are the results of Tom and Ray [14]
who observed an inverse cascade in the limiting case of a
shell model with two invariants having the same scaling.
Their inverse cascade had normal scaling and run from
fast to slow modes; the direct cascade was not resolved,
but was likely present.

Our observation poses the question: can one find an-
other class of systems with a single conservation law and
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the turbulent spectrum less steep than equilibrium. In
weak wave turbulence, this requires the sum of the space
dimensionality and the scaling exponent of the three-
wave interaction to be less than the frequency scaling
exponent [3]. We do not know such a physical system,
nor we aware of any fundamental law that forbids its ex-
istence. Remark that the connection between the cascade
direction, its stability and steepness relative to equipar-
tition has been firmly established in the weak turbulence

theory [3, 10]. In all known examples, the formal tur-
bulent solution with a wrong flux sign is not realized;
the system chooses instead to stay close to equipartition
with a slight deviation that provides for the flux in the
right direction [3, 15]. Similarly, when we place pumping
and damping at the “wrong” ends of a finite chain, our
system heats up, staying close to thermal equilibrium.

It is important that our system is a one-dimensional
chain, as well as shell models, so that there is no
space and consequently no distinction in the phase vol-
ume (number of modes) between infrared and ultravi-
olet parts of the spectrum. The directions along the
chain are only distinguished temporally, i.e. in terms
of growth/decay of the typical interaction time. The
same combination V 2

i /Fi ∝ φ2α−1 determines the i-
dependence of the inverse interaction time both for the

equilibrium, Vib
1/2
i = ViF

−1/2
i T 1/2, and for a cascade,

Vi(Π/ViFi)
1/3 = (V 2

i /Fi)
1/3Π1/3. As the above consid-

eration shows, the cascade proceeds from slow modes to
fast modes in Fibonacci turbulence. Similarly in shell
models [11, 16, 17] (albeit with parameters and conserva-
tion laws distinct from our model), a cascade proceeding
from fast modes to slow modes was never observed. It
was argued that this is because the fast modes act like
thermal noise on the slow ones, which must lead to equi-
librium [16]. That this cannot be generally true follows
from the existence of the inverse energy cascade in 2D in-
compressible turbulence and from numerous examples in
weak wave turbulence where non-linear interaction time
either grows or decays along the cascade. Moreover, the
formation of the cascade spectrum proceeds from fast to
slow modes (and not necessarily from pumping to damp-
ing), according to the information-theory argument [18].

Why is the flux direction unambiguously related to the
cascade acceleration in shell models in general and in our
model in particular, in distinction from other cases? The
argument can be made by considering capacity, a mea-
sure that tells at which end the conserved quantity is
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stored — perturbations are known to run towards that
end [3]. For example, the power-law energy density spec-
trum εk ∝ k−s in d dimensions has the total energy∫
εk d

dk — at which end it diverges is determined by the
sign of d− s. This is generally unrelated to the direction
of the energy cascade, determined by the sign of s, which
tells whether the spectrum is more or less steep than
the equipartition. However, in shell models the exponen-
tial character of i-dependencies makes the total energy∑
i Fi|ai|2 determined by either the last or the first term

of the sum, which solely depends on whether Fi|ai|2 is
steeper than equipartition or not, that is by the sign of
the flux.

Which direction then the cascade goes in the symmet-
ric case, Vi =

√
Fi? Now the naive cascade solution (18)

coincides with thermal equipartition, Fini =const, and
the interaction time is independent of the mode number
for such ni. If we start from thermal equilibrium and
apply pumping to some intermediate mode, the system
develops cascades in both directions. The left panel of
the Figure 1 shows that the pumping at site p inside the
interval (1, N) generates left and right fluxes in the pro-
portion ΠL/ΠR ' (N−p)/p. This seems natural as in the
shorter interval the steeper spectrum falls away from the
pumping, which must correspond to a larger flux. This
means that if we want to keep the flux constant while
increasing p or N −p, we need to keep constant the ratio
(N − p)/p.

We end this section with a general remark. Fibonacci
Hamiltonian is not symmetric with respect to revers-
ing the order of modes, it sets the preferred direction,
which is physically meaningful since the frequencies of
two lower modes sum into the frequency of a high one.

Yet, as we see in the case ViF
−1/2
i =const, direct and

inverse cascades are pretty symmetric. So, it is natu-

ral to conclude that indeed the i-dependence of ViF
−1/2
i

determines which way cascade goes.

IV. ALONG THE CASCADES AND AWAY
FROM EQUILIBRIUM

As we have seen, thermal equilibrium statistics is
exactly Gaussian with no correlation between modes,
despite strong interaction (which actually establishes
equipartition). The reason for the absence of correla-
tion is apparently the detailed balance that cancels them.
We do not expect such cancelations in non-equilibrium
states. In all cases of strong turbulence known before, the
degree of non-Gaussianity increases along a direct cas-
cade and stays constant along an inverse cascade [19, 20].
As we shall show now, non-Gaussianity always increases
along the cascades in our one-dimensional chains.

We present first the symmetric case, where the system
is close to the equilibrium equipartition with the temper-
ature set by pumping and slowly changing with the mode
number: niFi ≈ (PFp)

2/3f(i). The slow function f(i)
can be suggested by the analogy with the 2D enstrophy
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FIG. 3. Fourth and sixth moments for α = 1/2 and center
pumping in 40-mode system, with γL = γR = 3, P = 0.1, and
in 60-mode system with γL = γR = 30, P = 1.

cascade [21, 22] as f(i) ∝ ln2/3 Fi ∝ i2/3, counting from
the damping region. This gives the dimensionless cumu-
lant ξ ∝ 1/i. This hypothesis is supported by the right
panel of the Figure 1, which shows that ξ grows along
both cascades by a power law in i rather than exponen-
tially. Let us stress that count always starts from the dis-
sipation region, where we have the balance condition Π =

γdFd+k−1nd and where γd ' VdJ
1/3
d ' Vd(Π/VdFd)

1/3

according to the dynamical estimate. This sets the non-
linearity parameter of order unity at the damping re-
gion and decaying towards pumping; the longer the in-
terval, the smaller is ξ at any fixed distance from the
pumping region. The limit of long intervals may then be
amenable to an analytical treatment. Indeed, Figure 3
demonstrates that as the interval increases, the higher
cumulants remain small over longer and and longer in-
tervals starting from pumping. Despite the model having
ultra-local interactions (every mode participates in only
three adjacent interacting triplets), the cascade forma-
tion is very nonlocal. It is somewhat similar to thermal
conduction: if we keep the flux but increase the distance,
the distribution gets closer to the thermal equilibrium at
every point.

Turning to asymmetric (one-cascade) cases, we see the
cumulants higher than third growing with Fi by a power
law instead of logarithmic. Rather than look for scal-
ing in the mode number i, we find it more natural to
use Fi (playing the role of frequency); at large i one
has Fi ≈ φi, where φ is the golden mean. Traditional
study of turbulence in general and shell models in par-
ticular was focused on the single-mode moments (analog

of structure functions), 〈|ai|q〉 ∝ F
−ζq
i , whose anoma-

lous scaling exponents, ∆(q) = qζ3/3− ζq give particular
measures of how non-Gaussianity grows along the cas-
cade. For Vi = Fαi , the flux law gives Ji ∝ Π/ViFi, that
is ζ3 = α + 1. The anomalous scaling is observable in
numerics for the single-cascade cases α = 0 and α = 1,
as shown in the right panel of the Figure 6. This seems
to be the first case of an anomalous scaling in an inverse
cascade, with the anomalous dimensions having the op-
posite signs to those in direct cascades. The exponents
start fairly small but grow fast with q. The anomalous
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with center pumping and γL = γR = 30, P = 1.

exponents, ∆(q), can be related to the statistical La-
grangian conservation laws [23, 24] in fluid turbulence;
no comparable physical picture was developed for shell
models. Without physical guiding, the set of the anoma-
lous exponents is not very informative, all the more that
they characterize only one-mode distribution.

Here we suggest a complementary set of three
information-theoretic measures, which shed a new light
on the turbulent statistics emerging along the cascade.
The main distinction of any non-equilibrium state is that
it has lower entropy than the thermal equilibrium at the
same energy. Turbulence has the entropy that is much
lower, which means that a lot of information is processed
to excite the turbulence state. We pose the question:
where is the information that distinguishes turbulence
from equilibrium encoded?

V. WHERE IS THE INFORMATION
ENCODED?

First, the information is encoded in a single-mode
statistics, which is getting more non-Gaussian deeper in
the cascade. This must be reflected in the decay of the
one-mode entropy, Si = S(xi) = S(|ai|/

√
ni), with the

growth of |i− p|. This can be computed using the multi-

fractal formalism: the moments 〈xqi 〉 ∝ F
−ζq+qζ2/2
i in

the limit of large |i − p| correspond to the multi-fractal
distribution,

P(xi) ∝
∫
g(xi/F

h
i )x−1i exp[f(h) lnFi] dh , (20)

where f(h) = minq(ζq − qζ2/2 − qh), that is f(h) is the
Legendre transform of ζ(q). The entropy is then

Si = −
∫
dxP lnP ∝ [∆′(0)−∆2/2] lnFi .
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FIG. 5. Probabilities (top) and forth and sixth moments (bot-
tom) for the inverse cascade, α = 0 (left), and the direct cas-
cade, α = 1 (right). Probabilities for the rescaled occupation
numbers are shown in the main panels, while probabilities for
the phase difference, θi = ϕi − ϕi−1 − ϕi−2, are shown in the
insets. The variation between P(θi) for different i is minor.
In all cases Πp = 67.65. For α = 0, the damping rates are
γL = 1.5 and γR = 0; for α = 1 the damping rates are γL = 0
and γR = 140 at i = 40 and γR = 3500 at i = 60. In the
top panels the dashed lines indicate the Gaussian probability;
in the bottom panels the dashed lines show linear fits to the
data.

This decay is logarithmic in frequency Fi, that is linear in
i, as indeed can be seen in Figure 6, where i is counted
from pumping. Noticing that ∆1 ≈ ∆2 and assuming
quadratic dependence for q ≤ 3, we estimate ∆′(0) ≈
3∆1/2 and observe that the dashed lines in the right
panel of Figure 6 with the slopes ∆1 lnφ by the order
of magnitude represent the entropy decay in the inertial
interval in both direct and inverse cascades.

Second, the information is encoded in the correlations
of different modes. It is natural to assume that corre-
lations are strongest for modes in interacting triplets,
ai, ai+1, ai+2. Disentangling of information encoded can
be done by using structured groupings [25–27]:∑n

i=1 S(ai)−
∑
ij S(ai, aj) +

∑
ijk S(ai, aj , ak) (21)

−∑ijkl S(ai, aj , ak, al) + . . .+ (−1)n+1S(a1, . . . , an) .

For n = 1, this gives the one-mode entropy Si which
measures the total amount of information one can obtain
by measuring or computing one-mode statistics. While
the entropy itself depends on the units or parametriza-
tion, all the quantities (22) for n > 1 are independent
of units and invariant with respect to simultaneous re-



8

-1

-0.5

 0

 0.5

 0  4  8  12

∆

q

α = 0
α = 1

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0  20  40  60

S i

i

α = 0
α = 1

~ 0.005 i
~ (-0.005) i-0.03

-0.02
-0.01

 0
 0.01
 0.02
 0.03

 0  1  2  3  4

FIG. 6. Left panel: Anomalous exponents computed as
∆(q) = qζ3/3 − ζq. Right panel: Decay of entropy down
the cascade for the one-mode complex amplitude normalized
by
√
ni. The dashed lines Si − Sp ≈ −0.005|i − p| have the

slopes equal to ∆1 ln(φ) with ∆1 shown in the left panel. Di-
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parametrization of every single variable. For n = 2, we
have the widely used mutual information,

Iij = S(ai) + S(aj)− S(ai, aj) ,

which measures the amount of information one can learn
about one mode by measuring another, that is character-
izes the correlation between two modes. It is interesting
that all pairs in the triplet have comparable mutual in-
formation in the direct cascade (Vi = Fi), while Ii,i+1 ex-
ceeds noticeably Ii,i+2 in the inverse cascade (Vi = 1), see
the upper right panel in Figure 8. One can also define the
total (multi-mode) mutual information as the relative en-
tropy between the true joint distribution and the product

distribution: I(a1, . . . , ak) =
∑k
i=1 S(ai)−S(a1, . . . , ak).

It is positive and monotonically decreases upon averaging
over any of its arguments. As we see from Figure 8, the
changes along the cascade in one-mode entropy and in
two-mode and three-mode mutual information are com-
parable, that is one obtains comparable amount of infor-
mation about turbulence from these quantities.

To see how much more information one gets by measur-
ing or computing the three modes simultaneously com-
pared to separately by pairs, one needs to use the mea-
sure of the irreducible information encoded in triplets, as
given by the third member of the hierarchy (22):

IIi =S(ai) + S(ai+1) + S(ai+2) + S(ai, ai+1, ai+2)

− S(ai, ai+1)− S(ai, ai+2)− S(ai+1, ai+2)

=Ii,i+1 + Ii,i+2 + Ii+1,i+2 − Ii,i+1,i+2

=I(i, i+ 1)− I(i, i+ 1|i+ 2) , (22)

It is called interaction information in the classical statis-
tics and topological entanglement entropy in the quan-
tum statistics [25, 28]. Interaction information measures
the influence of the third variable on the amount of infor-
mation shared between the other two and could be of ei-
ther sign. Positive II(X,Y, Z) measures the redundancy
in the information about Y obtained by measuring X and
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FIG. 7. Deviation of entropies from equilibrium, mutual
information, and interaction information for α = 1/2 and
center pumping for a set of 5 · 107 data point. The same
values of entropy were obtained for a set of 2 · 107 data point,
that is Si is saturated. Both I and II show a slight decrease
in absolute values with the increase of the ensemble size from
2 · 107 to 5 · 107.

Z separately, while negative one measures synergy which
is the extra information about Y received by knowing X
and Z together. While we cannot prove it mathemat-
ically, it seems physically plausible that systems with
three-mode interaction must demonstrate synergy. In-
deed, one finds a strong synergy in weak turbulence: it
was shown that I123 � I12 +I23 +I13 [18], so that II < 0
and much more information is encoded in three modes
than in the pairs separately. Here we find that the same
is true for the cascades close to thermal equilibrium at
Vi =

√
Fi as seen in Figure 7. Indeed, the two-mode

mutual information is much smaller than both the one-
mode entropy and the absolute value of the interaction
information, which is negative.

Let us stress that both the mutual information and
the interaction information are symmetric, that is they
measure the degree of correlation rather than causal re-
lationship or cascade direction.

We compute the entropies and mutual information as
follows. First, we obtain the probability distribution
in 4D space (x2i−2, x

2
i−1, x

2
i , θi) and integrate it to get

corresponding 1D and 2D distributions. Here, θi =
ϕi − ϕi−1 − ϕi−2 , where ϕi is the phase of mode i,
and xi = |ai|/

√
ni, while ni = 〈|ai|2〉 is the direct av-

erage. Mutual information and information interaction
are computed directly from entropies, S = −ΣP log2 P,
obtained for these distributions, since all normalization
factors cancel out in subtraction. The entropy for an
individual mode, however, is presented relative to the
Gaussian entropy based on the average occupation num-
ber obtained for the binned, staircase distribution for x2i .
We use the bin sizes ∆x2i = 1 for α = 0 and α = 1, and
∆x2i = 1/2 for α = 1/2. In all cases ∆θ = 2π/32.

Far from equilibrium, we find synergy for the modes
close to the pumping and redundancy for damping, see
the last panel of Figure 8. That means that the interac-
tion information passes through zero in the inertial inter-
val. There even seems to be a tendency to stick to zero
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in the inertial interval but this requires further studies
with the number of modes exceeding our present abili-
ties. (Our computations are done with a record number
of modes, up to 80, while previous studies were mostly
done for 20-30. The interaction times decrease exponen-
tially with the mode number, which imposes heavy re-
quirements on the computational time step. On top of
that one needs very long runs to collect enough statistics
to reliably represent the three-mode probability distribu-
tion in four-dimensional space.) With the present set of
data we can suggest that most of the information about
the three-mode correlation is in the sum of the pair cor-
relations in the triplet. This is more pronounced in the
direct cascade than in the inverse cascade. Since the
requirements on statistics grow exponentially with the
dimensionality, the suggestion that one can get most of
information (or at least a large part of it) from lower-
dimensional probability distributions is great news for
turbulence measurements and modeling. To put it sim-
ply, comparable amounts of information can be brought
from one-mode and from three-mode measurements in di-
rect and inverse cascades; most of that information can
be inferred from two-mode measurements. It remains to
be seen to what degree this property of small (asymptoti-
cally zero?) interaction information is a universal feature
of strong turbulence.

Insets in the Figures 4,5 show the probability distribu-
tion of the relative phase, θi, which is closely related to
the flux (skewness), proportional to 〈|aiai−1ai−2| sin θi〉.
The probability maximum is then at ±π/2 for direct and
inverse cascades respectively. Also, the i-dependence of
the phase distributions is in accordance with the changes
in skewness along i. In the two-cascade symmetric case,
the distribution is flat (the phases are random) near the
pumping, and the phase correlations appear along the
cascades, as can be seen comparing the last panel of Fig-
ure 1 with the inset in the right panel of Figure 4. In
the one-cascade cases, both skewness and the form of the
spectrum are practically independent of the mode num-
ber, as seen from Figures 2,5.

The fact that the deviations from Gaussianity grow
along our inverse cascade, in distinction from all the in-
verse cascades known before, calls for reflection. We used
to think about the anomalous scaling and intermittency
in spatial terms: Direct cascades proceed inside the force
correlation radius, which imposes non-locality, while in
inverse cascades one effectively averages over many small-
scale fluctuations, which bring scale invariance [19, 20].
The emphasis on the spatial features was reinforced by
the success of the Kraichnan’s model of passive tracer
turbulence, where it has been shown that the spatial
(rather than temporal) structure of the velocity field is
responsible for an anomalous scaling and intermittency
of the tracer. There is no space in our case, so appar-
ently it is all about time. Indeed, as we have seen, all our
cascades propagate from slow to fast modes, which leads
to the build-up of non-Gaussianity and correlations. As
a result, the entropy of every mode decreases and the
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inter-mode information grows along the cascade. This
diminishes the overall entropy compared to the entropy
of the same number of modes in thermal equilibrium with
the same total energy.

Despite qualitative similarity, there is a quantitative
differences between our direct and inverse cascades. Fig-
ures 5,6 show that the one-mode statistics and its mo-
ments faster deviate from Gaussian as one proceeds along
the inverse cascade than the direct one. And yet one
can see from Figures 6,7 that the one-mode entropy is
essentially the same in both cascades, as well as the mu-
tual information between two neighboring modes and the
three-mode mutual information. The mutual informa-
tion between non-neighboring modes I13 is about twice
smaller, as seen in Figure 8. This difference can proba-
bly be related to the dynamics, which in our system is
the coalescence of two neighboring modes into the next
one and the inverse process of decay of one into two. In
the dynamical equation (16), only one (first) term is re-
sponsible for the direct process (and the direct cascade),
while two terms are responsible for the inverse process
(and the inverse cascade).

An important distinction between double-cascade and
single-cascade turbulence in our system is the dependence
on the system size. The degree of non-Gaussianity of the
complex amplitudes is fixed in the dissipation regions of
the double cascade, so that in the thermodynamic limit
the statistics is Gaussian in the inertial intervals. On the
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contrary, the statistics of the amplitudes is fixed at the
forcing scale for a single cascade, and it deviates more and
more from Gaussianity as one goes along the cascade.

We end this section by a short remark on the produc-
tion balance of the total entropy S = −〈ln ρ(a1, . . . , aN )〉.
Here ρ(a1, . . . , aN ) is the full N -mode PDF. Since wave
interaction does not change the total entropy, then the
entropy absorption by the dissipation must be equal to
the entropy production by the pumping [18, 29]:

P

∫ ∏
i

daida
∗
i

2ρ

∣∣∣ ∂ρ
∂ap

∣∣∣2 = 2
∑
k

γk, . (23)

For a single-cascade cases (Vi = 1 and Vi = Fi), the en-
ergy balance PFp = 2γFdnd means that the left hand
side of (23) must be much larger than the Gaussian es-
timate P/np [18]. It may seem to contradict our numer-
ical finding that the pumping-connected mode ap has
its one-mode statistics close to Gaussian. Of course,
there are nonzero triple correlation and the mutual in-
formation with two neighboring modes in the direction
of the cascade. Yet since ξ ' 1, then the triple moment

Jp ' n3/2p both in direct and inverse cascades, so that the
contribution to the left hand side of (23) is comparable
with P/np. We conclude then that even the pumping-
connected mode must have strong correlations with many
other modes. Since the triple correlation function of non-
adjacent modes are zero, such correlations must be en-
coded in higher cumulants. That deserves further study.

VI. KOLMOGOROV MULTIPLIERS AND
SELF-SIMILARITY

Unbounded decrease of entropy along a single cascade
prompts one to ask whether the total entropy of turbu-
lence is extensive (that is proportional to the number of
modes) or grows slower than linear with the number of
modes, so there could be some “area law of turbulence”
(like for the entropy of black holes). This question can
be answered with the help of the so-called Kolmogorov
multipliers, σi = ln |ai/ai−1| [30]. Figure 9 shows that
in our cascades the multipliers have universal statistics
independent of i, similar to shell models [31–34]. One
consequence of the scale invariance of the statistics of the
multipliers is that the entropy of the system is extensive,
that is proportional to the number of modes. Of course,
the entropy depends on the representation. From the in-
formation theory viewpoint, the Kolmogorov multipliers
realize representation by (almost) independent compo-
nent, that is allow for maximal entropy. In other words,
computing or measuring turbulence in terms of multi-
pliers gives maximal information per measurement (the
absolute maximum is achieved by using the flat distribu-
tion, that is the variable u(σ) defined by du = P (σ)dσ).

The amplitudes are expressed via the multipliers:

Xk = lnxk = ln
|ak|√
nk

= lnxp +

p+k∑
i=p+1

σi +
1

2
log

np
nk

.

The first term is due to the pumping-connected mode,
which correlates weakly with σi in the inertial interval.
As shown below, the correlation between multipliers de-
cays fast with the distance between them. That suggests
that the statistics of the amplitude logarithm at large k
must have asymptotically a large-deviation form:

lnP(Xk) = −kH(Xk/k) . (24)

Indeed, the three upper curves in the top row of Figure 5
collapse in these variables, as shown in the bottom row of
Figure 9. The self-similar distribution of the logarithm of
amplitude, (24), is a dramatic simplification in compari-
son with the general multi-fractal form (20). Technically,
it means that g(xk/F

h
k ) = g(eXk−kh lnφ) is such a sharp

function that the integral in (20) is determined by the
single Xk-dependent value, h(Xk) = Xk/k lnφ. We then
identify f = −H/ lnφ.

The self-similarity of the amplitude distribution (plus
the independence of the phase distribution on the mode
number) is great news, since it allows one to predict
the statistics of long cascades (at higher Reynolds num-
ber) from the study of shorter ones. In our case, Fig-
ure 9 shows that 28-th mode already has the form close
to asymptotic. Self-similarity and finite correlation ra-
dius of the Kolmogorov multipliers has been also estab-
lished experimentally for Navier-Stokes turbulence [35].
To avoid misunderstanding, let us stress that the self-
similarity is found for the probability distribution of the
logarithm of the amplitude, which does not contradict
the anomalous scaling of the amplitude moments with
the exponents ζq determined by the Legendre transform
of f or H.

If the multipliers were statistically independent, one
would compute lnP(X) = −kH(X/k) or ζq proceed-
ing from P (σ) by a standard large-deviation formalism:
H(y) = minz[zy − G(z)], where G(z) = ln

∫
dσezσP (σ).

Such derivation would express 〈|ak|q〉 via 〈eqσk〉, which is
impossible since the former moments exist for all q, while
the latter do not because of the exponential tails of P (σ),
see also [35, 36].

Therefore, to describe properly the scaling of the am-
plitudes one needs to study correlations between mul-
tipliers. Physically, it is quite natural that the law of
the distribution change along the cascade must be en-
coded in correlations between the steps of the cascade.
Indeed, we find that the neighboring multipliers are de-
pendent, albeit weakly, as expressed in their mutual in-
formation (traditionally used pair correlation function
[32, 33, 35] is not a proper measure of correlation for non-
Gaussian statistics). We find that for the inverse cascade,
I(σi, σi+1) ' 0.23, II(σi, σi+1, σi+2) ' −0.1. For the
direct cascade, I(σi, σi+1) ' 0.3, II((σi, σi+1, σi+2) '
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FIG. 9. Top: probability distributions of the Kolmogorov
multipliers σi = ln |ai/ai−1| for different positions in the in-
verse (left) and direct (right) turbulent cascades. Solid lines
correspond to the thermal equilibrium P (σ) = 1/2 cosh2(σ −
σ̄), where σ̄ = −(1/3) lnφ for the inverse cascade and σ̄ =
−(2/3) lnφ for the direct one. Bottom: probability distribu-
tions of X = ln |ak|2 collapse to the large-deviation form far
away from the pumping, that is for large k = |i− p|.

−0.08. No discernible I(σi, σi+k) were found for k > 1.
While σi and σi+2 are practically uncorrelated, there is
some small synergy in a triplet.

To appreciate these numbers, let us present for com-
parison the statistics of the Kolmogorov multipliers in
thermal equilibrium. Normalized for zero mean and unit
variance, we have

P (σ) =

∫ ∫ ∞
0

dxdy e−x−yδ
(
σ − 1

2
ln
x

y

)
=

1

2 cosh2 σ
,

P (σi, σi+1) =
8e4σi+2σi+1[

1 + e2σi
(
1 + e2σi+1

)]3 . (25)

That gives I(σi, σi+1) = ln 2− 1/2 ≈ 0.19.

Figure 9 shows that the equilibrium Gaussian statistics
of independent amplitudes perfectly represents the statis-
tics of a single multiplier. The joint PDFs P (σi, σi+1)
are shown in Figure 10 for thermal equilibrium and for
two cascades. Again, the Gaussian statistics represents
turbulence remarkable well. The differences between the
three cases are most pronounced around the peak at the
origin, while the distant contours are hardly distinguish-
able. In plain words, the probabilities of strong fluctua-
tions of the multipliers are the same in thermal equilib-
rium as in turbulence cascades. This is remarkably differ-
ent from the statistics of the complex amplitudes, which

−6 −4 −2 0 2 4 6
σi

−6

−4

−2

0

2

4

6

σ
i+

1

FIG. 10. Joint probability distributions of two neighboring
Kolmogorov multipliers shifted to zero means. The contours
are at log10(P ) = −0.55,−1,−2,−3,−4,−5. Inverse cascade
(α = 0) is red, direct cascade (α = 1) is blue, black is the
equilibrium distribution (25).

demonstrate most difference between the three cases for
strong fluctuations and for high moments. There seems
to be a certain duality between fluctuations of the ampli-
tudes and multipliers: strong fluctuations of the multi-
pliers correspond to weakly correlated amplitudes, while
strong fluctuations of the amplitudes may require their
strong correlations and thus correspond to multipliers
close to their mean values. Whether this duality can be
exploited for an analytic treatment remains to be seen.
The information about the anomalous scaling exponents
of the amplitudes in turbulence must be encoded in the
correlations between multipliers. Note that the mutual
information I(σi, σi+1) for both cascades (I = 0.23 and
I = 0.30) is not that much higher than in thermal equilib-
rium (I = 0.19 bits). Physicists tend to be much excited
about any broken symmetry; it is refreshing to notice
that relatively small information is needed to encode the
broken scale invariance in turbulence. How to decode
this information from the joint statistics of multipliers
remains the task for the future

VII. DISCUSSION

The most surprising finding of our work is the existence
of an inverse-only cascade and its anomalous scaling. In
all cases known before, an inverse cascade appears only
as an outlet for an extra invariant that cannot be trans-
ferred along the direct cascade with other invariant(s). In
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a truly weak turbulence, when the whole statistics is close
to Gaussian, an inverse-only cascade is indeed impossi-
ble, since it would require an environment that provides
rather than extracts entropy, which contradicts the sec-
ond law of thermodynamics [18, 29]. Here we have shown
that an inverse-only cascade is possible in a strong tur-
bulence. As far as an anomalous scaling is concerned, we
relate it to the change of the interaction time along the
cascade. All the inverse cascades known before run from
fast to slow modes and have a normal scaling. In our
case, as in all shell models, cascades always proceed from
slow to fast modes. Apparently, this is the reason that
non-Gaussianity increases along all our cascades, and an
anomalous scaling takes place in both single inverse and
single direct cascades. Indeed, proceeding from fast to
slow modes (in inverse cascades known before) involves
an effective averaging over fast degrees of freedom, which
diminishes intermittency. On the contrary, our cascades
build up intermittency as they proceed.

Another unexpected conclusion follows from the en-
tropy production balance in a steady turbulent state:
even though the marginal statistics of the pumping-
connected mode (averaged over all other modes) can be
close to Gaussian, the correlations of that mode with
other modes cannot be weak.

Most of the present work was devoted to disentan-
gling of the information encoded in strong turbulence.
It was predicted that in weak turbulence most of the in-

formation is encoded in the three-mode statistics [18],
and Figure 7 confirms this prediction. Yet in strong tur-
bulence, we find that as much information is encoded
in one-mode as in two-mode statistics, while three-mode
statistics does not add much. This could be of practical
importance for turbulence studies since it is much more
difficult to collect, store and analyze statistics for three-
mode and multi-mode distributions. Another important
lesson is that measuring or computing mode amplitudes
(or velocity structure functions) brings diminishing re-
turns, that is less and less information, as one goes deep
into the cascade. The maximal information is encoded
in the statistics of the Kolmogorov multipliers. Most of
that information is encoded in the statistics of a single
multiplier; less than 10% is encoded in the correlation of
neighbors. How to decode it is the task for the future.
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4Departamento de Fı́sica, Facultad de Ciencias Fı́sicas y Matemáticas, Universidad de Chile, Santiago, Chile

We report on the effect of laser illumination with circularly polarized light on the electronic structure of AB-
stacked graphite samples. By using Floquet theory in combination with Green’s function techniques, we find that
the polarized light induces bandgap openings at the Floquet zone edge ~Ω/2, bridged by chiral boundary states.
These states propagate mainly along the borders of the constituting layers as evidenced by the time-averaged
local density of states and the probability current density in several geometries. Semianalytic calculations of
the Chern number suggest that these states are of topological nature, similar to those found in illuminated 2D
samples like monolayer and bilayer graphene. These states are promising candidates for the realization of a
three-dimensional version of the quantum Hall effect for Floquet systems.

I. INTRODUCTION

Condensed matter physics has provided one of the most
fertile and captivating grounds for discoveries over the last
few decades:1 from two-dimensional materials,2 which were
thought to be impossible to exist in nature, to new topologi-
cal phases of matter3–7 which have completely reshaped our
understanding of old concepts. The use of light has been an
instrumental cornerstone in this adventure, being one of the
prime tools for unveiling a material or device properties.8,9

However, beyond this already important role, a new research
front aims at using light in an active fashion to actually change
the response of a material,10,11 by opening a gap10,12–15 or
even endowing a material with topological states10,11,16–19 or a
spontaneous orbital magnetization.20

Experiments have successfully confirmed the possibility of
creating and tuning hybrid electron-photon states,15,21 also
called Floquet-Bloch states, and also the generation of a laser-
induced Hall effect in graphene.22 The name Floquet here
is used because the prevalent theory for this type of driven
systems: the Floquet theory,23–26 from which the spectrum,
effective Hamiltonians,27,28 a map of the topological invari-
ants29,30 and transport properties31–33 can be computed. It is
also worthy to mention that this Floquet picture can be ported,
with small changes, to phonon-induced states as in Refs. [34]
and [35]. Most of the attention has been devoted to illumi-
nating two-dimensional materials, including graphene,10,36–38

germanene,39 silicene,40 MoS2,41 and manufactured systems
like periodic arrangements of quantum rings.42 More recently,
the interest in Floquet engineering three-dimensional materi-
als such as three-dimensional topological insulators,43,44 Weyl
semimetals45,46 or Dirac materials47 has been growing.

Here we focus on laser-illuminated graphite. In contrast
with most three-dimensional crystals, graphite has a hierarchi-
cal structure of weakly coupled layers making it an archety-
pal system for learning on the way from two to three dimen-
sions. In two-dimensions, circularly polarized radiation leads
to bandgap openings and Floquet edge states that bridge the
gap.10,18,36–38 These topological Floquet edge states are akin
to those found in Chern insulators or in the integer quantum
Hall effect, they are robust and chiral.18 By analogy with the

physics of the quantum Hall effect which was discovered in
two dimensions48,49 and which has been predicted to be possi-
ble in three dimensions,50 a prediction which has not been ver-
ified until very recently,51 one might then wonder what hap-
pens in three-dimensions with the laser-induced states. In this
paper, we show that for graphite there are also laser-induced
bandgaps at ±~Ω/2 which turn out to be bridged by surface
states. Our calculations, which are based on Green’s functions
techniques combined with Floquet theory, show that these sur-
face states are chiral, have a topological nature and can form
a band of chiral states bridging the bulk gap. In the fol-
lowing we introduce our model, followed by an analysis of
bulk graphite, and finite samples with emphasis on the surface
states and the associated currents.

II. HAMILTONIAN MODEL AND FLOQUET SPACE
SOLUTION SCHEME

Let us introduce our model for graphite under circularly
polarized laser illumination. We consider graphene layers in
graphite with AB stacking, and we follow Ref. [52] for the
tight-binding parameters obtained in the static case (see be-
low). We consider a tight-binding description for graphite
given by the generic Hamiltonian

Ĥ =
∑
r,r′

γr,r′ |r〉〈r′| , (1)

where r and r′ denote the positions of the carbon atoms in the
lattice, such that the states |r〉 form a real-space basis. Under
this notation, the sum runs over sites connected by the hop-
ping amplitudes γr,r′ , and it also includes the on-site energies
through γr,r = εr.

The laser field is included within a semiclassical approx-
imation as a time-dependent term in the Hamiltonian. The
time-periodic electric field E(r, t), with period T = 2π/Ω,
is included through the gauge E = −∂tA, where the vector
potential takes the form A(r, t) = Re[A0e

iΩ(z/c−t)], such
that its direction of propagation points perpendicular to the
graphene layers, defined in the xy planes. As a consequence,
in three dimensional samples there is a variation of the wave
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along the z direction due to the phase factor Ωz/c in A(r, t).
This would become appreciable in samples with transversal
lengths higher than Lz ∼ 0.1λ, with λ = 2πc/Ω the laser’s
wavelength. For laser frequencies near the infrared region
(~Ω ∼ 2 eV) this implies Lz ∼ 620 Å, which in graphite
means a number of ∼ 185 transversal layers. As we will as-
sume smaller values forLz , the z dependence in the vector po-
tential can be neglected in a first approximation. We will work
with circularly polarized light, by taking A0 = A0(1, iτ, 0),
with τ = ±1 the handedness of the polarized light.53 By
means of Peierls’ substitution, the vector potential enters in
Eq. (1) by adding a time-dependent phase in the hopping am-
plitudes, namely,

γr,r′
laser−−−→ gr,r′(t) = γr,r′ exp

[
i
2π

Φ0

∫ r

r′
d` ·A(t)

]
, (2)

with Φ0 the magnetic flux quantum and the line integral taken
over the straight path connecting sites r′ and r. Given the spe-
cific form of the vector potential, the time-dependent hopping
terms entering in the Hamiltonian are given by:

gr,r′(t) = γr,r′
∞∑

n=−∞
inJn(ζr,r′)e

in(Ωt−φr,r′ ), (3)

where we used the Jacobi-Anger expansion for future con-
venience. In this expression, Jn(ζr,r′) represents the n-th
Bessel function of the first kind, and the adimensional vari-
able ζr,r′ = 2πA0|r−r′| sin θr,r′/Φ0 quantifies the strength
of the laser along the carbon bond, characterized by r − r′ =
|r − r′|(sin θr,r′ cosφr,r′ , sin θr,r′ sinφr,r′ , cos θr,r′).

A. Floquet theory

In this section we introduce the basics of Floquet theory as
used later in this paper. The readers already acquainted with
the technical details or focused on the results rather than the
techniques may skip this in a first reading.

According to Floquet theory,23–26 there is a full set of so-
lutions to the time-dependent Schrödinger equation (TDSE)
of the form |ψ(t)〉 = e−iεt/~ |φ(t)〉, where the Floquet state
|φ(t)〉 presents the same periodicity of the Hamiltonian, i.e.
|φ(t+ T )〉 = |φ(t)〉. By replacing this ansatz in the TDSE
one obtains

ĤF |φ(t)〉 = ε |φ(t)〉 , (4)

where ĤF = Ĥ(t)−i~∂t is the so-called Floquet Hamiltonian
and ε its associated quasienergy. The great advantage of Flo-
quet theory is that ĤF can be reduced to a time-independent
matrix when described in the product space (also called Flo-
quet space) F = R⊗ T , with R the usual Hilbert space and
T the space of time-periodic functions, spanned by the set of
orthonormal vectors 〈t|n〉 = einΩt, with n an integer number.
Working within the local space representation, a suitable basis
for F is given by the product states |r, n〉 = |r〉 ⊗ |n〉, rep-
resenting the lattice site r and the Fourier replica n, together

with the inner product rule

〈r, n|r′,m〉 =

∫ T

0

dt

T
ei(m−n)Ωt 〈r|r′〉 = δr,r′δn,m. (5)

On this basis, the Floquet states in Eq. (4) can be computed as

|φ(t)〉 =
∑
n

einΩt |φn〉
F−→ |φ〉 =

∑
r,n

φn(r) |r, n〉 , (6)

with φn(r) = 〈r, n|φ〉 the amplitude of the Floquet state at
site r and replica n. Importantly, the matrix elements of the
Floquet Hamiltonian [HF]n,mr,r′ = 〈r, n| ĤF |r′,m〉 are in this
basis

[HF]n,mr,r′ =

∫ T

0

dt

T
ei(m−n)ΩtHr,r′(t),+n~Ωδr,r′δnm, (7)

where the inner product includes the average over one driv-
ing cycle, thus Eq. (4) written in this composite space be-
comes a time-independent eigenvalue problem. Once the Flo-
quet eigenstates |φ〉 are obtained in F , it is possible to re-
turn to the usual Hilbert space R and calculate the expecta-
tion value of any observable from the general solution |ψ(t)〉
of the TDSE. In particular, we are interested in the probabil-
ity density ρ̂(r) = |r〉〈r|, whose time-averaged expectation
value with respect to some eigenstate of the TDSE writes

ρ(r) =

∫ T

0

dt

T
〈ρ̂(r)〉 =

∑
n

|φn(r)|2. (8)

We are also interested in the probability current density, de-
fined as Ĵ(r, t) = −i[Ĥ(t), ρ̂(r)]/~. Its time-averaged ex-
pectation value can be written in terms of the Floquet Hamil-
tonian

J(r) =
2

~
∑
r′

∑
n,m

Im{φ∗n(r)[HF]n,mr,r′φm(r′)}. (9)

Since the averaged probability current at site r needs to be
zero due to probability conservation, we will use this quantity
to check that there is no charge accumulation/loss after com-
pleting one period of the driving field. More interestingly,
from this expression we can extract the bond current as54

J(r, r′) =
2

~
∑
n,m

Im{φ∗n(r)[HF]n,mr,r′φm(r′)}, (10)

which, as we will show later on, gives a clear picture on the
chiral nature of the resulting eigenstates of the illuminated
system.

As we already mentioned, the periodic time-dependence
enters in Eq. (2) as an additional phase that the electron picks
up when it “hops” from site r′ to site r. The Floquet Hamil-
tonian can then be calculated from Eq. (7) as

[HF]n,mr,r′ = γ
(m−n)
r,r′ + n~Ωδr,r′δnm, (11)

2



A Floquet theory II HAMILTONIAN MODEL AND FLOQUET SPACE SOLUTION SCHEME

Figure 1. Graphite with AB stacking. (a) Schematic view of three
adjacent graphene layers. The hopping amplitudes are marked by
yellow arrows (see text). (b) Graphite’s first Brillouin zone with the
high-symmetry points.

where the hopping amplitudes are defined as Fourier compo-
nents of the time-dependent ones appearing in Eq. (3), i.e.,

γ
(n)
r,r′ =

∫ T

0

dt

T
gr,r′(t)e

inΩt = γr,r′i
nJn(ζr,r′)e

inφr,r′ ,

(12)
and this can be interpreted as the probability amplitude for
the electron to hop from site r′ to site r, together with the
absorption (n > 0) or emission (n < 0) of |n| photons.

So far we have not specified the tight-binding Hamiltonian
of Eq. (1), so the above discussion is somewhat general as
far as the light propagates along the z direction. In graphite
with AB stacking, the unit cell contains four basis sites: A1

and B1 in the lower graphene layer (LL), A2 and B2 in the
upper graphene layer (UL), see Fig. 1. The sites in the UL are
displayed in such a way that the A2 site is aligned with the A1

site of the LL. This implies the following choice for the basis
vectors in the unit cell:

LL→ δA1
= (0, 0, 0) , δB1

= (0, a0, 0) , (13)

UL→ δA2
= (0, 0, c0) , δB2

=

(√
3a0

2
,
a0

2
, c0

)
,

(14)

where a0 = 1.42 Å is the carbon-carbon distance in graphene
and c0 = 3.35 Å is the separation between two adjacent lay-
ers. The graphite’s Bravais lattice can then be described by
the primitive vectors

a1 =

(√
3a0

2
,

3a0

2
, 0

)
, a2 =

(
−
√

3a0

2
,

3a0

2
, 0

)
a3 = (0, 0, 2c0) . (15)

The translational invariance along the three directions given
by the primitive vectors allows us to decompose the static
Hamiltonian in Eq. (1) as the following operator representing
the Bloch Hamiltonian:

Ĥk =
∑
R

V̂Reik·R, (16)

where R denotes the position of the nearest-neighbor unit
cells to the one placed at the origin. In the general description
of the unit cell position through R = n1a1 + n2a2 + n3a3,
with ni integer numbers, the lattice connectivity given by
the hopping parameters determined in Ref. [52] implies that
the possible values for ni in R are ni = {−1, 0, 1}. To
reconcile the notation, we notice that the hopping operator
V̂R represents the bonds going from site r′ = δ(r′) to site
r = R + δ(r), where δ(r) indicates the basis vector associ-
ated with r.

In the case of graphite with AB stacking, we consider for
the static case the following parameters:52 γ0 = 3.16 eV
connecting nearest-neighbor in-plane sites (A1B1 and A2B2),
γ1 = 0.39 eV for A1A2, γ2 = −0.02 eV connecting B-
sites (B1B1 and B2B2) between consecutive cells along a3,
γ3 = 0.315 eV for B1B2, γ4 = 0.044 eV for A1B2 and B1A2,
and γ5 = 0.038 eV connecting A-sites (A1A1 and A2A2) be-
tween consecutive cells along a3. This can be easily under-
stood, for example, by inspecting the matrix elements of the
Bloch Hamiltonian with respect to the site basis {|i〉}, with
i = 1, . . . , 4 for (A1,B1,A2,B2):

Hk =

ε0 + ∆ + γ5f5 γ0f1 γ1f4 γ4f2f4

γ0f
∗
1 ε0 + γ2f5 γ4f

∗
1 f4 γ3f3f4

γ1f
∗
4 γ4f1f

∗
4 ε0 + ∆ + γ5f5 γ0f2

γ4f
∗
2 f
∗
4 γ3f

∗
3 f
∗
4 γ0f

∗
2 ε0 + γ2f5

 , (17)

where ε0 = −0.024 eV is the Fermi energy and ∆ = −0.008 eV is the energy shift between inequivalent carbon atoms. The
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functions fi = fi(k) carry information about the directions in
which the basis sites in the unit cell are connected with its
neighbors, and are defined as:

f1 = 1 + eik·a1 + eik·a2 ,

f2 = 1 + eik·a1 + eik·(a1−a2) = eik·a1f∗1 ,

f3 = 1 + e−ik·a2 + eik·(a1−a2) = e−ik·a2f1,

f4 = 1 + eik·a3 ,

f5 = 2 cos(k · a3).

So, for example, in the matrix element [Hk]12, the function
f1 accounts for the intracell connection δB1

→ δA1
and the

intercell connections δB1
→ a1 + δA1

and δB1
→ a2 +

δA1
. Similarly, f2 in [Hk]34 takes into account those bonds

connecting δB2
with δA2

. With this notation, it is clear that the
coupling between different graphene layers enters in the 2×2
off-diagonal blocks, which are modulated by either f4 or f∗4 .
In the diagonal blocks, on the other hand, there are in-plane
connections given by γ0 and on-site energy corrections due
to the coupling to neighbor cells along a3. Additionally, the
difference in the involved directions given by f1 in the LL and
f2 in the UL, respectively, comes from the choice of the unit
cell basis sites. Notice, in particular, that |f1| = |f2| = |f3|.

If we now turn on the laser, one should notice that the
vector potential does not break translational invariance, so it
is possible to combine Eq. (16) with Eq. (7) by introducing
a superindex (m − n) in the Bloch Hamiltonian which ac-
counts for the replicas m → n it connects. This implies that
all hoppings belonging to Ĥ(m−n)

k need to be transformed as
γr,r′ → γ

(m−n)
r,r′ , and we obtain the following structure

ĤF,k =
∑
n,m

[
Ĥ(m−n)
k + n~ΩÎδn,m

]
⊗ |n〉〈m| , (18)

for the Floquet-Bloch Hamiltonian, defined in the F-space.
Here Î represents the identity operator in the reduced space
of the unit cell and |n〉 corresponds to the Fourier replica n.

Summarizing, the construction of ĤF,k follows two simple
steps: (1) the identification of the static Bloch Hamiltonian of
Eq. (16), and (2) the Fourier decomposition of all their matrix
elements once the laser has been incorporated. Notice that
there is, however, a subtlety in going from step 1 to step 2:
as the time-dependent hopping phases [cf. Eq. (3)] depend on
both the magnitude and direction of the bond connecting sites
r′ and r, this information needs to be given in step 1 even if
in the static case such a dependence is not present.

Following the above steps, the matrix elements of the
Floquet-Bloch Hamiltonian for bulk graphite can be com-
pactly written in terms of the hopping amplitudes between the
different basis sites i, j = {A1,B1,A2,B2} as

[HF,k]n,mi,j =
∑
R

γ
(n−m)
R+δi,δj

eik·R + n~Ωδi,jδn,m. (19)

Notice that not all lattice vectors R contribute to the sum on
the right hand side, as we assume some finite range for the
allowed hopping parameters.

III. ILLUMINATED BULK GRAPHITE

The purpose of this section is to give an explicit calculation
of the Floquet Hamiltonian in illuminated graphite, such that
the role of the laser field is evidenced as modifications in the
band structure of the static material. This will allow us to
identify, in turn, the band crossing regions where boundary
states induced by the laser may appear.

As starting point, in Fig. 2(a), we show the dispersion rela-
tion for bulk graphite in the absence of laser illumination. We
can see how the highest valence (1v) and the lowest conduc-
tion (1c) bands cross at the K symmetry point. These bands
are quadratic in shape (a reminiscence of bilayer graphene’s
band structure), and cross each other at two different points:
one of them along the Γ-K path while the other exactly at the
K-point (see inset).55 The breaking of the electron-hole (e-h)
symmetry is clearly visible along the whole spectrum and is
produced by the hoppings γ2, γ4, and γ5. Along the A-H-
L path [top face of the Brillouin zone in Fig. 1(b)] the en-
ergy bands become doubly degenerate. Inspecting the Bloch
Hamiltonian in Eq. (17), this band degeneracy can be easily
understood since f4 becomes exactly zero, meaning that the
layers are completely decoupled along this path and, in ad-
dition, |f1| = |f2|. Exactly at the H point, there is a gap
∆ε ' 124 meV due to γ2, γ5 and ∆.

For illuminated graphite, one should notice that an infinite
number of replicas develop in the quasienergy spectrum asso-
ciated with the Floquet-Bloch Hamiltonian. We are, however,
interested in the changes that the laser field produces on the
static spectrum shown in Fig. 2(a). A convenient way to vi-
sualize this is to use a colorscale that represents the weight of
the k-eigenstates on the n = 0 Fourier replica, i.e.

w̄k =
∑
r

|φk,0(r)|2, (20)

where the sum runs over the basis sites composing the unit
cell, i.e. r = {δA1

, δB1
, δA2

, δB2
}. Comparing the above

expression with Eq. (8), w̄k represents the fraction of the
(time-averaged) probability density which is distributed along
the n = 0 replica. Notice that in the static case w̄k =∑
r ρk(r) = 1 since no other replicas are involved. We set

the strenght of the laser through ζ0 = 2πA0a0/Φ0 = 0.0568,
such that ζr,r′ = ζ0|r− r′| sin θr,r′/a0, and the frequency as
~Ω = 2.2 eV. In this regime, no strong modifications of the
entire band structure are expected and one can, in turn, safely
truncate the full Floquet space by taking an adequate number
of replicas such that the observed spectrum converges. For the
chosen parameters, appreciable changes induced by the laser
only appear around the K and H symmetry points where the
bands come close to each other, so we can focus in the gray
shaded rectangles of Fig. 2(a). This is plotted in Fig. 2(b)
in the vicinity of the K point along the path Γ-K-M and in
Fig. 2(c) for the vicinity of the H point along the path A-H-L,
respectively. The main features in these plots are the bandgap
openings that appear around the boundaries of the Floquet
zone (FZB), defined at ε = ±~Ω/2. Although not clearly
visible, there is also a bandgap opening around the center of
the Floquet zone (FZC) at ε = 0. The large difference in the
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Figure 2. Bulk graphite’s dispersion relations. (a) Static case where no laser is applied. The labels in the k-axis (horizontal) correspond to the
symmetry points depicted in Fig. 1(b). The valence bands are labeled as 1v and 2v, while the conduction bands are labeled as 1c and 2c. The
insets are zoom regions around the K and H symmetry points and the Fermi energy is depicted in dotted red. (b) and (c) are zoom regions around
the K and H symmetry points [gray shaded rectangles in (a)], respectively, for circularly polarized light with ζ0 = 0.04 Å−1×1.42 Å = 0.0568
and ~Ω = 2.2 eV. The inset in (c) is a zoom around ε = 0 and shows the LL-bands in solid red and the UL-bands in solid blue (see text). The
colorscale represents the weight of the k-states on the zeroth Fourier replica, according to Eq. (20).

magnitude of the two gaps obeys a simple reason: the gap in
the FZB region depends linearly on the laser’s strength, while
for the FZC gap such a dependence is quadratic.14

As it happens in two-dimensional samples with circu-
larly polarized light,10,14 the bandgap openings are a known
consequence of the breaking of the time-reversal symmetry,
which in this case extends to three-dimensional graphite. In
Fig. 2(b), we can also distiguish some avoided crossings above
and below the FZB gaps, between different e-h band partners.
Take for example the one marked by the dotted circle, which
corresponds to the crossing between the 2c–0 and the 1v–1
bands, where “–n” means that it belongs to the nth-Fourier
replica in the limit ζ0 → 0. We can see, however, that this is
not a fully developed gap since for that energy range the 1c–0
band (to the left) is barely affected by the laser.

Interestingly, in Fig. 2(c), the band degeneracy observed
along the A-H-L trajectory in Fig. 2(a) for the static case is
removed by the laser (see inset). Although the lower and the
upper layers are still decoupled, the combination of the broken
sublattice symmetry, due to the on-site energies, i.e.,

εA1 = εA2 = ε0 + ∆− 2γ5,

εB1
= εB2

= ε0 − 2γ2,

together with the handedness of the circularly polarized
waves, allows one to distinguish between LLs and ULs, since
these are mirror images of each other. This is depicted in the
inset of Fig. 2(c), where we use red for the LL-bands and blue
for the UL-bands. If we change the handedness of the laser
field, then the bands behavior is indeed inverted (i.e., “red be-
comes blue” and viceversa), as expected from the z → −z
inversion operation.

It is important to notice that for the gap at the FZC to be
greater than that at the FZB one needs to be in the strong cou-
pling regime. Therefore, as the laser intensity is smoothly
increased from zero, the first visible feature, without the com-

plications of heating and non-equilibrium effects present in
the strong coupling regime,56 should be the gap at the FZB.
Because of this, and also to keep within the validity range of
our assumptions, we focus from now on in the FZB modes.
Later on, when inspecting the bond currents in Sec. V, we
will set a stronger laser intensity where the FZC gap becomes
clearly visible.

IV. LASER INDUCED BOUNDARY STATES

Having finished our program with illuminated bulk
graphite, our next step is to check for laser-induced boundary
states. To do it we introduce a boundary and inspect whether
midgap states appear or not. We take one of the three direc-
tions of the lattice given by the primitive vectors of Eq. (15)
as finite, while keeping translational invariance along the other
two. For example, we could define a ‘slab’ geometry along the
â1 direction by taking a lattice withR = n1a1+n2a2+n3a3,
such that 1 ≤ n1 ≤ N1, and {n2, n3} ∈ Z. The problem then
is that one should take a sufficiently large width as to prevent a
considerable overlap between the expected boundary states, if
these are present at the borders of the sample. This brings with
it an important numerical effort since this geometry increases
the dimension of the effective Hamiltonian to be diagonalized.

Perhaps a more convenient strategy to circumvent this is-
sue is to refer to the time-averaged local density of states
(LDoS)Nr,k(ε), which characterizes the weight of the k-state
at quasienergy ε on the site r along the broken direction. In
the context of Floquet theory, this quantity can be written as57

Nr,k(ε) = − 1

π
lim
η→0+

Im
[
〈r, 0| ĜF,k(ε+ iη) |r, 0〉

]
, (21)

with ĜF,k the Floquet-Green operator associated with ĤF,k,
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Figure 3. Quasienergy and k resolved local density of states Nr,k(ε) in logarithmic scale for illuminated graphite. The LDoS is evaluated in
a sample with N unit cells along â2 in (a)-(c) and (e) and along â3 in (d). The insets schematically illustrate the regions in which the LDoS
is being evaluated. Panels (a), (b) and (c) show the LDoS evaluated at n2 = 1, N/2, and N , respectively, for k = k1â1; in (d) the LDoS is
evaluated at n3 = 1 for k = k1â1, while in (e) n2 = 1 and k = (π/

√
3a0 + 0.4 Å−1

)â1 + k3â3. We use an extremely large value for N ,
i.e. N ∼ 225, such that the sample can be considered as semi-infinite in (a), (c)-(e), while in (b) the sample can be understood as infinite. In
(f) we show the LDoS at n2 = 1 as a function of energy and k = k1â1 + k3â3. The laser parameters coincide with those in Fig. 2 and the
FZB at ε = 1.1 eV is denoted by red dashed lines

.

i.e.,

ĜF,k(ε) =
[
εÎF − ĤF,k

]−1

. (22)

The advantage of this method relies in that one still operates
in the original dimension of the truncated Floquet space, i.e.,
dim F = 4 × (2nr + 1), where nr ≥ 0 denotes the highest
taken value for the Fourier replica and we consider the replicas
going from−nr to nr. The recursive Green’s function method
allows us to calculate the effective Hamiltonian of the unit cell
placed at different positions within the sample,58 by including
the self-energy corrections that account for the presence of all
subsequent unit cells. This involves a decimation procedure
which is explained in detail in Ref. [59].

In Fig. 3, we show the illuminated graphite LDoS for dif-
ferent slab geometries as a function of the quasienergy ε and
wavevector k. Panels (a)–(c) and (e) refer to a sample which is
finite along â2, containingN2 unit cells. In this case the corre-
sponding Bravais lattice is rectangular, and given by primitive

vectors a1 and a3. Therefore the primitive unit vectors of the
reciprocal lattice coincide with those of the real lattice, and
the wavevector can be written as k = k1â1 + k3â3. We eval-
uate the LDoS at the positions n2 = 1 in (a) and (e), N2/2 in
(b) and N2 in (c), respectively. In panels (a)–(c), we take the
wave vector as k = k1â1 and fixed k3 = 0, while in panel (e)
we use k = k3â3 and fixed k1 = π/

√
3a0 +0.4 Å

−1
. The in-

sets illustrate the regions where the LDoS is being evaluated:
yellow rectangles denote the evaluation region and grey rect-
angles represent the graphene layers. In Fig. 3(d), we consider
another geometry, where the sample is finite along â3 and we
evaluate the LDoS at the n3 = 1 unit cell (see inset). In this
case, the corresponding Bravais lattice is triangular, and we
evaluate the LDoS for k = k1â1. As we use a huge value
(∼ 225) for the amount of unit cells along the broken direc-
tion, the sample can be taken as semi-infinite in Figs. 3(a) and
(c)-(e), while in Fig. 3(b) the sample is effectively infinite.

Figure 3 shows the laser induced gap around ε = ~Ω/2 =
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1.1 eV (see red dashed lines) and four states crossing the gap
in (a) and (c), while these peaks in the LDoS disappear in
(b). In panel (d), there is a clear gap induced by the laser
at the FZB, and no peaks crossing this region can be ob-
served. These are clear signals of the presence of laser in-
duced boundary states, located at those surfaces perpendicular
to the graphene layers [although not shown, figures similar to
(a)–(c) are obtained for a finite sample along â1]. The shape
of the bands in Fig. 3(b) suggests that the laser produces two
gaps centered around different quasienergies, which could be
attributed to the four band structure observed in Fig. 2. The ef-
fective gapped region corresponds to the intersection between
the two gaps, and outside this region these states may strongly
mix with the bands [see black arrows in Figs. 3(a) and 3(c)].
From the slope of the trajectories defined by the LDoS peaks
in Figs. 3(a) and 3(c), we can infer that these states propagate
along the â1 direction and with opposite velocities, depend-
ing on the border which is being evaluated. Specifically, the
peaks shown in (a) can be attributed to states localized around
the n2 = 1 border that propagate along −â1, while the peaks
in (b) correspond to states localized around the n2 = N2 bor-
der which propagate along +â1, see violet arrows in the inset
schemes. In Fig. 3(e), we can observe the evolution of the lo-
calized states as we move the wavevector along the stacking
direction, i.e. k = (π/

√
3a0 + 0.4 Å

−1
)â1 + k3â3, in the

same spatial region as in Fig. 3(a), i.e. n2 = 1. The peaks
reveal some dispersion (non-negligible slope), meaning that
the boundary states also propagate along the stacked layers.
However, for a given border, these peaks stay in the middle of
the gap without crossing it, and the slopes developed by them
take both positive and negative values (a similar behavior oc-
curs for n2 = N2). This means that the sign of the group
velocity along the stacking direction is not restricted to the
border in which the state is localized, so the two directions
(say, positive and negative) may coexist in the same border
(see violet arrows in the inset).

Notice that a similar behavior is obtained in monolayer
graphene,18 where the circularly polarized laser induces chiral
edge-states. By “chiral” is meant that the direction of propa-
gation of the state depends on both the edge in which it is
localized and the laser’s handedness. In this sense, all the
previous analysis indicates that in illuminated graphite there
are also localized chiral states. We can continue this analogy
and infer whether the observed localized states in graphite can
be characterized by a topological invariant. This is presented
in Appendix A, where we calculate the Chern number asso-
ciated with the FZB for a simplified model of graphite that
retains the leading hoppings γ0, γ1, and γ3, and neglects all
remaining (static) parameters. We are interested in the local-
ized states generated by the mixing of the n = 0 and n = 1
replicas, so we truncate the Floquet space to these subspaces.
Although higher-order mixings are also possible,30 the asso-
ciated gaps decrease very fast for the considered small laser
intensity, and these contributions can be neglected for the pur-
pose of the present discussion. Under this approximation it is
possible to derive analytic expressions for the eigenenergies
of the bulk Hamiltonian of Eq. (17), which allows us to iden-
tify the crossings between conduction and valence bands that

belong to the n = 0 and n = 1 replicas, respectively. The
main conclusion is that the contribution to the Chern num-
ber for a fixed value of k3 is given by the number of bands
that cross the FZB, multiplied by the sign τ of the polariza-
tion (thereby the chiral nature of these states). For the cho-
sen frequency ~Ω = 2.2 eV, this number results to be 4τ , in
full agreement with the bulk-boundary correspondence, since
the crossing bands are 1c–0, 1v–1, 2c–0 and 2v–1. Since we
are computing only the contribution from the FZB gap to the
topological invariant, it is implicitly assumed that the contri-
butions from the bands below does not change. Considering
all the contributions involves a more complex procedure as
presented in Ref. [30] and is beyond our present scope.

So, what is new in this three-dimensional system? The
first obvious difference with monolayer graphene is that now,
rather than edge-states, what the LDoS peaks reveal are sur-
face states located perpendicular to the planes defined by
the graphene layers. To get an idea on how these surface
states look, in Fig. 3(f) we evaluate the LDoS at n2 = 1 for
k = k1â1 + k3â3 to picture out its shape in the two direc-
tions where translational invariance holds. This was done by
fixing the quasienergy in steps of 0.005 eV within the range
1.03 eV ≤ ε ≤ 1.15 eV. We use a transparency scale (arbi-
trary units) to visualize all k-points where the LDoS takes a
large value, such that the obtained curves define what can be
thought of as the ‘skeleton’ of the surface states. In fact, a
close inspection for all energy steps when sweeping both k1

and k3 reveals two peaks which are separated each other, i.e.
each peak defines an open trajectory. This suggests the pres-
ence of two surface states (in the shown region) which can
be imagined as the natural dimensional extension of the chi-
ral edge-states in graphene when adding an infinite number of
layers. Another difference with monolayer graphene is that
here the number of chiral states per value of k3 is doubled,
since now the gap comprises the crossing between four en-
ergy bands, due to the four basis sites in the unit cell. This,
however, may change depending on the value of the chosen
frequency. When ~Ω/2 . 0.25γ0 and k3 ∼ 0, it may hap-
pen that the bands that cross at the FZB are only 1c–0 and
1v–1, so the expected Chern number is in this case 2τ (see
Appendix A).

In Fig. 4 we extract the maxima of the peaks of Fig. 3(f) and
separate them in panels (a) and (b) to appreciate the surface
states individually. The same is done in (c) and (d) for the
LDoS evaluated at n2 = N2. The lines thus correspond to
those boundary states that form the surface state for a fixed
energy. We use the same energies as in Fig. 3(f) but these are
distinguished through a colorscale ranging from red (ε = 1.15
eV) to yellow (ε = 1.03 eV). The shown plots thus resemble
maps of equipotential lines (quasienergies) associated to the
surface states. From the colorscale it is possible then to infer
the group velocity of these states. Since

vg(k) =
1

~
∇kεk, (23)

the group velocity points from yellow to red and perpendicular
to the equipotential lines. From the plots it is easy to see that,
in almost all cases, vg points along the horizontal axis, i.e. â1.
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Figure 4. Laser induced surface states extracted from the LDoS. (a)
and (b) show the two peaks of Fig. 3(f), respectively, corresponding
to the LDoS at n2 = 1. Similarly, (c) and (d) show the LDoS peaks
when evaluated at n2 = N . The used colorscale goes from red
(ε = 1.15 eV) to yellow (ε = 1.03 eV).

In Fig. 4(d) there is, however, a particular region where a lo-
cal minimum develops,60 and the â3 component of the group
velocity dominates over the â1 component at least locally. In
any case, the mirror symmetry around k3 = 0 implies that

vg(k1, k3) · â3 = −vg(k1,−k3) · â3, (24)

meaning that for a given Fermi energy within the gapped re-
gion the overall velocity points along â1 only. With this in
mind, we can again conclude that these states are chiral, since
the group velocity points towards opposite directions regard-
ing to which border the surface state belongs.

All the above findings therefore enforce the idea that the
physics behind illumination on graphite is, to some extent,
similar to that of monolayer (or bilayer) graphene. The addi-
tional dimension present in this case contributes with a weak
component of the group velocity along the new direction,
which averages to zero when populating the system to the
FZB. This is possibly due to the large separation between
the stacked layers (c0), as compared to the first-neighbor dis-
tance (a0). The obtained surface states are rather continua-
tions of graphene’s edge-states in the stacking direction so in
this sense one could say that these move through the bound-
ary of the sample in an orderly manner. To which extent this
is true is a question whose answer requires the evaluation of
the LDoS along the boundary when both the a2 and a3 di-
rections are finite. This obviously difficults the calculation
of the LDoS as the effective dimension over which one op-
erates is now dim F = 4N3 × (2nr + 1), where N3 is the
number of unit cells along â3. For small samples (N3 ∼ 10)

this can be done in the same way we did before (i.e. an ex-
act calculation), but for larger samples the previous strategy
becomes very demanding (computationally speaking) and we
employ an approximation scheme based on a decomposition
into normal modes similar to that used in Refs. [61] and [34].
Although in graphite this decomposition scheme is not exact
due to the next-nearest-neighbor couplings γ2 and γ5, devia-
tions from the exact result can be considered as a small per-
turbation acting only on n3 = 1 and n3 = N3, which can be
neglected in large samples. This we explain in further details
in App. B.

In Fig. 5, we show the LDoS evaluated at n2 = 1 for dif-
ferent sample sizes, given by the number N3 of unit cells
along â3. Panels (a)–(d) are the maps in the same k1 region
as in Fig. 3(a). In (a) and (b), we used the standard deci-
mation procedure as in all previous calculations, while in (c)
and (d), we used the normal mode decomposition explained
in Appendix B. A comparison between Figs. 5(b) and 5(c) for
N3 = 10 shows that the used decomposition, though not ex-
act, yields an accurate LDoS even in relatively small samples.

As expected, we can see that the peaks of Fig. 3 are also
present in this case, maintaining the same chiral behavior as
before. This is somewhat obvious when regarding the LDoS
as decomposed by normal modes along â3. Since this decom-
position takes discrete values of k3, c.f. Eq. (B1), the LDoS
for a fixed k3 is similar to that of Fig. 3(a), and the final LDoS
is given as the sum of all mode contributions. For the consid-
ered region in the maps, then, the number of chiral edge-states
crossing the gap simply goes as 4N3, as anticipated by the to-
tal Chern number of App. A. This is easy to see when N3 is
small, as it happens in Figs. 5(a)–5(c). For N3 = 100, how-
ever, such a counting is no longer possible in Fig. 5(d) even if
we would be able to increase the map resolution indefinitely.
The reason for this is a rather subtle effect we did not com-
ment so far. All LDoS peaks we have shown have, in fact, a
finite width, which is independent of the chosen regularization
energy η of Eq. (21).62 To understand the origin of this width,
notice that the localized states around ε = ~Ω/2 are produced
by the coupling between n = 0 and n = 1 replicas. How-
ever, other extended states belonging to other replicas may
be present within the gapped region. Strictly speaking, there
is no real gap in the FZB where the localized states develop.
However, we refer to the opening of n = 0 and n = 1 bands
as a “gap” since the contributions coming from other replicas
to the time-averaged LDoS are quite small. In other words,
only when the replicas n = 0 and n = 1 are considered, the
band opening at the FZB is a real gap. The observed width in
the LDoS peaks then signals a small mixing term between the
localized states (formed as a superposition of the n = 0 and
n = 1 replicas) and extended states from other Floquet repli-
cas (in this case the main contribution comes from n = −1
and n = 2). This implies that the localized states decay into
the bulk upon absorption or emission of photons, in a char-
acteristic time proportional to the inverse of the energy width
of the peaks. Therefore, when the number of localized states
is small, the mean level spacing is larger than their widths,
and the system “recognizes” its finite size along â3. When
increasing N3, at some point the level spacing becomes com-
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Figure 5. LDoS evaluated at n2 = 1 for broken â2 and â3 directions. (a) and (b) are k vs ε LDoS maps for N3 = 5 and 10, respectively,
obtained from an exact calculation. (c) and (d) show the approximated LDoS through the normal mode decomposition for N3 = 10 and 100,
respectively. In all plots we normalized the densities to its maximum value and used a logarithmic scale. The red dashed lines at ε = 1.1 eV
denote the FZB.

parable to the energy width, and the system is no longer able
to discern its finite size, so it behaves as a bulk in the stak-
ing direction. This originates the formation of localized states
bands of Fig. 5(d), which may well be taken as surface states
even in this limit of relatively small N3.

V. LASER INDUCED PROBABILITY CURRENTS IN
FINITE SYSTEMS

Another interesting effect that we would like to address is
the fact that chiral states, by having a well-defined direction of
propagation, are able to transport a probability current along
the sample. This was shown in the context of illuminated
monolayer graphene, where the laser-induced probability cur-
rent appears either along the borders of the sample63 or sur-
rounds different types of defects like vacancies and adatoms.64

Interestingly, such edge-states and their associated currents
are able to be accessed by measuring the magnetic field they
produce.63 In graphite, therefore, similar effects can be natu-
rally expected. To illustrate this, we consider a finite graphite
sample consisting in a few hexagonal layers along the stacking
direction. According to the discussion in Sec. II A, the quan-
tity of interest, rather than the site current J(r), is the bond
current J(r, r′) given by Eq. (10).54 The carbon bonds where
this current is non-zero are thus given by those sites coupled
by the Floquet Hamiltonian.

In order to identify the role of the laser illumination on the
chirality of these currents, we also calculate the circulation of
the bond currents through the lateral borders of the sample.
This can be computed as the following discrete version of the
line integral of the bond currents:

Cα =
∑
r,r′∈S

Jα(r, r′), (25)

where α labels the Floquet state and the sum runs over all
sites belonging to the border of the layers. In Fig. 6(a) we
show the obtained circulation of the probability current for
the hexagonal sample shown in Fig. 6(b). The dots in the plot
are the obtained quasienergies from the eigenvalue equation,

and we used a grayscale to indicate the weight of the Floquet
eigenstate |α〉 on the n = 0 replica, but with a minor change
with respect to Eq. (20), i.e.

w̄′α = 1− 2

∣∣∣∣w̄α − 1

2

∣∣∣∣ , where w̄α =
∑
r

|〈r, 0|α〉|2. (26)

The idea behind this modification is to highlight the super-
position of the n = 0 replica with the remaining ones: when
w̄α = 1, the Floquet state has full weight on the n = 0 replica,
so there is no mixing with higher-order replicas (w̄′α = 0),
and when w̄α = 0 the state has no weight on n = 0 and so
again there is no mixing. The maximum value w̄′α = 1 is
reached when w̄α = 1/2, meaning that the probability to find
the system in the n = 0 replica is equal to that of finding it
in all other replicas. Roughly speaking, w̄′α serves to infer
where photon emission/absorption processes are more likely
to occur. For the calculations, we used 366 carbon atoms per
layer, so the total dimension of the truncated Floquet space
is dim F = 366 × 6 × 5, where the six corresponds to the
number of layers and we considered five Floquet replicas, i.e.
n = −2, . . . , 2. For this example then, diagonalization of the
Floquet Hamiltonian is a problem that can be treated exactly.
However, as we discussed before in the context of the LDoS,
for larger samples such a calculation may become seriously
hard and one should move to the normal mode decomposition
of Appendix B. We here took ~Ω = 8 eV and ζ0 = 0.71 for
the laser’s parameters. Though these parameters may exceed
standard values, we use them as to illustrate the effect in a rel-
atively small sample. The same effects would be obtained for
smaller parameters when used in larger samples, specially the
size of the hexagonal layers, were a mode decomposition is
not available.

In order to support the obtained circulation of the bond cur-
rents we show, in Fig. 7, the LDoS for the same geometry as
that used in Fig. 3(a). This allows us to identify the boundary
states appearing at the FZB and FZC gaps in this regime of
laser parameters.

The main feature of Fig. 6(a) are the peaks of Cα in the
vicinity of the FZB, defined at ε = ±~Ω/2 (red dashed lines).
In all states within this region, the probability density circu-
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Figure 6. (a) Circulation of the time-averaged probability current as a function of the quasienergy in arbitrary units. The gray scale emphasizes
the mixing of the n = 0 replica (see text). The red dashed lines at ε = ±4 eV denote the FZB. (b) Examples of laser induced probability
currents in few-layer graphite. The chosen geometry for the layers is hexagonal and we used N3 = 3, i.e. six graphene layers. The position of
the carbon atoms is represented by dots and we use a gray scale to denote the time-averaged probability density of Eq. (8). The corresponding
probability bond currents (red arrows) are plotted in a transparency scale according to their magnitude. Blue arrows indicate the overall
direction of the bond currents. The laser parameters were changed to ~Ω = 8 eV and ζ0 = 0.5 Å−1 × 1.42 Å = 0.71.
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Figure 7. LDoS (in logarithmic scale) evaluated at n2 = 1 for broken
â2 direction as in Fig. 3a. The used laser parameters coincide with
those of Fig. 6. Red dashed lines at ε = 0 and 4 eV denote the FZC
and FZB, respectively.

lates through the boundaries of the hexagonal layers, with a
given handedness. Obviously, if we change the sign of the cir-
cularly polarized waves, the direction of the bond currents is
inverted, and with it the sign of the circulation. In addition,
the mixing of the n = 0 replica in the peaks is large (i.e.,
w̄′α ∼ 1), which indicates a correlation between circulation
and photon emission/absorption processes. In other words,
the illuminated electrons are more likely to circulate in the
energy regions where the interaction with the laser field be-

comes relevant. This also happens around the FZC, defined
at ε = 0. Although here the band crossings are more com-
plicated than in the FZB, we can appreciate a negative circu-
lation, though not all states are participating in this peak. In
fact, we can identify some states with small (or even positive)
circulation, which accordingly are weakly mixed. This can be
attributed to the boundary states appearing in the FZC gap of
Fig. 7, where we can see two states with positive group veloc-
ity and a single state with negative group velocity. Of course,
the comparison between Figs. 6(a) and 7 can only be taken as
qualitative, since for the LDoS we used a semi-infinite sample
along the â2 direction while for the bond currents we used a
finite system.

In Fig. 6(b), we show the bond currents and probability den-
sities for three Floquet states whose eigenenergies lie close to
~Ω/2. The bond currents J(r, r′) are shown in red arrows
that go from r′ to r, and we use a transparency scale to indi-
cate its relative magnitude to the maximum current. For each
carbon atom, we also calculated the time-averaged probabil-
ity density ρ(r) given in Eq. (8) and is shown through a gray
scale. The resulting Floquet states around this energy region
are clearly localized at the boundaries of the hexagonal lay-
ers. As Eq. (10) suggests, the bond currents are expected to
be nonzero in those sites where ρ(r) is appreciable, so they
are also confined to the boundaries of the layers.

The bond currents’ features discussed in this section are
clear fingerprints of the chiral nature of the laser induced lo-
calized states. Interestingly, some differences appear when
comparing these states with those found in illuminated mono-
layers. In fact, the magnitude of the bond currents in Fig. 6(b)
is not constant along the full border of the hexagonal layers,
but it rather alternates between successive layers. This is pro-
vided by some small, but non negligible, bond currents point-
ing along the stacking direction. Although this effect does not
break the chirality of the localized states, the probability cur-

10
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rent displays nontrivial patterns due to the interlayer hopping
amplitudes.

VI. SUMMARY AND FINAL REMARKS

To sum up, illumination by a circularly polarized laser on
graphite generates boundary states. These boundary states
turn out to be chiral, may form bands bridging the gap, and
bear similarities and differences with those found in graphene.
In the limit of large samples we show that a normal mode de-
composition is applicable along the vertical direction. This
provides a useful tool to reduce the 3D system onto a set
of decoupled 2D subsystems where the z component of the
wavevector enters as a fixed parameter. Under this decom-
position scheme we were able to calculate the corresponding
Chern number, which can be linked to the number of bands
that intersect at the symmetry point ε = ~Ω/2. We highlight,
however, two interesting features which we attribute to the ex-
tra dimension of the sample. First, we observe a smooth tran-
sition in the local density of states that goes from separable
peaks (bundles) to the formation of bands of surface states,
which evidence the three-dimensional nature of the sample
even for relatively smallN3 values. This is attributed to a pho-
ton assisted decay of the localized states into extended states
that belong to higher-order replicas. Second, the calculated
probability currents may display intrincate patterns due to the
small component along the stacking direction.

Regarding other possible stacking orders for graphite it
should be noticed that, in principle, each crystal structure
could present a topological structure of its own. However,
given the hierarchical layered structure of graphite, we expect
that in this case the main features observed for AB stacking
should be kept. Notwithstanding, this is beyond the scope
of our study, which remains non-exhaustive in this respect,
motivating further investigations on illuminated multilayered
systems.

We hope that the obtained results may stimulate further
experimental research in strong light-matter interaction in
graphite and related systems.
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Appendix A: Chern number calculation

In this section we sketch the calculation of the Chern
number associated with the light induced band-gap openings
around the crossing region ε = ~Ω/2, i.e., the Floquet zone

boundary (FZB). To such end, we derive analytic expressions
for the energies of those bands crossing at the FZB, under the
mode decomposition scheme presented in App. B. This im-
plies that in the present model we consider the most relevant
hopping terms γ0, γ1 and γ3, and neglect all remaining ones in
the bulk Hamiltonian of Eq. (17). The contributions cp to the
Chern numbers are given by each band crossing p taking place
at the FZB, when the laser is turned off, and can be obtained
by reducing the Hamiltonian to those bands participating in
the crossing. This yields a 2× 2 effective Hamiltonian of the
form

Ĥp,eff = hp · σ̂, (A1)

with σ̂ the vector of Pauli matrices and hp the associated vec-
tor to the p-crossing. The corresponding expression for cp is
the following5

cp =
1

4π

∫
d2k ĥp ·

(
∂kxĥp × ∂ky ĥp

)
, (A2)

where the integral is taken over the first Brillouin zone for
k3 fixed as in Eq. (B1) and ĥp is the unit vector associated
with hp. In order to obtain hp, we start with the bulk Floquet
Hamiltonian of Eq. (19), and truncate the Floquet space to
replicas n = 0 and n = 1. This can be computed as the
following matrix:

HF =

(
H(0) − w H(1)

H(−1) H(0) + w

)
, (A3)

where we shifted the energy origin to w = ~Ω/2 so that the
crossings we are interested in are placed at ε = 0. The struc-
ture of these block matrices obey the form given in Eq. (17),
i.e.

H(n) =


0 γ

(n)
12 γ

(n)
13 0

γ
(n)
21 0 0 γ

(n)
24

γ
(n)
31 0 0 γ

(n)
34

0 γ
(n)
42 γ

(n)
43 0

 . (A4)

For the calculation of the hopping terms, we assume ζ0 � 1
so the phase introduced by the vector potential in Eq. (2) can
be linearized as

ei2π(r−r′)·A(t)/Φ0 ' 1 + iζ0 cos(Ωt− τφr,r′), (A5)

where τ = ±1 denotes the laser’s handedness. Following
Eq. (2), we notice that in all cases we have |r−r′| sin θr,r′ =
a0, and hence ζr,r′ = ζ0. Recalling that in the construc-
tion of the Floquet Hamiltonian we multiply these terms by
exp(inΩt) and take the time-integral over one period, this
yields for the above equation:

δn,0 + i
ζ0
2
einτφr,r′ (δn,−1 + δn,1). (A6)

Therefore, the hopping terms can be specified by:

γ
(0)
21 = γ0

(
1 + e−ik·a1 + e−ik·a2

)
,

γ
(1)
21 = i

ζ0γ0

2

(
e+iτ 1

2π + e−i(k·a1+τ 5
6π) + e−i(k·a2+τ 1

6π)
)
,

γ
(1)
12 = i

ζ0γ0

2

(
e−iτ

1
2π + e+i(k·a1+τ 1

6π) + e+i(k·a2+τ 5
6π)
)
,
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together with

γ
(n)
31 = γ1

(
1 + e−ik·a3

)
δn,0,

γ
(n)
43 = γ

(n)
12 e

−ik·a1 ,

γ
(n)
42 =

γ3

γ0
γ

(n)
21 e

+ik·a2
(
1 + e−ik·a3

)
,

and the general rule γ(n)
ij = [γ

(−n)
ji ]∗. With all these terms

specified, we now construct the above Floquet Hamiltonian,
and diagonalize the blocks H(0). This gives the following
eigenenergies:

ε1,c =

√
α

2
−
√
α2

4
− β, ε2,c =

√
α

2
+

√
α2

4
− β,

for the conduction bands, while for the valence bands we have
εp,v = −εp,c for p = 1, 2, as in this model the e-h symmetry
is preserved when γ2, γ4 and γ5 are neglected. The terms in
the above expressions are given by:

α = |γ21|2 + |γ31|2 + |γ42|2 + |γ43|2,
β = |γ21|2|γ43|2 + |γ31|2|γ42|2 − 2Re (γ13γ34γ42γ21) ,

where we simplified the notation by taking γ(0) → γ, i.e., all
hoppings in α and β correspond to the zeroth Fourier compo-
nent. When including the w-term in these bands, we obtain
the following two crossings:

ε1,c − w = ε1,v + w, and ε2,c − w = ε2,v + w. (A7)

So we have that the bands that participate in the crossings are
the conduction bands associated to the n = 0 replica and the
valence bands for the n = 1 replica. The above mentioned
e-h symmetry implies that the crossing conditions are simply
given by εp,c = w, where p = 1, 2 now labels each band
crossing.

The following step is to reduce the Floquet Hamiltonian
to the found crossings. What we obtain then is the effective
Hamiltonian as

Ĥp,eff =

(
εp,c − w γ

(p,1)
c,v

γ
(p,−1)
v,c εp,v + w

)
, (A8)

where γ(p,−1)
v,c and γ(p,1)

c,v are obtained after applying the trans-
formation matrix U that diagonalizes H(0) on the coupling
matricesH(±1) between the replicas, i.e.

γ(p,−1)
v,c = 〈p, v, 1|U †H(−1)U |p, c, 0〉 , (A9)

γ(p,+1)
c,v = 〈p, c, 0|U †H(+1)U |p, v, 1〉 . (A10)

In this way, we can identify the components of the hp vector
multiplying the Pauli matrices in Eq. (A1) as

hp =
(

Re[γ(p,−1)
v,c ], Im[γ(p,−1)

v,c ], εp,c − w
)
. (A11)

What follows in the calculation of cp are the kx and ky deriva-
tives, together with the integration over the first Brillouin
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Figure 8. Localized states and Chern numbers as a function of the
driving frequency Ω. (a) Contributions to the Chern number from the
crossings p = 1 and p = 2. The red shaded areas denote transition
regions where the Chern number may vary depending on the value of
k3. The laser intensity is ζ0 = 0.01 and we took k3 = 0. (b) LDoS
for broken a2 direction and evaluated at n2 = 1 for ε = ~Ω/2. (c)
Number of bands crossing at the FZB, divided by N3, for N3 = 5
(red) and N3 = 10 (blue), in the limit ζ0 = 0.

zone. We carried out this numerically and obtained the Chern
number depicted in Fig. 8(a). By way of comparison, we also
show in (b) the LDoS for a semi-infinite geometry along the
a2 direction, evaluated at n2 = 1 and ε = ~Ω/2, as a function
of k1, with k3 = 0. For the relevant parameter region of Ω, we
find a perfect agreement between the number of chiral states
and the calculated Chern number, i.e., bulk-boundary corre-
spondence is verified. In addition, it is possible to observe that
the chirality of the localized states is determined by the laser
handedness, since the inversion τ → −τ naturally changes the
sign of the Chern number. From the obtained result, we con-
clude that the contributions to the Chern number is τ times the
number of bands crossing at the FZB. In fact, we distinguish
four different regions for the Chern number, which coincide
with those cases in which either the p = 1 or p = 2 bands
cross this energy. For example, for ~Ω/2 . 0.25 γ0, only the
p = 1 bands can fulfill the crossing condition, so c1 = 2τ and
c2 = 0. The opposite happens for 2.5 γ0 . ~Ω/2 . 3.5 γ0,
where c1 = 0 and c2 = 2τ . In this sense, we can say that the
Chern number (and with it the number of localized states for
a given k3) signals the number of band crossings taking place
at the FZB.

Of course, the above analysis is valid under the assumption
that the contributions from the stacking direction can be de-
composed into normal modes, such that k3 given by Eq. (B1)
can be fairly taken as a fixed parameter. In this case, we no-
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tice that the interlayer hoppings depend on k3, and therefore
the Chern number can change from one normal mode to an-
other. When adding up all contributions coming from the nor-
mal modes, the total Chern number

cFZB =

2∑
p=1

N3∑
n=1

cp,n, (A12)

varies in a similar way as in Fig. 8(a), but with the following
differences: (1) such a quantity needs to be multiplied by N3.
(2) Around the transition region centered at ~Ω/2 = 0, the
total Chern number varies in a staggered way from 2τN3 to
4τN3, while around ~Ω/2 = 3γ0 this number changes from
4τN3 to 0. This behavior is shown in Fig. 8(c), where we cal-
culate the number of bands that cross at the FZB as a function
of the driving frequency for N3 = 5 (solid red) and N3 = 10
(solid blue).

We recognize that, in order to deal with a semi-analytic
calculation for the Chern number, we worked in a simplified
model of graphite where next-nearest-neighbor couplings and
energy shifts between inequivalent carbon atoms were disre-
garded. The inclusion of these terms would only complicate
such a calculation, though the main result would remain the
same, namely, each band crossing at the FZB contributes with
a factor 2τ to the total Chern number. With this in mind, we
only expect some differences in the number of crossings near
the transition regions of Fig. 8 (red shaded areas), as the bands
experience slight modifications when including these terms.
However, for the considered frequency value ~Ω = 2.2 eV
we used along this work, the Chern number would remain the
same regardless of the value of k3, so for finite samples along
the stacking direction we expect cFZB = 4τN3.

Appendix B: Normal mode decomposition

In this section we discuss the employed normal mode de-
composition in the calculation of the local density of states
shown in Fig. 4. Let us consider the bulk Hamiltonian Ĥk of
Eq. (16) whose matrix representation is given in Eq. (17). We
first break translational invariance along the z-direction, by
considering N3 unit cells along â3. The set of allowed values
for k3 is no longer a continuum, and we expect some discrete
set which we propose to be given by

k3 =
nπ

c0(2N3 + 1)
, n = 1, 2, . . . , N3. (B1)

In this way, we obtain that the functions that depend on k3

take the following values:

f4 = 1 + e2iϕn , and f5 = 2 cos(2ϕn), (B2)

where ϕn = nπ/(2N3 + 1). Now, for every value n and
fixed k = (kx, ky) we can diagonalize Ĥk → Ĥnk, where
the superscript indicates that k3 is given by n. This yields 4
eigenenergies and their corresponding eigenkets, i.e.

Ĥnk |φnα,k〉 = εnα,k |φnα,k〉 , α = 1, . . . , 4, (B3)
where the eigenket can be written in terms of the site basis
i = {A1,B1,A2,B2} as

|φnα,k〉 =
∑
i

φnα,k(δi) |i〉 , (B4)

and φnα,k(δi) = 〈δi|φnα,k〉. What we do now is to translate
these coefficients into a new space of dimension 4N3, given
by the amount of units cells spanned along â3. This is accom-
plished by transforming these coefficients as follows:

φnα,k(δi, n3) =
2√

N3 + 1
φnα,k(δi)


sin

[
(2n3 − 1)nπ

2N3 + 1

]
e−iϕn/2, i ∈ LL

sin

[
2n3nπ

2N3 + 1

]
e+iϕn/2, i ∈ UL

≡ φnα,k(δi)

 an,n3 , i ∈ LL

bn,n3
, i ∈ UL

, (B5)

where the index n3 = 1, . . . , N3 denotes the unit cell in the
finite system. We can therefore construct the following states
in this new space as

|Φnα,k〉 =

N3∑
n3=1

∑
i

φnα,k(δi, n3) |i, n3〉 . (B6)

The idea then is to test such a transformation in the full
Hamiltonian that arises when translational invariance along
â3 is broken. In terms of the {|n3〉} basis, this Hamiltonian

presents the following structure:

Ĥk =

N3∑
n3=1

h⊗ |n3〉〈n3|+
N3−1∑
n3=1

(v ⊗ |n3 + 1〉〈n3|+ h.c.) ,

where the block matrices h and v represent the intra- and
inter-cell couplings, respectively, and are defined as:

h =

 ε0 + ∆ γ0f1 γ1 γ4f2

γ0f
∗
1 ε0 γ4f

∗
1 γ3f3

γ1 γ4f1 ε0 + ∆ γ0f2

γ4f
∗
2 γ3f

∗
3 γ0f

∗
2 ε0

 , (B7)
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and

v =

 γ5 0 γ1 γ4f2

0 γ2 γ4f
∗
1 γ3f3

0 0 γ5 0
0 0 0 γ2

 . (B8)

If we now apply this Hamiltonian into the proposed state given
by Eq. (B6), we obtain:

Ĥk |Φnα,k〉 = (εnα,kÎ + V̂) |Φnα,k〉 , (B9)

where Î is the identity operator in this extended space and

V̂ = γ5

(
P̂A1,1 + P̂A2,N3

)
+ γ2

(
P̂B1,1 + P̂B2,N3

)
,

where we defined the projectors P̂i,n3
= |i, n3〉〈i, n3|. The

matrix associated with this operator is therefore diagonal, and
the nonzero elements are only in the first (n3 = 1) and last
(n3 = N3) unit cells. The proposed decomposition scheme,
therefore, is not exact due to the next-nearest-neighbor hop-
pings γ5 and γ2 appearing in V̂ . However, as both γ2 and γ5

are much smaller than γ0, the operator V̂ can be taken as a
small perturbation on Ĥk when we increase N3, such that it
can be disregarded in a first approximation. This implies that
the energies εnα,k, obtained from a 4 × 4 Hamiltonian matrix,
are in fact a good approximation to the exact eigenenergies,
which would be obtained from a 4N3 × 4N3 matrix.

It is important to notice that the above presented decom-
position can be extended straightforwardly to incorporate the

circularly polarized light. What changes in this case is that
the static Bloch Hamiltonian in Eq. (B3) should be replaced
by the Bloch-Floquet Hamiltonian of Eq. (18), and the state
|φnα,k〉 is now defined in the F-space, whose dimension is
4(2nr + 1) (recall that 2nr + 1 is the amount of considered
Floquet replicas). Additionally, for the LDoS of Fig. 4, trans-
lational invariance is not only broken along â3, but also in
â2. For a given k3, specified by n, we can calculate an effec-
tive local densityNr,n by following the decimation procedure
discussed in detail in Ref. [59]. This procedure consists in the
recursive calculation of the self-energy correction on the site
located at r0 = n2a2 + δi, due to the presence of the other
sites in the lattice. Once we obtain Nr,n, the final LDoS at
site r = r0 + n3a3 can be obtained as:

Nr =
∑
n

Nr0,n

 |an,n3 |2, i ∈ LL

|bn,n3
|2, i ∈ UL

. (B10)

The relevance of this decomposition scheme relies on the
fact that it effectively reduces the dimension of the involved
Hamiltonians, and thus the computation time demanded by
the calculation of either the system’s eigenenergies or the
LDoS. This scheme, in turn, yields a very good approxima-
tion to the exact solutions for large values of N3, such that
surface effects due to the perturbation V̂ can be neglected. It
is precisely in this limit where the exact calculation becomes
highly demanding and, in most of cases, almost impossible to
carry out.
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We report on the fate of the quantum Hall effect in graphene under strong laser illumination. By using Floquet
theory combined with both a low energy description and full tight-binding models, we clarify the selection
rules, the quasienergy band structure, as well as their connection with the two-terminal and multi-terminal
conductance in a device setup as relevant for experiments. We show that the well-known dynamical gaps that
appear in the Floquet spectrum at ± ~Ω/2 lead to a switch-off of the quantum Hall edge transport for different
edge terminations except for the armchair one, where two terms cancel out exactly. More interestingly, we
show that near the Dirac point changing the laser polarization (circular right or circular left) controls the Hall
conductance, by allowing to switch it on or off, or even by flipping its sign, thereby reversing the chirality of the
edge states. This might lead to new avenues to fully control topologically protected transport.

I. INTRODUCTION

Forty years ago, the discovery of the precise quantization
of the Hall conductance in a two-dimensional electron gas
under extreme conditions [1] opened the doors to a new
chapter in condensed matter physics [2]. Elegant topological
arguments [3, 4] explained the precision of the Hall plateaus
in practical devices under high perpendicular magnetic fields,
while also pointing to new deeper and unifying concepts.
Over the last two decades, the use of such topological
arguments rapidly expanded [5–7] allowing the discovery
of, for example, topological insulators in two [8] and three
dimensions [9] and Weyl semimetals [10]. Amid the ever
growing family of topological phases, the quantum Hall (QH)
effect remains as a paradigmatic case where the topological
edge states enjoy the highest degree of robustness, a fact
that is nowadays exploited in the new international system of
units [11].

Besides the plethora of manifestations of topological
states in (or near) equilibrium conditions, another growing
research front aims at using light to change the properties
of a material by generating hybrid electron-photon states
(also called Floquet-Bloch states) with different spectral
and topological properties [12–18]. The latter has become
an emerging research front within the so-called quantum
materials [19]. Fascinating experiments have unveiled
the Floquet-Bloch states [20, 21] and a much awaited
consequence: the light-induced Hall effect [22]. While
in photonic systems or ultracold matter the experiments
allow to reach high driving [23] frequencies, which in turn
allow suitable theoretical approximations [24, 25], the sweet
spot for laser-illuminated Dirac materials corresponds to the
(theoretically more challenging) mid-infrared where ~Ω (a
few hundreds meV) is much smaller than the bandwidth [26,
27].

Here we address the question of how the QH effect in
graphene is affected by laser illumination. Previous studies
have mainly focused on the effect of light on the intricacies
of the Hofstadter butterfly of different lattices [28–31], the

bulk properties of the irradiated Landau levels and topological
invariants [28], and related dynamics [32]. By computing
the spectrum and the topological invariants, laser-induced
modifications on the Hofstadter butterfly and topological
properties were recognized. The Hall conductivity in presence
of both illumination and an external magnetic field (but
without dissipation terms) was also discussed but by means
of a generalized Kubo formula [33]. The subject still remains
controversial, as the issue of how to properly account for the
occupation of the Floquet bands [34–40], specially in this
bulk regime when dissipation effects need to be included, has
demonstrated to be a difficult task.

In this work we tackle two aspects that are unavoidable
in condensed matter experiments: (i) the regime of
photon energies (~Ω) much smaller than the bandwidth—in
particular, we consider Ω ≤ ωc, where ωc is the cyclotron
frequency; and (ii) a multi-terminal device geometry with
a laser spot applied to the central part and address
the conductance measured in such configurations [41].
Specifically, we study the spectrum and the time-averaged
conductance both in the two-terminal and multi-terminal case
as required for Hall measurements. To such end we use
atomistic models within a scattering configuration with a
central illuminated spot, thereby allowing for the occupations
to be well defined far away in the leads. The spectrum is first
analyzed by using the continuous Dirac model that properly
describes the low energy properties of the system. This is
done for both zigzag and armchair edge terminations. Such
an approach allows us to clearly identify the main features
of the Landau-Floquet edge modes. These results are further
verified using a more complete tight-binding model which
is later used for our transport calculations. The latter are
implemented by means of a generalization of the coherent
Landauer-Büttiker approach to the Floquet picture [42–44].
In this Floquet scattering picture, the leads are not illuminated
and have well defined occupations.

We find that in certain experimentally accessible parameter
regions laser illumination leads to important effects including
the switch-off of the Hall conductance, the splitting of the Hall
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Figure 1. (Color online) Geometry used in the Dirac model.
The homogeneous magnetic field and the laser are normal to the
graphene monolayer. The zigzag and armchair edges are indicated,
highlighting the fact that the former contains only C atoms from a
given sublattice (B), while the latter contains both.

plateaus and even a change in the chirality of the propagating
states. Interestingly, the Hall conductance is switched off for
all edge terminations except for the armchair one, where two
contributions cancel out exactly.

This paper is organized as follows. In Sec. II we describe
the Landau-Floquet states in graphene within the framework
of the Dirac (linear) model. In Sec. III we study the
Landau-Floquet bands in a tight binding model for zigzag and
armchair ribbons. Sec. IV shows two-terminal conductance
simulations which are clarified by visualizing the scattering
states. Sec. V shows the simulations of the Hall conductance
in a six-terminal configuration. Finally, we summarize our
results in Sec. VI.

II. LOW ENERGY HAMILTONIAN

The low energy properties of graphene can be described
using the following Hamiltonian [45, 46],

Ĥ0 = vF (τz ⊗ σx x̂+ τ0 ⊗ σy ŷ) · p , (1)

where σi (τi) with i = x, y, z are Pauli matrices describing
the pseudospin (valley) degree of freedom, τ0 is the 2 × 2
identity matrix, p = px x̂ + py ŷ is the momentum operator
and vF is the Fermi velocity. The wavefunction Ψ has then
four components, Ψ = [ψAK , ψBK , ψAK′ , ψBK′ ]T, with
amplitudes describing the two inequivalent valleys in the
Brillouin zone around K = (4π/3

√
3a0, 0) and K ′ = −K

(the first two amplitudes correspond to K and the remaining
ones to K ′). The parameter a0 is the distance between nearest
neighbor carbon atoms. The presence of a perpendicular
magnetic field,B = B ẑ, can be described by the well-known
Peierls substitution, p → p+ e

cA, with A the corresponding
vector potential (−e is the electron charge, e > 0).

A. The Floquet approach

The illumination with a laser field (applied perpendicularly
to the graphene plane) can be modeled as a time-dependent
term in the Hamiltonian. Furthermore, as long as the laser is
monochromatic (as it will be the case throughout this work),
this term is periodic in time and hence it can be treated within
the Floquet theory [47–49]. We briefly describe now this
approach before going into its application to our problem.

For a periodic time-dependent Hamiltonian Ĥ(t), where
Ĥ(t + T ) = Ĥ(t) with the period T = 2π/Ω, Floquet
theory assures the existence of a complete set of solutions
of the form |Ψα(t)〉 = e−iεαt/~ |φα(t)〉 with |φα(t)〉 =
|φα(t+ T )〉. Replacing this solution in the time-dependent
Schrödinger equation one obtains: ĤF |φα(t)〉 = εα |φα(t)〉,
where ĤF = Ĥ(t)− i~ ∂t is called the Floquet Hamiltonian.
Thus, we get an eigenvalue equation in the composite space
R⊗T (also called Floquet space) whereR is the usual Hilbert
space and T the space of T−periodic functions spanned by
exp (imΩt). The integer m is called the replica index. The
change in the replica index in a process going from a state
with, say,m tom+n can be assimilated to a number of photon
excitations [50].

Our Hamiltonian can be written as the sum of a
time-independent term and a time-dependent one involving
the interaction with the laser: Ĥ(t) = Ĥ0 + V̂ (t). By using
a Peierls’ substitution the time dependent term can be written
as V̂ (t) = e vF

c (τz ⊗ σx x̂ + τ0 ⊗ σy ŷ) · Ar(t), where the
vector potential

Ar(t) = A0 [ cosα cos Ωt x̂+ sinα cos(Ωt− ϕ) ŷ ] (2)

describes the radiation field. For ϕ = 0, this radiation
field is linearly polarized, in which case α is the polarization
angle; whereas for ϕ = π/2 (−π/2), and α = π/4, the
radiation is right-handed (left-handed) circularly polarized.
The Fourier components of V̂ (t), V̂n = 1

T

∫ T
0
V̂ (t)e−inΩtdt,

introduce elements connecting the different Floquet replicas
in the Floquet Hamiltonian.

In the low energy approximation there is a further
simplification: since the momentum p enters linearly, the
perturbation V̂ (t) is monochromatic so that its Fourier
expansion will have only one harmonic (there is no such
a simplification in the tight-binding model, see Sec. III).
Notice also that any spatial modulation of the laser beam is
considered to be larger than all other relevant length scales
and hence ignored. This implies that the perturbation cannot
mix states that are spatially orthogonal. Finally, we write V̂ (t)
as

V̂ (t) = (V eiΩt + V† e−iΩt), (3)

with

V =
η~Ω

2

[
cosα τz ⊗ σx + sinα e−iϕ τ0 ⊗ σy

]
. (4)

Here we have defined the dimensionless parameter
η = evFA0/c~Ω that characterizes the intensity of the
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perturbation. With this, our eigenvalue equation reduces to

(Ĥ0+m~Ω) |φα,m〉+V†|φα,m+1〉+V|φα,m−1〉 = εα |φα,m〉 ,
(5)

where |φα(t)〉 =
∑
m e

imΩt |φα,m〉. From this it is clear that
the laser field can only couple replicas mi and mf such that
mf = mi ± 1. For the application of the Floquet formalism,
we will expand |φα,m〉 in a basis of eigenfunctions |χn〉 of
the static system (i.e., with the magnetic field alone)

|φα,m〉 =
∑
n

w(α)
mn |χn〉 . (6)

The eigenstates |χn〉 can be those corresponding to a system
with an edge (see Sec. II B and II C) or to an infinite (bulk)
sample (see Sec. II D). From hereon the letter m will be
reserved to indicate Floquet replicas.

B. Zigzag Floquet Hall states

We start our analysis with the most relevant case of zigzag
edges (see Fig. 1). Since in this case the two valleys are
not coupled by the boundary condition, we can consider
only one of them, say the K valley, and use a simpler
two-component spinor notation. Since this is a generic feature
of all terminations except for the armchair one, this case can
be considered as the most general. The armchair edge will be
analyzed separately later on. As a basis to expand the Floquet
space we use the corresponding QH zigzag edge states, which
are given by (see Appendix A for details)

χsνnk(y) =
1√
Cνnk

(
Dνn(ξ)

s
√
νnDνn−1(ξ)

)
, (7)

where ξ=
√

2(y/`B − k`B), `B=
√
~c/eB is the magnetic

length, εn(k) = s ~ωc
√
νn(k) is the energy of the Hall

state, where s = ±1 refers to the electron and hole bands,
respectively, and ωc=

√
2vF/`B is the cyclotron frequency,

Dν(x) is the Parabolic Cylinder function of index ν, k is the
crystal momentum along the x axis andCνk is a normalization
constant. Here, n ≥ 1 enumerates the positive energy levels,
for a given k, in ascending order. Notice that the plane wave
factor along the x axis (see Appendix A) can be safely ignored
as the perturbation does not mix states with different k.

Since the laser field is monochromatic [cf. Eq. (2)], the
Floquet matrix HF—which is a representation of Eq. (5) in
theR⊗T space—is an infinite block tridiagonal matrix. With
our choice of basis given in Eq. (6), the diagonal blocks are
itself diagonal. Because we are interested in the effect of the
laser field on a few edge states around the Dirac point (ε = 0),
we will truncate HF and retain 2N Landau levels, N above
and N below the Dirac point and 2M + 1 Floquet replicas.
Hence n = 1, . . . , N and m = −M, . . . ,M . The matrix
element between states |χs̃νñk〉 and |χsνnk〉 in the m and m− 1
Floquet replicas, respectively, is simply given by

〈χs̃νñk|V|χ
s
νnk〉=

η~Ω

2

[
sf(α,ϕ)Rνnνñ+s̃f(−α,ϕ)Rνñνn

]
,

(8)
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Figure 2. Quasienergy spectrum projected on the m = 0 Floquet
replica [ρ0(ε, k), solid black lines] as a function of the dimensionless
wavevector k`B along a zigzag edge irradiated with a circularly
polarized laser. For (a) and (b) [(c) and (d)] we use η = 0.2ωc/Ω
(η = 0.3ωc/Ω). Subplots (a) and (b) correspond to the resonant
case (Ω = ωc) for valleys K and K′, respectively. Similarly, (c) an
(d) correspond to a non resonant photon energy (Ω = 0.65ωc). Here
five Floquet channels (−2 ≤ m ≤ 2) were used.

where f(α,ϕ) = cosα− i sinα e−iϕ and

Rνν′ =
`B
√
ν√

2CνkCν′k

∫ ∞
−
√

2k`B

dξ Dν−1(ξ)Dν′(ξ) . (9)

Similar calculations can be performed in the K ′ valley using
the eigenfunctions given by Eq. (A4).

Let us now consider the case of a laser field with positive
(counter clockwise) circular polarization: α = π/4 and ϕ =
π/2. Then we have f(π/4, π/2) = 0 and f(−π/4, π/2) =√

2, and thus the right hand side of Eq. (8) reduces to
η~Ω s̃Rνñνn/

√
2. Figure 2 shows the quasienergy dispersion

of the Floquet Hall edge states, weighted by their projection
on them = 0 Floquet replica. These dispersion relations were
obtained by numerically calculating the following spectral
density

ρ0(ε, k) = − 1

π
Im Tr0

[
ε+ i0+ −HF (k)

]−1
, (10)

where the trace Tr0 is taken only over the m = 0 subspace.
Here we used five Floquet replicas (M = 2), twelve Landau
levels (N = 6) and two different photon energies: (i) resonant
with the first bulk Landau level (Ω = ωc) and (ii) off-resonant
(Ω = 0.65ωc). We include also the results for the K ′ valley
which were obtained in a similar fashion.

The main new features in the spectrum that are apparent
from the Fig. 2 are: (i) the splitting of the bulk Landau levels
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and the lack of electron-hole symmetry, both analyzed in
detail in Sec. II D; (ii) the appearance of multiple dynamical
gaps (or, more precisely, avoided crossings) of different order
in η. In particular, the first order ones at ± ~Ω/2 in the K
valley arises from the resonant coupling between the lowest
electron and the highest hole edge states and, as we will
show when discussing the transport properties, lead to the
(almost complete) suppression of the QH conductance; (iii)
the bending of the otherwise flat zero energy state (ν = 0)
of the K ′ valley, which results from the direct coupling to
the lowest Landau level of the electron band |χ+

ν1k
〉 (in the

Floquet picture it corresponds to coupling to the m = −1
replica). This leads to an edge mode with a polarization
dependent dispersion that it is always a counter-propagating
mode, in the sense that it has the opposite velocity that the
edge states with the same sign of quasienergy. This, in turn,
causes a change of the sign of the Hall conductance, as we
discuss in Section V; (iv) in a small quasienergy region above
ε = ~ωc there is an effective reduction of the number of edge
states as the one coming from theK ′ valley is shifted upwards.
In a finite sample, the same happens for the K valley on the
other edge. This leads to the emergence of a 4e2/h feature in
the two terminal conductance as discussed in Section IV.

The size ∆dym of a dynamical gap is given, to first order
in η, by the matrix element between the two states involved
in the avoided crossing [Eq. (8)]. In the case of the gap at
ε = ~Ω/2, they are |χ+

ν1k
〉 and |χ−ν1k〉 in the m = 0 and

m = 1 replicas, respectively, so that

∆dym ' η ~Ω sinα|Rν1ν1 | , (11)

where ν1(k) = (Ω/2ωc)
2 defines the value of k where the

resonant condition is fulfilled. Eq. (11) is not restricted to
a circularly polarize laser. In fact, it must be noted that in
the case of a linearly polarized beam, ∆dym depends on the
relative orientation of the electric field and the edge, being
zero if the electric field is parallel to the edge (α=0).

C. Armchair Floquet Hall states

Now we apply a similar treatment to the case of armchair
edges. For this special termination, however, one needs to
take into account both valleys at the same time [45], as the
boundary condition mixes them. The eigenfunctions for the
static system are presented in Appendix A. They are now
four-component spinors

χsνnk(x) =
1√
Cνnk


−isτnDνn(ξ)eiKx

−τn
√
νnDνn−1(ξ)eiKx

is
√
νnDνn−1(ξ)e−iKx

Dνn(ξ)e−iKx

 , (12)

with ξ =
√

2(x/`B − k`B). The eigenenergies are given by
εn = s ~ωc

√
νn with s = ±1, the meaning of s being the

same as in the zigzag case. The new parameter τn = (−1)n+1

indicates the branch νn belongs to [see Appendix A for details
as well as for the explicit form of Cνnk]. Using Eq. (12) and
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Figure 3. Quasienergy spectrum projected onto the replica m =
0 for an irradiated armchair edge. The laser is circularly (linearly)
polarized in (a) and (c) [(b) and (d)]. In (a) and (b) the laser is in
resonance (Ω = ωc), with η = 0.2ωc/Ω; whereas in (c) and (d) it
is out of resonance (Ω = 0.65ωc), with η = 0.3ωc/Ω. Five Floquet
replicas (−2 ≤ m ≤ 2) were included. It is clear, in comparison
with Fig. 2, the absence of a first order dynamical gap at ± ~Ω/2.
Higher order gaps due to the coupling with m = ±2 replicas are
present.

the interaction matrix Eq. (4) we have the following matrix
element that enters inHF

〈χs̃νñk| V |χ
s
νnk〉 = i

η~Ω

2
(s̃s+ τñτn)× (13)

[sf(−α, φ)Rνñνn − s̃f(α, φ)Rνnνñ ] .

This gives an interesting selection rule: 〈χs̃νñk| V |χ
s
νnk
〉 = 0

if s̃s = −τñτn. In particular, for the n = ñ = 1 edge mode
the coupling between the conduction (c, s = 1) and valence
(v, s̃ = −1) bands vanishes

〈χvν1k| V |χ
c
ν1k〉 = 0 . (14)

Because this matrix element is responsible for the opening
of a dynamical gap at ± ~Ω/2, we do not expect such a
gap in the armchair case—of course, this argument refers to
a first order gap; higher order (smaller) gaps in fact exist
at these points. Note that, in general, there is no coupling
between electron and hole levels (i.e. ss̃ = −1) belonging
to the same solution branch (i.e. τñτn = 1). Similarly,
〈χvνñk|V|χ

v
νnk
〉 = 〈χcνñk|V|χ

c
νnk
〉 = 0 if τn = −τñ. i.e.,

same electron or hole character and different solution branch.
All this implies that, considering only first order couplings,
the armchair edges have more symmetries than the zigzag
ones, leading to a simpler Floquet spectrum.

The corresponding weighted Floquet spectrum, calculated
with the projected spectral density ρ0(ε, k), is shown in Fig. 3
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for a circular (ϕ = 2α = π/2) and linear (α = ϕ = 0)
polarization of the laser field. As in the previous section
we use five Floquet replicas (M = 2). The most striking
difference with Fig. 2 is the lack of first order dynamical gaps
at ± ~Ω/2, in complete agreement with Eq. (14). Moreover,
when the photon energy is out of resonance [Figs. 3(c) and
3(d)], the weighted Floquet bands are similar to the ones of
the static system, except for an energy shift of certain Landau
levels. It is interesting that certain gaps appear at the crossing
of the static system (m = 0) with replicasm = ±2. Since our
linear model only couples directly Floquet channels differing
in one photon, these gaps are of second order and thus smaller
than those seen in Fig. 2 at ε = ± ~Ω/2. The flat states for
k`B � 2 correspond to the bulk Landau levels, so that their
shifting and splitting follows the pattern of the latter, which
we now discuss.

D. Bulk selection rules

To better understand some of the features observed in Figs.
2 and 3, it is useful to analyze the bulk case. For that we
calculate ρ0(ε) [cf. Eq. (10)] with HF written in the basis
of the bulk eigenfunctions (see Appendix A). The matrix
elements of HF between the Floquet bulk eigenfunctions can
be calculated by considering each valley separately as they are
decoupled in bulk. Using the solutions |χlk〉 given in Eq. (A2)
for the K valley (and omitting the superscript K) we obtain
the following matrix elements

〈χnk|V|χlk〉 =
η~Ω

4
√

1− (δn0 + δl0)/2
×[

f(α,ϕ)sgn(l)δ|n|,|l|−1 + f(−α,ϕ)sgn(n)δ|n|,|l|+1

]
. (15)

In the right-handed circularly polarized case, f(α,ϕ) = 0
and this matrix element is proportional to δ|n|,|l|+1. In this
way we obtain the selection rule |l| = |n| − 1, where l is
the Landau index of the state with an extra absorbed photon
[(l,m+ 1)↔ (n,m) transition in the Floquet space]. For the
opposite circular polarization the |l| = |n| + 1 rule applies.
When the polarization is linear, Eq. (15) dictates that ||n| −
|l|| = 1. The matrix elements between eigenfunctions in the
K ′ valley are the same as those in Eq. (15), and thus the same
selections rules apply.

These selection rules can be clearly seen when we plot
the Floquet spectral density ρ0(ε) as a function of B for a
fixed value of ~Ω, as shown in Fig. 4. The calculations
were carried out with twenty Landau levels (N = 10,), five
Floquet replicas (M = 2) and η = 0.15. To properly
scale the spectrum it is useful to define an auxiliary magnetic
field B0 = ~cΩ2/(2ev2

F ) so that ωc/Ω =
√
B/B0 and

the energy of the m-th Floquet replica is simply ε
(m)
n =(

sgn(n)
√

B
B0
|n|+m

)
~Ω. Figure 4(a) shows the case of a

circular polarization. First we notice that, as B approaches
zero, there are dynamical gaps of almost constant size that
tend to center around ε = ± ~Ω/2. These are reminiscences
of the well-known dynamical gaps of irradiated graphene that
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Figure 4. Weighted bulk Landau-Floquet spectral density ρ0(ε,B)
as a function of the magnetic field for a fixed value of Ω. In (a) and
(b) the laser field is circularly (α = π/4, φ = π/2) and linearly
(α = π/2, φ = 0) polarized, respectively. Here η = 0.15 and
B0 = Ω2~c/(2ev2F ).

appear in the absence of any magnetic field (with size roughly
equal to η~Ω) [26, 51]. Another interesting feature is the
appearance of anti-crossings near B = B0, that is, when the
laser field is in resonance with the transition between the zero
and the first Landau level. In the case of the anti-crossing
near ε = 0, it originates from the degeneracy of the Floquet
states |χ0k, 0〉 and |χ1k,−1〉, as dictated by the selection
rules—here we use the notation |χνk,m〉 to indicate the
m−th Floquet replica the state |χνk〉 belongs to—while for
the one at ε = ~Ω it corresponds to the near degeneracy
between |χ1k, 0〉 and |χ0k, 1〉. Note that because of the
selection rules there is no coupling between |χ−1k, 0〉 and
|χ0k,−1〉 and so ρ0(ε) 6= ρ0(−ε) (there is no electron-hole
symmetry). This is consistent with the results of Refs. [30, 31]
where the full Hofstadter butterfly spectrum (tight-binding
model) was analyzed. Finally, we mention that the series of
gaps near ~Ω/2 arises from the anti-crossings between the
Floquet states |χnk, 0〉 and |χ1−n,k, 1〉 with n = 1, 2, · · · ,
while those near −~Ω/2 appear at the crossings of |χ−nk, 0〉
and |χn+1,k,−1〉.

As we have already mentioned, for a linearly polarized
laser the selection rules require ||n| − |l|| = 1, with both
n and l entering symmetrically. This implies that ρ0(ε) =
ρ0(−ε) as it is clear from Fig. 4(b). It is interesting to
analyse in particular the triple crossing that occurs near ε = 0
for B = B0 (resonance condition, Ω = ωc). In that
case, |χ0k, 0〉, |χ−1k, 1〉 and |χ1k,−1〉 become degenerate
while the selection rules allow the coupling between |χ0k, 0〉
and each of the other two states, with a matrix element
η~Ω e±iα/2

√
2, respectively. Within this restricted subspace,

a straightforward diagonalization gives the eigenvalues λ0 =
0 and λ± = ± η~Ω/2. The eigenvector corresponding to
λ0 is (|χ−1k, 1〉 + |χ1k,−1〉)/

√
2 which does not have any

weight on the m = 0 replica, as it is evident from the
lack of spectral weight shown in Fig. 4(b). For the other
eigenvalues λ± we have that the corresponding eigenvectors
are (
√

2|χ0k, 0〉 ∓ eiα(|χ−1k, 1〉 + |χ1k,−1〉)/2, both with
the same weight (1/2) on the m = 0 replica. A similar
calculation explains the features observed at ε = ± ~Ω in
Fig. 4(b). Finally, the small gaps near ~Ω/2 that appear at
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Figure 5. (Color online) (a) Geometry of the problem in the
tight-binding model, with the lattice aj and nearest neighbors δj
vectors indicated, whose modules are a and a0, respectively (a =√

3 a0). We refer all our calculations to this configuration, and thus
a zigzag (armchair) ribbon has a translational symmetry along the x
(y) direction. (b) First Brillouin Zone and the two non equivalent
valleys K and K′.

low B result from the crossing of |χnk, 0〉 with |χ−(n+1)k, 1〉
and |χ−(n−1)k, 1〉 (n = 1, 2, · · · ), and similarly for the gaps
near −~Ω/2. It is worth mentioning here that in the absence
of a magnetic field there is no laser induced dynamical gap
in ρ0(ε) for a linearly polarized laser but a pseudo-gap that
closes linearly in energy at exactly ε = ~Ω/2 [26]. This
can be seen in Fig. 4(b) as B goes to zero, where the size
of such gaps become smaller until they vanish at B = 0. In
this case, the presence of this pseudo-gap is reveled by the
Landau-Floquet states that appear nearly pinned at ε = ~Ω/2.

III. TIGHT BINDING MODEL

The Dirac model is suitable only for describing the low
energy excitations near the Dirac point (ε = 0), where
the energy dispersion is almost conical. A better and more
complete description is given by a tight-binding (TB) model,
where the pz carbon orbitals in graphene are described by
Ĥ =

∑
〈i,j〉 tij ĉ

†
i ĉj+h.c.. Here ĉj is a destruction operator at

the position j, the notation 〈i, j〉 implies that the summation
is carried over nearest neighbors only, separated by a distance
a0 = 1.42Å (see Fig. 5), while the hopping tij is independent
of the site: tij = t = −2.8 eV. The effect of an external field
described by the vector potentialA(r, t) is included as before
via the Peierls substitution, which in the TB approach is given
by

tij → tij × exp

[(
ie

~c

)∫ rj

ri

A(r, t) · dr
]
. (16)

A. Landau levels

Let us first briefly describe the well-known effects of an
homogeneous magnetic field on a graphene ribbon with either
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Figure 6. (Color online) Left panels: Energy dispersion of the
Landau levels for (a) a zigzag and (b) an armchair ribbon with
widths W = 224 a0 and W = 75

√
3 a0, respectively, and ζ =

0.003 (equivalent to ~ωc ' 0.46 eV and `B ' 13 a0). Right
panels: Geometry of the ribbons with the corresponding unit cells
highlighted by the purple box. The magnetic field Bẑ is applied
normally to the ribbon’s plane.

zigzag or armchair edges. Figure 5 shows that with our choice
of axes the ribbon has translation symmetry along the x (y)
direction for a zigzag (armchair) edge. This symmetry allows
us to introduce a Bloch function with a crystal momentum
kx or ky along the relevant symmetry direction. In order to
preserve this symmetry we choose the gaugeA(x) = −By x̂
[A(x) = Bx ŷ] for the zigzag (armchair) ribbon. Hence, the
Peierls substitution for the zigzag ribbon is explicitly given by
tij = t exp[−i ζ(xj − xi)(yj + yi)/a

2
0], where ζ = πΦ/Φ0,

Φ = Ba2
0 and Φ0 = hc/e is the flux quantum.

Figure 6(a) shows the Landau bands for a zigzag ribbon
of a width of 300 atoms (W = 224a0) and ζ = 0.003.
There are bulk Landau levels (flat bands), as well as dispersive
edge states due to the confinement imposed by the ribbon.
The dispersion relations in each Dirac point is in very good
agreement with those found with the Dirac model [compare
with Fig. 19(a) and 19(b) in Appendix A]. It is worth
mentioning here that not all the zero energy states in this
geometry are bulk Landau levels. There is also a trivial
dispersionless edge mode that appear on zigzag ribbons in the
absence of a magnetic field (see Appendix A for a further
discussion). These modes, being dispersionless, are not
affected by the Lorentz force.

A similar calculation done for the armchair case leads to
the Landau spectrum shown in Fig. 6(b). Here the ribbon is
302 atoms wide (W = 75

√
3 a0). In contrast with a zigzag

ribbon, the two dispersionless states at ε = 0 are fully located
in bulk, and are identified with the n = 0 Landau level.

B. Floquet states

We now add a time dependent laser field using the
vector potential given in Eq. (2), which is assumed to be
homogeneous throughout space. The integral in Eq. (16)
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Figure 7. (Color online) Landau-Floquet spectral density ρ0(ε, k) in
the presence of an homogeneous magnetic field (ζ = 0.003) and a
laser with intensity z = 0.025. The polarization is circular (ϕ =
2α = π/2) for (a) and (c), and linear (α = π/2, ϕ = 0) for (b)
and (d). Sub-plots (a) and (b) correspond to the resonant case with
Ω = ωc, whereas in (c) and (d) the laser field is off-resonant with
Ω = 0.65ωc. Five Floquet replicas (−2 ≤ m ≤ 2) were used . The
ribbon is 300 atoms wide (W = 224 a0).

is then simply Rij · A(t), where Rij = a0 (cos θij x̂ +
sin θij ŷ) is the vector connecting neighboring sites i and
j. For a laser field with positive circular polarization,
the Peierls substitution leads to tij = t exp[iz cos(Ωt −
θij)], while for the linearly polarized case we have tij =
t exp[iz cos(θij − α) cos Ωt]. Here we have introduced the
dimensionless quantity z = ea0A0/~c = (Ωa0/vF ) η that
measures the intensity of the perturbation. It is clear then
that the time-dependent TB Hamiltonian for the irradiated
ribbon is periodic in time but not harmonic. In the Floquet
formulation, the Floquet matrix elements now couple replicas
with ∆m 6= ±1. The Fourier components of the hamiltonian
can be calculated using the well-known Jacobi-Anger identity:
eir cos θ =

∑+∞
m=−∞ imJm(r) eimθ, where Jm(r) are the

Bessel functions of the first kind of integer order. HF , which
is no longer block tridiagonal, is truncated to a finite number
of Floquet channels for its numerical diagonalization. In the
following we retain five Floquet replicas−2 ≤ m ≤ 2 (unless
otherwise stated) and calculate ρ0(ε, k) by means of Eq. (10).
This number of replicas guarantees that, for the value of the
parameters we use, the most relevant features in ρ0(ε, k) are
well described.

The Landau-Floquet spectral density for a zigzag ribbon of
width W = 224 a0 is shown in Fig. 7: (a) and (c) correspond
to the circularly polarized case, while (b) and (d) to a linearly
polarized laser, with α = π/2—the direction of polarization
is perpendicular to the edges of the ribbon—which guarantees
a maximum size in the gap opening, see Eq. (11). The photon

Figure 8. (Color online) Same as previous figure but for an armchair
ribbon of width W = 120

√
3 a0 (480 atoms in the unit cell).

frequency is Ω = ωc (resonant) for (a) and (b) and Ω =
0.65ωc (off-resonant) for (c) and (d). We use a dimensionless
flux ζ = 0.003 and z = 0.025. The bands of the static system
(red dashed lines) are also shown for comparison.

All features described in the previous section using the
Dirac approximation are observed here. In particular, there
are dynamical gaps at around ε = ±~Ω/2 with a magnitude in
agreement with Eq. (11). In Fig. 7(c) the degeneracy between
the two flat modes at ε = 0 is removed, one remains at
ε = 0 while the other shifts downwards. We identify the latter
with the n = 0 bulk Landau level, which obeys the selection
rules Eq. (15) and whose shifting is in good agreement with
these. The other state corresponds to the edge state solution
Eq. (A9) given in Appendix A. Being an edge state, it does
not couple to the bulk states and hence it is pinned at ε = 0.
A similar analysis applies to Fig. 7(a) except that the bulk
n = 0 Landau level here is split instead of shifted due to the
resonance condition.

The linearly polarized case present similar features.
However, in this case, the spectrum is electron-hole
symmetric and hence the n = 0 Landau level can only
split. For an off-resonant photon energy [Fig. 7(d)] the only
effects of the laser field are the opening of the dynamical
gaps at ±~Ω/2 and the shifting of the first non-zero static
Landau levels. In resonance, Fig. 7(b), there is a splitting in a
neighborhood of ε = 0. The states with ε 6= 0 are truly bulk
states, coming from the mixing of the n = 0 Landau level in
the replica m = 0, and the n = ±1 Landau level from the
replica m = ∓1. The state that remains at ε = 0 is the zigzag
edge state mentioned above.

Figure 8 shows the results for an armchair ribbon. The
main feature predicted by the Dirac model is quite apparent:
irrespective of the laser polarization, there is not a (first order)
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gap at ± ~Ω/2, the origin of such absence being the selection
rule between Landau edge states, Eq. (14). Moreover, as it
was mentioned in the preceding section, the bands around
ky = 0 (roughly |kya0| ≤ 0.4 in Fig. 8), are basically bulk
bands, and as such their splitting follows the selection rules
obtained in Sec. II D.

IV. TWO-TERMINAL CONDUCTANCE

We now discuss the transport properties of an illuminated
ribbon in the QH regime in a two-terminal setup. For that,
we take the magnetic field to be present throughout the
entire sample (including the semi-infinite leads), whereas the
laser field is switched on smoothly (over a length scale λ1),
kept constant for a distance 2λ2 and finally switched off, as
schematically shown in Fig. 9. This defines the scattering
region. If we take the coordinate x to be directed along
the ribbon, then the scattering region is defined by |x| ≤
λ1 +λ2, while the local laser field intensity parameter z(x) =
ea0A0(x)/~c is taken to be

z(x) =

{
z , |x| ≤ λ2

z
2

[
1 + cos

(
π(|x|−λ2)

λ1

)]
, λ2 ≤ |x| ≤ λ1 + λ2 .

(17)
Here z is the maximum value reached by the laser intensity.
We use this symmetric profile for the laser field to preserve
the left/right symmetry of the ribbon—the intensity is
homogeneous along the transverse direction.

The current is computed within a scattering approach [42,
43]. In the non-interacting limit this is equivalent to the
Keldysh formalism [49, 52]. This has been used for a variety
of systems including laser illuminated graphene [41, 53].
The time-average current, Ī = 1

T

∫ T
0
dt I(t), is calculated

according to

Ī =
2e

h

∑
n

∫ [
T

(n)
RL fL(ε)− T (n)

LR fR(ε)
]
dε , (18)

where T (n)
RL (ε) is the transmission probability for an electron

with energy ε from lead L to lead R emitting (absorbing) n >
0 (n < 0) photons and fα(ε) is the Fermi function of the lead
α. Defining the quantities T (ε) =

∑
n (T

(n)
LR (ε)+T

(n)
RL (ε))/2

and δT (ε) =
∑
n(T

(n)
LR (ε)− T (n)

RL (ε))/2, the average current
Ī can be written as the sum of two terms

Ī=
2e

h

∫
[T (ε)(fL(ε)−fR(ε))−δT (ε)(fL(ε)+fR(ε))] dε .

(19)
At zero temperature, and up to first order in the bias difference
δV , it reduces to

Ī =
2e2

h
T (εF ) δV − 4e

h

∫ εF

−∞
δT (ε) dε . (20)

Here εF is the Fermi energy. The bias independent
contribution in Eq. (20) is the so-called pumped current.
The inversion symmetry of our geometry guarantees that

Irradiated Region
xL

V

I I

R

y

λ1 2λ2 λ1

z(x)

la
se
r

B

Figure 9. (Color online) Setup for the calculation of the two-terminal
conductance G2T using the Landauer-Büttiker approach for Floquet
systems. The laser field, defined by the local function z(x), is applied
along a central region and its intensity vanishes smoothly towards the
leads.

δT (ε) = 0. We can then define the linear dc two-terminal
conductance G2T (εF ) = Ī/δV = (2e2/h)T (εF ) in terms of
the transmittance at the Fermi energy. The latter is calculated
using the Green function recursion technique within the
Floquet formalism.

A. Zigzag ribbons

We consider in this section a 300 atoms wide zigzag ribbon
(W = 224 a0) and take λ1 = 2λ2 = 800a0

√
3. This

value is large enough as to minimize the backscattering of
electrons at the interface where the laser is on. The other
parameters are ζ = 0.003 (~ωc ' 0.46 eV and `B ' 13 a0)
and z = 0.025. Unless otherwise mentioned, in all transport
calculation we use only three Floquet replicas (−1 ≤ m ≤ 1),
with the aim of describing the most important features while
reducing the computational cost. First let us analyze the
case of a linearly polarized laser (α = π/2, ϕ = 0). The
results are shown in Fig. 10 for the off-resonant (top panels)
and resonant (bottom panels) situations. For each case, the
conductance G2T [(b) and (d)] is shown by the side of the
corresponding Landau-Floquet spectral density (projected on
the m = 0 replica) [(a) and (c)]. Here, electron-hole
symmetry guarantees that G2T (−ε) = G2T (ε).

For an off-resonant photon frequency [Ω = 0.65ωc,
Figs. 10(a) and 10(b)], two changes appear in the conductance
(as compared with that of a non illuminated ribbon shown
in red dashed lines): the two dynamical gaps centered at
± ~Ω/2, and a small energy shift in the n = 1 (electron
and hole) Landau levels where a transition from G2T =
2e2/h to G2T = 6e2/h takes place. In the quasienergy
region corresponding to the dynamical gaps the conductance
is almost completely suppressed in a very sharp way. This
is due to the fact that transport is carried out entirely by
edge states, which are completely reflected by the laser spot
in that particular energy range owed to the appearance of a
gap—a related effect was discussed in the case of a driven
transition-metal dichalcogenide ribbon in Ref. [54].

When the photon energy is in resonance with the first non
zero Landau level [Ω = ωc, Figs. 10(c) and 10(d)], the
conductance exhibits, in addition to the two dips at ± ~Ω/2,
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Figure 10. (Color online) Landau-Floquet bands [(a) and (c)] and
linear conductance G2T (ε) [(b) and (d)] of a zigzag ribbon of width
W=224 a0 and ζ=0.003. The laser is linearly polarized (α = π/2,
φ = 0) and we have used z=0.025. Sub-plots (a) and (b) correspond
to Ω=0.65ωc, whereas in (c) and (d) we have Ω=ωc (resonance).
The results of the static system are also included in red dashed lines
for comparison.

a strong suppression coming from the low energy gap created
in the Floquet spectrum—it is interesting to note that the faint
dispersive states near ε = 0 have a negligible contribution
to the conductance. Additionally, whereas in a non irradiated
sample the conductance jumps from 2e2/h to 6e2/h when the
Fermi energy crosses ~ωc as the result of the change of the
number of available edge states with a given chirality from one
to three, here an intermediate quasi plateau at G2T ≈ 4e2/h
appears. As mentioned in the discussion of Fig. 2, this effect
is related to the fact that there is a range of quasienergies were
the number of effective edge modes is reduced by virtue of the
upward energy shift of the Floquet edge mode of one of the
valleys (the K ′ valley in the case of Fig. 2). The origin of that
shift is the level repulsion between the flat (dispersionless)
edge state in the m = 1 replica and the first dispersive (ν2)
edge mode of the m = 0 replica, which has always a higher
quasienergy (this is not the case in the other valley). As
such, this happens for opposite valleys in opposite sides of
the sample. This explains why in Fig. 10(c) there are no edge
modes for εF ∼ ~ωc near kxa0 ∼ 1.8 for the chosen ribbon’s
width. Due to the electron-hole symmetry, a similar argument
holds for εF = −~ωc.

The results for a circularly polarized laser (ϕ = 2α = π/2)
are shown in Fig. 11 for the same photon frequencies. All
the prominent features described for the linear case are also
observed here, but with the addition of several important new
ones:

(i) In contrast to Figs. 10, here G2T (−ε) 6= G2T (ε);

Figure 11. (Color online) Same as Fig. 10 but with a right-handed
circularly polarized laser (ϕ = 2α = π/2). The other parameters
remain the same.

(ii) When Ω = 0.65ωc the conductance is, apart from the
two square dips around ± ~Ω/2, quite similar to that of
the static system. Notice that bending of the states near
εF = 0 induced by the laser provides the channel that
leads to G2T = 2e2/h near the Dirac point;

(iii) When Ω = ωc, the emergence of the new dispersive
edge modes near εF ∼ 0 (on the negative side for our
choice of polarization) is fully developed. These edge
modes are the ones described in Fig. 2 when discussing
the properties of the edge modes of the K ′ valley [and
the same as those described above in (ii)]. They lead to
a quantized conductance that partially fills the gap near
zero energy—the narrow dip in the conductance that is
observed in that energy region is due to a high-order
anticrossing, which cannot be fully appreciated in the
Landau-Floquet spectral density [Fig. 11(c)]. The quasi
plateau in Fig. 11(d) slightly above εF = ~ωc has the
same origin as those seen in Fig. 10(d), and can be
explained in an analogous manner. The lack of a similar
feature at εF = −~ωc comes from the selection rules
Eq. (15).

B. Armchair ribbons: the role of adiabaticity

We now consider an armchair ribbon of width W =
120
√

3 a0 and keep the same parameters, ζ = 0.003 and
z = 0.025. Figure 12 shows the results for a linearly
polarized laser (α = ϕ = 0, in-plane electric field normal
to ribbon’s edges). Let us point out first some general
considerations. As always with this type of polarization, the
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Figure 12. (Color online) Landau-Floquet spectral density and
two-terminal conductance for an armchair ribbon (W = 120

√
3 a0)

under illumination with a linearly polarized (α = φ = 0) laser.
The parameters used are ζ = 0.003 and z = 0.025. The photon
frequency is Ω = 0.65ωc [(a) and (b)] and Ω = ωc [(c) and (d)].

Landau-Floquet spectrum presents electron-hole symmetry
and thus G2T (εF ) = G2T (−εF ). Moreover, as the
Landau-Floquet bands lack the dynamical gaps at ± ~Ω/2
(to first order in z), G2T does not show the typical strong
suppression around these points—at most some minor very
narrow features can be observed, corresponding to higher
order photon processes. Additionally, for εF slightly below
(above) ~ωc (−~ωc), where the static conductance changes
from G2T = 2e2/h to G2T = 6e2/h, the conductance is
rather oscillating, a behavior reminiscent of the 4e2/h feature
found in the zigzag case—note that, in the latter case, the
features appear exactly at εF = ± ~ωc.

For a non-resonant photon frequency Ω = 0.65ωc,
Figs. 12(a) and (b), there are not special features around εF =
0. The linear conductance shows a flat profile as a function
of εF , nearly the same as the static system, in agreement with
the small changes induced by the laser field on the spectral
density.

The situation changes when the laser photon frequency is in
resonance, Ω = ωc, Figs. 12(c) and (d). On the one side, there
is a sharp dip around εF = 0. Its limits are roughly defined
by the small avoided crossings, coming from the coupling
between the replicas |χcν1k, 0〉 and |χvν2k, 1〉 (εF > 0), and
between |χvν1k, 0〉 and |χcν2k,−1〉 (εF < 0)—selection rules
Eq. (13) state that the matrix element between these pairs of
Floquet states is zero, so these gaps originate from higher
order processes, which explains their smallness. This dip
is not the product of an evanescent penetration inside the
scattering region, since from Fig. 12(c) it is clear that there are
conducting states there. However, inside the region defined by
the avoided crossings mentioned above, the Landau-Floquet

Figure 13. (Color online) Same as Fig. 12 but for a circularly
polarized laser field (ϕ = 2α = π/2).

states well inside the scattering region, and in a given edge of
the ribbon, have the opposite sign of the velocity as compared
with the incoming electrons. Therefore, the only way for these
electrons to go through the central illuminated region is to
move across the width of the ribbon until reach the opposite
edge, where available states with a favorable velocity exist. If
the laser’s spatial profile (see Fig. 9), is sufficiently smooth
or adiabatic, as it is in our calculations, this motion of charge
between edges is hindered by the presence of the small gaps
introduced above. In this scenario, the fraction of incoming
electrons reaching the opposite edge is negligible, and instead
most of them simply backscatter into the Floquet channels
m = 1 or m = −1, depending on the character (conduction
or valence) of the incident electrons. For electrons with
energies just above the avoided crossing, the mismatch is still
present, although in this case the incident electrons can reach
the other edge and transmit into the other lead. This form
of transmission is inherently inefficient, although it can be
improved by further smoothing out the turning on-off of the
laser (not shown). The renormalized (shifted) value of bulk
part of |χcν2k,−1〉 marks the onset of a constant conductance
G2T = 2e2/h. Above this value there are two available
Landau-Floquet channels, although with only one incident
channel the transmittance reduces to T (εF ) = 1. Due
to electron-hole symmetry, this analysis can be extended to
negative energies.

On the other hand, near εF = ~ωc (similar at εF = −~ωc),
instead of the well defined change from T (εF ) = 1 to
T (εF ) = 3 in the non driven system, there is a progressive
increase from 1 to 3, something that resembles the zigzag case
(where an intermediate step with T (εF ) ' 2 was found).

The circularly polarized case (Fig. 13, ϕ = 2α =
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Figure 14. (Color online) Scattering states as a function of the position in a zigzag ribbon for four selected values of the quasienergy. The
width of the ribbon is W = 130 a. The parameters of the irradiated region (see Fig. 9) are λ1 = 130 a and λ2 = 30 a, where a is the lattice
parameter, a = a0

√
3. The vertical dashed lines determine the central irradiated region. We use parameters ζ = 0.003, z = 0.025, Ω = ωc

and the polarization is circular and right-handed. Three Floquet replicas are used (−1 ≤ m ≤ 1). We show the scattering states projected
over the m=0 replica (central column), and those projections over a replica different from zero carrying most of the weight. In all cases the
electrons come from the right lead with velocities to the left and in the replica m=0, in the upper or lower edge depending on the quasienergy.

π/2) presents similar features, with the expected lack of
electron-hole symmetry. It is worth mentioning that the
mismatch problem that leads to the suppression of the
conductance for εF ' 0 are already apparent in the non
resonant case [Figs. 13(a) and (b)], as well as higher order
narrow features. What is more, in resonance [Figs. 13(c)
and (d), Ω = ωc] the low energy conductance gap contains
some fine structure inside it, which can be understood using
the same arguments we introduced when dealing with the
linearly polarized case. However, a better and more appealing
way to analyse this is to look at the scattering states in Floquet
space, as we do in the next section.

C. Scattering wave functions in Floquet space

In the previous sections we described some of the
features of the two-terminal dc conductance in terms of
the appearance of gaps in the projected Landau-Floquet
spectral density, the emergence of light induced edge states
with different chirality, or the mismatch between the leads’
and the system’s wavefunction. All these effects can be
made clearer by looking at the Floquet scattering states.
Namely, we calculate the (squared) amplitude of the scattered
wavefunction corresponding to an incident wave coming from
the right lead, for instance, with a given energy in the m = 0
Floquet replica. The results are shown in Figs. 14 and 15 for
the zigzag and the armchair edge terminations, respectively.
We have selected four particular values of the incident waves
for illustration purposes.

In Fig. 14 (zigzag ribbon, W = 130 a) the four selected

scattered waves correspond to an incoming wave function
with energy: (i) ε/~ωc = 1.15, in which case there are
three propagating edge modes in the leads and hence the
corresponding equilibrium conductance is 6e2/h. Of those
edge modes, only two can propagate through the irradiated
region, as it can be clearly observed in the projected Floquet
spectral density shown in Fig. 14(i), while the other is fully
reflected at the interface between the two regions (mostly in
the m = 0 replica on the other side of the sample). This
leads to the quasi plateau of 4e2/h shown in Fig. 11(d); (ii)
ε = ~Ω/2, well inside the dynamical gap. Here the incident
wave penetrates the scattering region as an evanescent wave
before being reflected, on the same side of the sample, into the
m = 1 replica. Hence the conductance is strongly suppressed;
(iii) ε/~ωc = 0.05, inside the low energy Floquet gap but
above the Dirac point. The incident wave is fully reflected
on the m = −1 replica but on the other side of the sample;
(iv) ε/~ωc = −0.05. Here the incoming wave, now on the
bottom edge of the sample due to its valence band character,
is mostly fully transmitted through the m = 0 channel (with
some participation of the m = −1 replica). However, quite
remarkably, this requires the edge mode to switch edges inside
the irradiated region. That is, the Floquet edge mode inside
the sample presents the opposite chirality as compared to the
one it has on the (non irradiated) leads. As we show in the
next section, this leads to a change in the sign of the Hall
conductance.

Figure 15 shows the scattering states for an armchair ribbon
of width W = 120 a. Here we concentrate on a small
quasienergy region, ε ∈ [−0.3 ~ωc, 0.4 ~ωc], where important
departures from the static conductance appear [see Fig. 13(c)
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Figure 15. (Color online) Same as the previous figure but for an armchair ribbon of width W = 120 a, λ1 ≈ 450 a and 2λ2 ≈ 200 a
(a =

√
3a0). The parameters ζ and z, as well as the polarization of the laser, remain the same. The values of the quasienergies are: (i)

ε = 0.32 ~ωc = 0.15 eV, (ii) ε = 0.022 ~ωc = 0.01 eV, (iii) ε = −0.043 ~ωc = −0.02 eV and (iv) ε = −0.11 ~ωc = −0.05 eV. For
purposes of clarity, the saturation in the cases (iii) and (iv) has been enhanced.

and (d)]. For all the quasienergies selected, the static system
presents a conductance G2T equal to 2e2/h, with only one
propagating channel coming from the right lead. In every
case, we see that most of the incident flux is scattered through
the channel m = −1, with a negligible component going
into the channel m = 1 (not shown here). This asymmetry
in the roles of the Floquet replicas is a consequence of the
time-reversal symmetry breaking imposed by the circularly
polarized light and the selection rules Eq. (15) and (13).
Mainly due to the non monotonous bands of the second branch
(see Appendix), this case shows some special peculiarities not
present in zigzag ribbons.

As before, we consider four relevant cases with different
energies: (i) ε/~ωc = 0.33, there are two available channels
inside the irradiated region, as the result of the superposition
and coupling of two replicasm = 0 andm = −1, for only one
incident conduction channel. This leads to the appearance of
oscillations in the probability density on each channel and to a
displacement of the center of the orbits inside the illuminated
region. The period of these oscillations is roughly equal to
2π/δk, where δk is the difference between the wave vectors
ky , corresponding to the incident energy ε, of the two Floquet
channels inside the sample. The transmittance in this region
is almost perfect so G2T ' 2e2/h; (ii) ε/~ωc = 0.022,
the sign of the velocity of the incoming channel matches
that of the (only) Floquet states in the irradiated region,
and thus transport is possible, although imperfect due to the
different spatial profile of both of them (incoming states are
more centered towards the bulk while the Landau-Floquet
states are closer the edge). This results in a not very well
developed peak of conductance [T (εF ) ∼ 0.9], as it is shown
in Fig. 13(d). In (iii) and (iv) the incoming channels move
in the opposite direction to those available Landau-Floquet

states inside the scattering region and on the same edge. Then,
the only way for them to reach the other lead is to scatter
into the other edge, where states with the same velocity are
available for transport. Because of the adiabatic matching
between the wavefunctions (as a consequence of the smooth
turning on of the laser field), as it was already discussed
in Sec. IV B, there is a certain energy threshold for this to
happen set by the presence of a the small gap between (iii)
and (iv) as shown in the Floquet spectral density (see Fig. 15).
Then we have the following: (iii) ε/~ωc = −0.044, here
the incoming state cannot go through the avoided crossing
and it is mostly reflected backward in the Floquet channel
m = −1; (iv) ε/~ωc = −0.11, the the electrons arriving
from the right lead can partially go through the avoided
crossing in the Floquet spectrum, reaching the other edge
of the ribbon. Characteristic of this regimen is the noisy
behavior of the conductance as a function of the Fermi level,
leading to an incomplete transmission. Below ε = −0.07 ~ωc,
the velocities match and the transmission is perfect (G2T =
2e2/h).

V. HALL CONDUCTANCE

In order to measure the Hall conductance one requires at
least four terminals. However, the usual (90◦) four-terminal
Hall bar configuration necessarily breaks the symmetry
between leads, since if one pair of leads have zigzag edges,
the other pair must have armchair edges. To avoid this, and
to maintain the symmetry among all leads, we use the setup
shown in Fig. 16. This six-terminal arrangement has also
the advantage that is does not generate any pumped current
when the laser is turned on in a symmetrical way, and hence
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Figure 16. (Color online) Zigzag six-terminal Hall bar to measure
the Hall conductance avoiding any pumped current. A similar setup
can be established now with armchair leads.

it is simpler to obtain the conductance. Notwithstanding,
the computational effort in calculating the scattering matrix
[55] (and from this the Hall conductance) in this setup is
more involved when compared to the two terminal setup.
Following Ref. [41], the time averaged current is now written
as a generalization of Eq. (18). If α and β label the terminals
(leads), the average current through the α lead is given by

Īα =
2e

h

∑
β 6=α

∑
n

∫ [
T

(n)
βα (ε)fα(ε)− T (n)

αβ (ε)fβ(ε)
]
dε .

(21)
The transmittances T

(n)
αβ are the multi-terminal

generalizations of those in Eq. (18). Our six-terminal
setup guarantees that T (n)

αβ is the same for any pair of adjacent
terminals, ruling out the presence of any pumped current in
the absence of a voltage bias. In what follows, we assume that
the chemical potential µα at the lead α is not very different
from its equilibrium value εF , that is, µα = εF + δµα with
δµα small. Taking the low temperature limit and expanding
Eq. (21) up to linear terms in δµα = −eVα we get to

Īα =
2e2

h

∑
β 6=α

[Tβα(εF )Vα − Tαβ(εF )Vβ ] . (22)

Our goal is to study the Hall conductance, as indicated in
Fig. 16. To this we let a charge current flow from leads 4
to 1, Ī4 = −Ī1 = I , and impose Īα = 0 on the remaining
leads. From this we define the Hall conductance as GH =
I/(V3 − V5). Furthermore, hereon we shall consider only the
circularly polarized resonant case, as it is the one with the
most interesting features.

Figure 17 shows the Hall conductance for a six-terminal
system with zigzag leads (width W = 130 a), as a function
of the Fermi level εF for both chiralities of the circular
polarization: Gccw

H counterclockwise (ccw, ) and Gcw
H

clockwise (cw, )—the Hall conductance in the absence of a
laser field is plotted in black dashed lines. The parameters
are the same we have been using so far: ζ = 0.003
and z = 0.025. Clearly, Gccw

H (εF ) = −Gcw
H (−εF ),

as expected. Several features are apparent in the figure,
which are directly related to those of the Floquet edge states

discussed in the previous sections: (i) the suppression of
the Hall signal around the dynamical gaps, εF ' ± ~Ω/2,
where the scattering states only penetrate as evanescent waves
inside the scattering region and hence the incoming states are
almost fully backscattered; (ii) the presence of an intermediate
plateau with GH ≈ 4e2/h near εF = ~ωc; (iii) an additional
suppression for energies εF > 0 (εF < 0) near the Dirac
point for the ccw (cw) case; and (iv) a switch of the sign
the Hall conductance for energies right below (above) the gap
mentioned in (c) for the ccw (cw) case.

It is worth emphasizing that, quite remarkably, the switch
of the Hall signal depends on the polarization of the laser
field. Furthermore, if we set εF to lay inside of the low
energy gap [item (iii) above] for a given polarization, the
Hall conductance can be turned on by simply changing the
chirality of the polarization. This is depicted in the insets
(b) and (c) of Fig. 17 where we show the scattering states for
three selected energies. For the ccw polarization most of the
incoming states are backscattered into the same lead, which
results in Gccw

H ' 0. On the contrary, for the cw polarization,
the incoming states cross over the width of the ribbon and
reaches the other edge, from where it propagates to lead 6,
resulting in a negative Hall signal.

When the leads have armchair edges,GH changes as shown
in Fig. 18. Here, the parameters ζ and z remain the same as
in the zigzag case, while the width of the leads is now W =
120 a. First we notice that even in the absence of illumination
(dashed black line), the armchair six-terminal geometry is
accompanied by a certain degree of back scattering. This
effect takes place only in the εF -range between the local
minimum of the bands belonging to the second branch (see
Appendix A), that in Fig. 18 are |χcν2k〉, and the corresponding
bulk level, where counter propagating edge states do exist on
the same side of the sample. This leads to the appearance of
a shoulder-like structure just below εF = ~ωc, that is in the
transition from GH = 2e2/h to 6e2/h. (The same is true
near εF = −~ωc.) This effect becomes less noticeable as the
absolute value of the Landau bulk index |n| increases.

When the laser is applied, the departures from the static
Hall conductance (black dashed line) take place in a small
vicinity around the Dirac point, εF = 0, and around ± ~ωc,
depending on the polarization (ccw or cw). Let us describe
what happens in a vicinity of εF = 0 —as before, the
scattering states for three selected energies, are shown as
insets. Firstly, for positive values of εF , Gccw

H (εF ) exhibits
a somewhat wide dip, indicating the presence of an avoided
crossing in the spectrum. Apart from this, the Hall signal
roughly follows its non driven value, as it can also be inferred
from inset (b). On the other hand, Gccw

H (εF ) vanishes just
below εF = 0, and changes sign for εF further below. The
former behavior is analogous to that exhibit by the single
ribbon, Sec. IV B: electrons hitting the illuminated region
from lead 1 (see inset on the far left), encounter counter
propagating states there, but at the same time are unable to
reach the opposite edge of the lead, where propagation would
be possible, and simply backscatter. Inset (a) graphically
describes the situation. In the situation where the Hall signal
is reversed, the incident states reach the other side of the



14

0

1

2

3

-1

-2

-3
0 0.5 1.0-0.5-1.0

laser off

4

3

1
I

V
2

5 6

0 200-200 0 200-200

0

200

-200

(c)

0 200-200 0 200-200

0

200

-200

(b) (a)

0

200

-200
0 200-200

laser off

Figure 17. (Color online) Hall conductance GH in a six-terminal setup (see inset) as a function of the Fermi level εF . The width of the leads
is W = 224 a and the magnetic field corresponds to ζ = 0.003. The laser field is circularly polarized as indicated. The different insets shows
the scattering states for the selected εF indicated in the main plot. In all cases the incoming state is in the channel m = 0 (black arrow). Most
of the scattering is into the m = 0 channel and the m = 1 (m = −1) for the ccw (cw) polarization. Both the switch-off of the conductance
and the change of chirality are clearly seen for the ccw and cw polarization, respectively.
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Figure 18. (Color online) Same as in the previous figure but with armchair terminations (leads) of width W = 120
√

3 a0. The insets
correspond to quasienergies: (a) εF = 0.01 eV, cw; (b) εF = 0.01 eV, ccw; (c) εF = 0.06 eV, cw. The saturation has been enhanced for a
better visualization of the incoming states, particularly in (c).
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ribbon and spill into lead 6, and the Hall signal passes from
−2e2/h to 2e2/h. In the inset (c) the situation is shown
for Gcw

H (εF ) and for a positive energy, although due to the
symmetry Gccw

H (εF ) = −Gcw
H (−εF ) the result is entirely

equivalent.

VI. SUMMARY

The quantum Hall effect is a paradigmatic topological
phase, one of the most robust available phases, a fact that
has proved useful for many applications. These developments
came hand in hand with concrete measurements in different
device setups. Here we present a study of the effect of strong
laser illumination on graphene in the Quantum Hall regime
and the changes in the Hall response in a multi-terminal setup
that is accounted for by an atomistic description. Our results
show that the quantum Hall plateaus can be disrupted or
tailored by tuning the frequency, polarization and intensity
of the laser field. This includes the switching on-off and a
chirality inversion of the Hall signal, by tuning the handedness
of the circular polarization.

On one hand, the driving laser field induces the appearance
of dynamical gaps in the Floquet spectrum that manifest,
for instance, in the suppression of the Hall conductance
near εF = ± ~Ω/2—the fact that there is essentially a full
suppression is related to the nature of the equilibrium transport
in the QH regime which only occurs at the edges of the
sample [54]. This quench of the topologically protected
QH transport arises from the resonant coupling between
counter-propagating electron and hole edge states. Quite
interestingly, the ± ~Ω/2 gaps are absent in samples with
armchair edges and hence no suppression of the conductance
is observed in such a case. This is a very particular aspect
of the armchair termination, where the symmetry of the Hall
edge modes leads to the cancellation of the dominant matrix
elements of the time dependent perturbation. We have verified
(but have not shown here) that the cove termination leads
to similar results as the ones reported here for the zigzag
case, and so we expect the suppression of the Hall signal at
εF = ± ~Ω/2 to represent the general situation. It is also
worth mentioning that, under resonant conditions, and more
clearly in the zigzag ribbon, the driving produces a novel
4e2/h feature in the Hall conductance due to the reduction
of the available edge channels near εF = ± ~ωc.

On the other hand, near the Dirac point, the driving
becomes a non-equilibrium knob that allows to turn on and
off the Hall signal or changing its sign. Quite remarkably,
both effects depend on the polarization of the laser field.
The possibility to turn transport on and off relies on
the appearance, under resonant conditions, of an effective
transport gap right above or below the Dirac point, depending
on the polarization’s handedness. The change in sign of the
Hall signal have a less anticipated and more striking origin. It
results from a change of the chirality of the propagating modes
inside the irradiated region that makes the propagating edge
channel to cross from one side of the sample (ribbon or lead)
to the other while inside the driving area. In the zigzag case,

for instance, the physical origin for this is the fact that the
zero energy flat edge modes acquire a polarization-dependent
dispersion that is always opposite to the one of the regular
QH edge states. We expect this to be a generic feature for all
terminations where the K and K ′ valleys are separate and not
fold onto each other. In this sense, the armchair case appears
as the only exception.

We hope that the effects described in the present work
will help in stimulating new experiments and theory on the
interplay between chiral transport and periodic driving as
this might open the door to new ways to control it. This
includes systems in a QH phase as discussed here, but also
topological insulators where spin-orbit coupling may add
further intricacies [56].
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Appendix A: Landau levels in graphene

For the sake of completeness we present here a brief
description of the Landau levels in graphene in the low energy
approximation, which are obtained from Eq. (1) after the
substitution p→ p+ e

cA.
Before starting, it is useful to point out the following

symmetries of the hamiltonian Ĥ0,

τx ⊗ σy Ĥ0 τx ⊗ σy = Ĥ0 ,

τx ⊗ σx Ĥ0 τx ⊗ σx = −Ĥ0 , (A1)

that allow us to relate the eigenfunctions belonging to
different valleys (before imposing the boundary condition)
when the problem can be solved on each of them separately
(see bellow).

1. Bulk states

In the Landau gauge, A(y) = −By x̂, the Hamiltonian
Eq. (1) is invariant under translations in x direction so
that the eigenfunctions (for the K valley) can be written
as Ψn(x, y)=L

− 1
2

x e−ikxχKnk(y). Here Lx is the samples’s
length along the x direction and

χKnk(y) =
1√

`B (2− δn0)

(
φ|n|(ỹ)

sgn(n)φ|n|−1(ỹ)

)
, (A2)
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where ỹ = y/`B − k`B , `B =
√
~c/eB is the magnetic

length, and φn(x) is the normalized harmonic oscillator
eigenfunction, φn(x) = (

√
π 2nn!)−1/2 e−x

2/2Hn(x) with
Hn(x) the Hermite polynomial. The corresponding
eigenvalues are En=sgn(n)~ωc

√
|n|, where n ∈ Z, sgn(n)

is the sign function and ωc =
√

2vF/`B . Positive or negative
values of n correspond to electrons and holes respectively.
Solutions for the K ′ valley can be obtained by applying the
operator σy to Eq. (A2), by virtue of Eqs. (A1).

2. Zigzag edge

The Landau levels corresponding to a semi-infinite plane
with zigzag edges ending on a ‘B’ site can be obtained by
requiring that the component ‘A’ of the wavefunction be zero
at the edge, which for the case depicted in Fig. 1 corresponds
to y = 0—notice that (with the gauge A(y) = −By x̂)
translational symmetry along the x direction is preserved.
Since this edge termination does not mix the two valleys
K and K ′, the solutions can be found for each valley
separately. These solutions still have the form Ψ(x, y) =

L
− 1

2
x e−ikxχk(y) but the components of χk(y) are not the

harmonic oscillator eigenfunctions but the general solutions
of the corresponding differential equations, and that are
well-behaved in the limit y → ∞. These are the Parabolic
Cylinder functions Dν(x) with ν ∈ R and ν ≥ 0. Hence we
have [57]

χKνk(y) =
1√
Cνk

(
Dν(ξ)

ε
ε0
Dν−1(ξ)

)
, (A3)

χK
′

νk (y) =
1√
Cνk

(
ε
ε0
Dν−1(ξ)
−Dν(ξ)

)
, (A4)

where ξ=
√

2(y/`B − k`B) and Cνk is a normalization
constant. The quantity klB can be considered the center of
the cyclotron orbit of the electrons, and thus the larger klB ,
the deeper into the bulk the electrons reside. The quantity
ε = s ~ωc

√
ν is the energy of the state (s = ±1 refers to the

electron and hole bands respectively), with ωc=
√

2vF/`B .
The index ν(k), and thus the energy dispersion, is

determined by the boundary condition that the upper
component (sublattice A) of the spinor wavefunction vanish
at position y = 0. That is

Dν(−
√

2k`B) = 0 ,
√
ν Dν−1(−

√
2k`B) = 0, (A5)

for the K and K ′ valleys, respectively. This gives a discrete
set of eigenenergies εKl (k) and εK

′

l (k) for each value of k,
where the integer l labels the solutions of Eqs. (A5). It is
straightforward to verify that because for the same value of νl
the two spinors in the conduction and valence bands (opposite
s) must be orthonormal, one has that∫ +∞

−
√

2k`B

dξ D2
νl

(ξ) =

∫ +∞

−
√

2k`B

dξ νlD
2
νl−1(ξ) , (A6)

and hence the normalization constant becomes

Cνlk =
√

2`B

∫ ∞
−
√

2k`B

dξ D2
νl

(ξ) . (A7)

Figures 19(a) and (b) show the energy dispersion for both
valleys where dispersive edge states are apparent. Far from
the boundary (k`B � 1) one has that νl → n ∈ N0, and so
the bulk Landau levels ± ~ωc

√
n are recovered. Note that the

K ′ valley possesses dispersionless states pinned at the Dirac
point, the corresponding spinor being the same as for the zero
energy bulk Landau level.

The edge states in theK valley close to zero energy deserve
a separate and careful treatment. From Fig. 19(a), it is clear
that the lowest conduction and the highest valence bands
converge into each other and into ε = 0 as k`B becomes
large. At first sight, it might appear, since in this case
ν → 0, that the two spinor states themselves go into the same
spinor proportional to [D0(ξ), 0]T , with a vanishing second
(B) component. This state clearly could be identified with
the bulk n = 0 Landau level [cf. Eq. (A2) with n = 0 and
φ0(z) = D0(z)]. However, Eq. (A6) shows that even in this
limit (ν ≈ 0), the B-component does not vanish as the left
side of the equation converges to

√
2π when k`B → ∞. To

properly account for this one needs to take into account the
precise way in which ν → 0 as k`B → ∞. After expanding
the equation Dν(−

√
2k`B) = 0 for k`B � 1, the solution

for vanishing ν is given by ν ' π−
1
2 k`B exp [−(k`B)2]

and therefore the B-component of the spinor wavefunction
at the edge goes as

√
νDν−1(ξ) ' π

1
4 (2k`B)

1
2 e−ky . That

is, the B-component gets sharper as k`B grows and so it is
more localized at the edge (recall that the condition Eq. (A6)
must hold). In summary, for k`B � 1 the two orthonormal
eigenstates have theA-component located mostly in bulk, and
the B-component at the edge. The fact that ν is almost zero
allow us to treat them as nearly degenerate, and thus change
the basis to a symmetrical χbulk and antisymmetrical χedge

solutions,

χbulk(y) =

√
2

Cνk

(
Dν(ξ)

0

)
, (A8)

χedge(y) =

√
2

Cνk

(
0√

νDν−1(ξ)

)
. (A9)

In this representation the spatial profile of each spinor is
evident. As it was already pointed out,χbulk is to be identified
with the n = 0 bulk Landau level, whereas χedge is the
well known non-dispersive edge state in a zigzag graphene
ribbon [57, 58].

3. Armchair edge

To be consistent with the geometry shown in Figs. 1 and 5,
we take the armchair edge to be along the x = 0 line and
therefore, to make use of the translation symmetry along
that direction, we use a different but completely physically
equivalent gauge, namely A(x)=Bx ŷ. The wavefunction
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Figure 19. Energy dispersion (in units of ~ωc) for the K [(a)] and
K′ [(b)] Dirac valleys in a zigzag edge. Note that theK′-valley have
a dispersionless mode with ε(k) = 0 while the K-valley possesses
two states that converge to the n = 0 bulk Landau level. In [(c)] we
show the energy dispersion for an armchair ribbon. No distinction
between valleys has place here. In every case ζ = 0.003. The first
non zero bulk Landau level E1 = ~ωc is indicated.

on each valley can then be written as L−1/2
y eikyχ

K(K′)
νk (x),

where the spinor components are given by

χKνk(x) =
1√
C̃νk

(
Dν(ξ̃)

−i εε0Dν−1(ξ̃)

)
, (A10)

χK
′

νk (x) =
1√
C̃νk

(
i εε0Dν−1(ξ̃)

Dν(ξ̃)

)
. (A11)

Here ξ̃ =
√

2(x/`B − k`B) and ε = s~ωc
√
ν. If

we denote the complete wavefunction of the armchair edge
as L

−1/2
y eikyχνk(x), then the boundary condition in the

armchair edge corresponds to make χνk(0) = 0. This cannot
be made separately in each valley (the boundary mixes the
valley index) and so the solution needs to be constructed using
a linear combinations of both valleys [57, 59]

χνk(x) = α eiKx χKνk(x) + β e−iKx χK
′

νk (x) , (A12)

where we have added a phase factor eiK·r (eiK
′·r) to the K

(K ′) component, noticing that in our geometry (see Fig. 5)
we have K ′ = −K = −Kx̂, with K = 4π/(3

√
3a). The

condition χνk(0) = 0 results in the following equation for
ν(k)

D2
ν(−
√

2k`B)− ν D2
ν−1(−

√
2k`B) = 0 . (A13)

This equation yields a discrete infinite set of solutions for
each k, that in ascending value we denote as νn(k), with
n = 1, 2, · · · . It is interesting to note that these solutions can
be arranged in a way that simplifies the construction of their
corresponding eigenstates. To this, we first note that Eq. (A13)
can be written as follows (all Dν functions are evaluated at
−
√

2k`B )

(Dν −
√
ν Dν−1)(Dν +

√
ν Dν−1) = 0 . (A14)

It can be shown that solutions νn with n odd satisfy
Dν−

√
ν Dν−1=0, while those with n even are solutions

of Dν+
√
ν Dν−1=0. To make things more compact, we

introduce an index τn = (−1)n+1. We then say that the
νn solutions exist in two branches defined by the equation
Dνn(−

√
2k`B) = τn

√
νnDνn−1(−

√
2k`B).

The energy spectrum εsn(k) = s ~ωc
√
νn(k) (s = ±1) is

shown in Fig. 19(c). The bands with n odd (the first branch
), are monotonous decreasing functions of k`B , very similar
to those of a zigzag edge at the K point. For n even (the
second branch), the bands are decreasing functions for very
negative values of k`B , until they reach a local minimum
and start to grow as k`B increases. For k`B large enough
(k`B > 3 if we consider the first six bands), we see that
adjacent pairs of bands converge to each other and into the
bulk states: {νn, νn+1} →

√
n/2, with n = 2, 4, 6, · · · .

We now examine the specific structure of the corresponding
eigenfunctions as it plays a crucial role in determining the
value of the gaps in the Floquet spectrum. To this, we first
notice that the coefficients α and β in Eq. (A12) satisfy
αn = −iβnsτn. With this result it is useful to write down
these eigenfunctions in the four-component spinor notation,

χsνnk(x) =
1√
Cνnk


−isτnDνn(ξ̃)eiKx

−τn
√
νnDνn−1(ξ̃)eiKx

is
√
νnDνn−1(ξ̃)e−iKx

Dνn(ξ̃)e−iKx

 , (A15)

where the s parameter indicates electron/conduction (s=1) or
hole/valence (s= − 1) character, which in the main text will
be often denoted by superscripts c and v, respectively. Since
the probability density is obtained by summing up sub-lattice
(A andB) components, it can be shown that the spatial profile
of χsνnk(x) across the ribbon shows oscillations of the form
cos 2Kx, with a period equal to 1/2K (the inverse of the
distance between the two non equivalent valleys [60]). The
normalization constant Cνk is given by

Cνnk =
√

2 `B

∫ +∞

−
√

2klB

dξ [D2
νn(ξ) + νnD

2
νn−1(ξ)− τn

√
νnDνn(ξ)Dν−1(ξ) cos(2Kx)]. (A16)

From the general solutions in Eq. (A15), the matrix elements of the time dependent perturbation V , Eq. (13), can be
evaluated.
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Harnessing the unique features of topological materials for the development of a new generation of topological
based devices is a challenge of paramount importance. Using Floquet scattering theory combined with atomistic
models we study the interplay between laser illumination, spin and topology in a two-dimensional material
with spin-orbit coupling. Starting from a topological phase, we show how laser illumination can selectively
disrupt the topological edge states depending on their spin. This is manifested by the generation of pure spin
photocurrents and spin-polarized charge photocurrents under linearly and circularly polarized laser-illumination,
respectively. Our results open a path for the generation and control of spin-polarized photocurrents.

Introduction.– The early theoretical proposals [1–4] and
the subsequent experimental realization of topological insu-
lators [5, 6] have lined up the relentless scientific efforts of an
ever growing community in Physics, Materials Science and
Chemistry [7, 8]. Besides interesting features such as spin-
momentum locking [9], topologically protected states are at-
tractive because, unlike the usual electronic states in solids,
they enjoy an intrinsic robustness to perturbations and disor-
der. But this lack of fragility opens up new challenges for their
manipulation. Typical schemes such as surface functionaliza-
tion [8] are quite ineffective when applied to topological insu-
lators. The difficulty to cleanly turn-off conduction of charge
and spin has motivated proposals for a topological field effect
transistor [10–13] where the electric field drives a topological
transition to a trivial insulating phase, a concept that has been
experimentally realized recently [14].

Another stream of research has been looking to exploit
light-matter interaction in materials to control their electrical
properties. This includes generating effects such as dichro-
ism [15, 16], a situation where electrons at different valleys
absorb left and right-handed photons differently, which is of
much relevance in the context of two-dimensional materi-
als [17–19]. A different approach is aimed at using intense
laser illumination to actually change the properties of the ma-
terial [20]. Indeed, strong illumination has been demonstrated
to produce hybrid electron-photon states [21, 22] (Floquet-
Bloch states) which may present new topological proper-
ties [23–25] (see also Ref. [26]) and even exhibit a light-
induced Hall effect [27].

Here, we study laser-illumination on graphene with spin-
orbit coupling and a sublattice-symmetry breaking potential.
The parameters are fixed so that, in absence of radiation, the
system is in a topologically insulating phase with counter-
propagating spin-polarized states protected by time-reversal
symmetry. Previous related studies have focused on the rich
phase diagram of Floquet topological phases under strong
high-frequency radiation (~Ω larger than the bandwidth) [28]
and also considering resonant processes [29]. In contrast to
those studies, here we focus on using light to gently disrupt
the native topological states. In this regime one might ex-

pect an interesting interplay between symmetry breaking (in-
version symmetry, or time-reversal symmetry which can be
broken or preserved by circular or linearly polarized light),
spin-orbit coupling which also intertwined the valley and spin
degrees of freedom, and photon-induced processes. Specifi-
cally, we show that laser-illumination leads to: (i) pure spin
currents under linearly polarized light, and (ii) spin polarized
charge currents under circular polarization. In both cases the
spin (i) and charge (ii) currents flow even at zero-bias voltage.
We rationalize these pumping currents in terms of a selective
hybridization of electron-photon states which is enriched by
valley and spin-selective selection rules under circular polar-
ization.

Figure 1. The irradiated Kane-Mele model. The system consists of
two decoupled copies, each one representing spin up and spin down,
and therefore they are time-reversal partners (a, left). Under the light
spot, the system develops the replica scheme unfolding itself into
several copies which represent photon dressed processes (a, right).
In (b) a schematic representation of the device we will consider in
the transport setup. Under particular conditions the transport of one
spin might be suppressed while the remaining is perfectly unaffected.
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In the following we present the lattice model we use to test
our ideas, the basics of Floquet theory and the generalized
Landauer-Büttiker formalism. Later on we present our results
for the spectral and transport properties, rationalizing them in
terms of a few main ingredients. Finally, we discuss possible
realizations and potential application of these ideas as well as
drawbacks that may arise on the realization of these concepts.

Hamiltonian model for Floquet-Kane-Mele system.– Let us
now consider the Hamiltonian for graphene with a staggering
potential and intrinsic spin-orbit (ISO) interaction [1]:

H0 =
∑
i,sz

Ei c
†
i,sz

ci,sz − γ0
∑
〈i,j〉,sz

c†i,szcj,sz −

−iγSO
∑

〈〈i,j〉〉,sz

νi,jszc
†
i,sz

cj,sz , (1)

where c†i,sz and ci,sz are the creation and annihilation opera-
tors for electrons at the π-orbital on site i with spin up sz = 1
or spin down sz = −1. γ0 is the nearest-neighbors matrix
element and γSO is the intrinsic spin-orbit coupling. We set
γ0 = 1 as our energy scale. νi,j is +1 (−1) if the path from
j to i is clockwise (anticlockwise), as shown in Fig. 1a (right
for spin up, left for down). The on-site energies Ei are chosen
equal to ∆ (−∆) for the sites on the A (B) sublattice. The
single and double brackets denote that the summation is over
first or next nearest-neighbors. Although the spin-orbit cou-
pling in bare graphene is too small, the same physics can be
realized in other two-dimensional materials such as silicene
and germanene [30] where this coupling is stronger.

The effect of laser illumination is captured through the
Peierls’ substitution [31, 32], a time dependent phase in
the nearest-neighbors and next-nearest-neighbors matrix ele-
ments:

γi,j(t) = γ
(0)
i,j exp

[
i

2π

Φ0

∫ ri

rj

A(t) · dr

]
. (2)

where γ(0)i,j are the unperturbed matrix elements as given in
Eq. 1, Φ0 is the magnetic flux quantum and A(t) is the vec-
tor potential. For a monochromatic plane wave in the z-
direction (perpendicular to the graphene sheet) we consider
A(t) = A0 cos(Ωt)x̂ + A0 sin(Ωt + φ)ŷ, where Ω is the ra-
diation frequency, A0 determines the driving amplitude and
φ = 0,±π/2 controls the polarization linear or left/right hand
polarized, respectively. Right hand polarization is consid-
ered whenever we mention circular polarization. The laser
strength can be characterized by the dimensionless parameter
z = A0a2π/Φ0.

Similar systems were considered before with a few dif-
ferences: Ref. [33] studied laser-illuminated transition metal
dichalcogenide without spin-orbit coupling considered here,
and Refs. [29, 34] studied germanene and silicene in the
high-frequency regime while here we focus on frequencies
smaller than the bandwidth. Other studies using Floquet the-
ory focused on the topological states induced by light [35–37],

rather than the modification of native topological states con-
sidered here.

Floquet theory for the spectral and transport properties.–
Floquet theory allows for a non-perturbative and non-

adiabatic solution of problems involving a time-periodic
Hamiltonian such as ours satisfying H(t) = H(t + T )
with T = 2π/Ω. The Floquet theorem assures that there
is a complete set of solutions of the form |ψα(t)〉 =
exp(−iεαt) |φα(t)〉, where εα are the quasienergies and
|φα(t+ T )〉 = |φα(t)〉 are the Floquet states obeying:

HF |φα(t)〉 = εα |φα(t)〉 , (3)

where HF ≡ H − i∂/∂t is the Floquet Hamiltonian. Thus,
one gets an eigenvalue problem in the direct product space
(Floquet or Sambe space [38]) R ⊗ T where R is the
usual Hilbert space and T the space of T−periodic functions
spanned by 〈t |n〉 = exp (inΩt). The index n is often called
the replica index and can be associated to different photon
channels. In this picture, an electron entering lead α in a
given reference replica n0 can scatter to lead β in replica m,
thus exchanging n = m − n0 quanta of the time-dependent
modulation. Since asymptotically the different replicas are
decoupled (as the time-modulation is limited to the sample),
the total transmission probability from α to β, Tβ,α(ε), can be
obtained by summing the probabilities associated to each of
these processes (denoted with T (n)

β,α (ε)):

Tβ,α(ε) =
∑
n

T (n)
β,α (ε), (4)

These probabilities can be computed using standard
Green’s functions techniques [32, 39, 40]. In a two-terminal
setup in the lineal response regime (small bias voltage), the
time-averaged current is given by [41]:

I ' 2e2

h
T+(εF )V +

4e

h

∫
T−(ε)f(ε)dε. (5)

where T± = (TR,L ± TL,R)/2, f = fL + fR is the sum of
the Fermi distribution functions at each lead (L orR) and V is
the bias voltage. The second term on the right-hand side cor-
responds to a pumping current arising because of the asym-
metry of the transmission coefficients. This current remains
even at zero bias voltage (and it may even flow against an ap-
plied voltage). Such currents have been studied extensively in
the past [42–45] and more recently have applied to the context
of the shift photocurrents problem [46]. As we will see later
on, in our case these pumping currents can be tuned by the
interplay between the native topological states of the system,
the laser polarization and photon assisted processes.

Quasi-energy dispersion. Let us start our discussion by
analyzing the dispersion relations for a ribbon of laser-
illuminated graphene with spin-orbit coupling and a stagger-
ing potential. This is shown in Fig. 2 for linear (c-d) and circu-
lar (e-f) polarization and also without radiation (a-b). Without
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Figure 2. Spin resolved bandstructure of a honeycomb ribbon with
intrinsic spin-orbit coupling. Computation performed over a zigzag
nanoribbon of width W = 100a (∼ 25 nm). Panels (a-b) without
irradiation. Panels (c-d) and (e-f) for linear and circular polarized
irradiation, respectively. Red(blue) denote spin up(down). We con-
sider ∆ = 0.1, γSO = 0.05, ~Ω = 1.5 and zx = zy = 0.15. One or
both ways allowed transport is highlighted for edge states bridge the
energy gap. The color scale in the bottom shows the time-averaged
density of states in log-scale.

radiation, when the spin-orbit term dominates over the stag-
gering one has the expected topological states bridging the
gap. The staggering is responsible for the asymmetry between
the valleys, while the overall time-reversal symmetry enforces
the mirror symmetry between the plots (when exchanging k
by−k) for the different spin-components. The color scale en-
codes the contribution of each state to the time-averaged den-
sity of states [23] which is given by the weight of each state on
the reference replica (n = 0), which is uniform and equal to
unity in absence of radiation. For linear and circular polariza-
tion, the lighter tones (notice the log scale) show the regions
with states due to the other replicas (each shifted by ~Ω). Ra-

diation will introduce a coupling between the replicas (or, in
other words, a coupling between a state with a given k at en-
ergy ε and other states at the same k with energy ε + n~Ω).
The effect of such coupling is the hybridization of the native
topological states of this system with the continuum provided
by the replicas. In the figure this is evidenced as regions where
the lines bridging the gap become blurred (the log scale em-
phasizes these regions which in normal scale will be hardly
visible). Later on, we will see how transport is disrupted due
to this hybridization.

Notice that the hybridization with the continuum appearing
here is different from that studied in Refs. [47–49] where the
continuum is provided by the states of a second layer in bi-
layer graphene. In contrast, here this is due to coupling with
the continuum in other replicas through photon-assisted pro-
cesses. Furthermore, spin plays a crucial role in the selection
rules as we will highlight later on.

When comparing the results for linear and circular polar-
ization in Fig. 2 we find an interesting asymmetry: while with
linearly polarized light time reversal symmetry is preserved,
circular polarization breaks it. The panels for spin up and
down in Fig. 2e-f do not mirror each other as when TRS is
preserved (panels c-d) and the response is thus expected to be
spin-selective. As we will see next, this leads to a deeper se-
lection rule tied to a spin-dependent circular-dichroism effect.

Transport properties.– Let us now turn to the transport
properties. We consider a two-terminal setup where a central
region is being illuminated while the leads remain in equilib-
rium. All the Hamiltonian parameters of the scattering zone
and leads are equal. By using Floquet scattering theory as
mentioned earlier, we compute the total transmission proba-
bilities as a function of the energy of the incident electrons (ε).
Furthermore, we can resolve the contributions of both spin
components as shown in Fig. 3a-d (readers can find a detailed
comparison between Floquet bandstructure and transport sig-
natures in the supporting information). While without laser
illumination one would expect a perfect and reciprocal trans-
mission equal to unity for energies within the bulk gap, here
we see a different picture. First, the left-to-right and right-to-
left transmission probabilities differ, as is usual in driven sys-
tems with broken symmetries. But interestingly, the response
is also highly sensitive to the spin component for circularly
polarized light: the results show that one spin component gets
stronger scattering (deviations from unity) while the other is
less affected. This startling difference in the response for dif-
ferent spins (this is, the difference between Figs. 3c-d) begs
for an explanation.

The results for the current, which we can resolve in its spin
components are shown in Fig. 3 e (linear polarization and f
(circular polarization). A first fact advanced earlier is that be-
cause of the non-reciprocity, there is a photo-generated current
that appears even at zero bias voltage. This type of pumped
current [42] or photocurrent in this case [46] is intertwined
with the symmetry breaking induced by the different terms in
the Hamiltonian. While inversion symmetry is broken in all
cases (due to the staggering term), for linear polarization TRS
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Figure 3. Effective transport properties for the scattering process averaged over one irradiation period. Parameters are the same than in Figure
2. Panels (a-d) show the transmission probabilities within the native gap. One-way charge transport is achieved in (a), (b) and (c) while in (d)
no one-way effect is witnessed. Remarkably, the difference between both polarizations can be understood in terms of the circular dichroism
on each copy of Haldane model. Panels (e-f) present the spin-resolved pump currents obtained for linear and circular polarization. Due to the
presence of pumping currents in Floquet context, this behavior translates into a zero charge pumping with linear polarization yielding pure
spin currents (e) while with circular polarizations (f) one can achieve spin polarized charge currents. The former can be tweaked by changing
from right-hand to left-hand circular polarization.

is preserved and hence no net charge current can flow in this
spinful case. The current per spin component is non-vanishing
as shown in Fig. 3e, and together both components give a pure
spin current.

In contrast, for circular polarization there is a non-vanishing
current which turns out to be spin-polarized (see Fig. 3f). The
polarization depends on the Fermi energy, being almost per-
fect close to the charge neutrality point and of about 83%
at higher/lower energies. The spin-selective non-reciprocity
(Figs. 3c-d) under circular polarization together with the spin-
polarized photocurrents (Fig. 3f) are the main numerical re-
sults of this paper. Notice that the spin polarization can be
inverted by changing the handedness of the laser polarization.

To rationalize the transport results and the quasienergy dis-
persions we now discuss several points that altogether explain
our findings. But first, we need to dig deeper by presenting
the different contributions to the total transmissions shown in
Fig. 3. Indeed, an electron entering the illuminated sample
with energy ε can exit elastically (without emitting or absorb-
ing a net number of photons) or inelastically. The partial trans-
missions T (n)

i,j for linear and circular polarization are shown in
Fig. 4 and a discussion of the role of the inelastic back scat-
tering can be found in the supplementary information. The
insets of Fig. 4 show the transition matrix elements between
the unperturbed initial and final states. These insets confirm
our previous observation that the propagating state with spin
down traversing the device is much less disturbed by circu-
larly polarized light than the other.

The following general points explain the observed numeri-
cal features:

1. Generalized symmetry in Floquet space. The following

relation among transmission probabilities is verified in
our case:

T (n)
β,α (ε) = T (−n)

α,β (−ε). (6)

This is enforced by an underlying symmetry in Floquet-
space:

ΓH(k)Γ† = −H(k)
∗
, (7)

where Γ = σyK, K being the complex conjugation
operator. This generalized symmetry thus inverts the
energy sign while mirroring the space and replica coor-
dinates. This symmetry, which is fulfilled in our device
setup, therefore links the transmission probabilities in
the different panels of Figs. 3 and 4, which also serves
as a numerical test of our results. We note that the sim-
ilar relations have also been used in a different context
in Floquet systems [50].

2. Spin-selective dichroism effect: a selection rule linking
Chern number, circular polarization handedness and
spin. Under illumination with circularly polarized light
we observe a marked transport asymmetry between spin
components, and also within the same spin subspace
when the handedness of the laser polarization changes.
The latter is commonly referred to as circular dichro-
ism. The existence of circular dichroism in the pres-
ence of both a complex next-nearest-neighbor coupling
and a staggering potential for the bulk states has been
discussed in Ref. [51]. In that reference, Ghalamkari
and coauthors find that there is a selection rule which
ties the Chern number of the topological phases found
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Figure 4. Detailed transmission probabilities averaged in time. Here, T (n)
ij (ε) stands for the transmission through a channel mediated by an

exchange of n photons with an electron incident with quasienergy ε. From panels (a) to (f) circular polarization transport is shown, describing
the whole process for each spin channel independently. From panel (g) to (l) the same information is depicted for linear polarization. Elastic
channels prove to be the main source of transmission, while reflection processes, leading to a one-way transport in regions within the bulk gap,
are completely mediated by photon-dressed processes, a distinctive signature of hybridization of the states with the continuum. Insets on each
panel quantify the degree of coupling of a native topological state and the bulk bands states induced by higher order replicas. In the insets,
solid and dashed lines represent opposite edge chiral states.

in the Haldane model [52] with a distinctive response to
left and right circular polarization.

In our case, when looking at each spin component sepa-
rately, our numerical results show that this selection rule
persists for a finite system, when the transitions include
an edge state and a state in the bulk spectrum. Further-
more, the fact that both spin components are related by
time-reversal in H0 produces an inversion of the circu-
lar dichroism when passing from spin up to spin down,
since it follows the sign inversion of the spin-resolved
Chern number. Here we observe that this inversion of
the circular dichroism is also fulfilled for the finite sys-
tem, a fact which one might intuitively tie in with the
bulk-boundary correspondence.

3. Hybridization of edge states with the continuum pro-
vided by a different Floquet replica. The selection rule
stated in point 2 plays a crucial role in establishing the
possible light-induced transitions among the electronic
states. For Fermi energies within the bulk gap of the
sample, thanks to photon-assisted processes, the topo-
logical edge states at ε can now transition towards the
continuum of states at ε+n~Ω (where the system is un-
gapped). Based on point 2, this hybridization with the
states of a different replica is expected to be insensitive

to the spin for linear polarization but not for circular
polarization. This is verified by numerically computing
the modulus squared of the matrix element of the per-
turbation among the initial and final states, see insets of
Fig. 4.

For our numerical simulations we employed a general
model with staggering potential and spin-orbit coupling com-
patible with Germanene and Stanene, but we notice that the
interplay between the staggering strength, the spin-orbit cou-
pling and the laser frequency allows for a broad range of mate-
rials where the predicted photocurrents could be observed. In-
deed, we require a system with with broken inversion symme-
try hosting topological states. Within the Kane-Mele model
this means that 2∆/γSO < 3

√
3 [1, 52]. Furthermore, for

the hybridization of the topological states with the continuum
of the Floquet replicas to occur, the photon energy needs to
be not smaller than the bulk gap of the non-irradiated sys-
tem and not so large so that there are no continuum states ~Ω
above a given energy. Fortunately, these conditions do not im-
pose a restriction within the experimentally relevant regime of
laser frequencies spanning from the mid-infrared to the visible
range (see supplementary information). On the other hand,
the temperature needed for the experimental realization and
the fine-tuning of the irradiation condition will depend on the
energy gap of the unperturbed material. The required laser
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intensities are smaller than those required to observe Floquet-
Bloch states, as here we need sufficient coupling with a con-
tinuum of states. From our numerics, for typical mid-infrared
wavelengths (∼ 160 meV) we estimate that intensities in the
range of 1− 10 mW/µm2 would suffice.

Let us now discuss the influence of Rashba spin-orbit cou-
pling. A Rashba term introduces spin-flip processes and it
is a legitimate source of concern. Our numerical results ev-
idence robustness of the photocurrents against this term (see
supplementary information). This is because the mechanism
relies on the existence of topologically protected states in
the non-irradiated material, which are originated by intrinsic
SOC and which extend to a region of parameters with mod-
erate values of Rashba SOC. Indeed, the topological states
are robust against a moderately strong Rashba SOC [1]: for
γR < 2

√
eγSO (γR and γSO being the strengths of the Rashba

and intrinsic spin-orbit coupling terms) the resulting phase
diagram is adiabatically connected to the quantum spin-hall
phase of the Kane-Mele model. This topological protection
is expressed in the fact that the matrix element between two
topological counter-propagating states at one edge of any per-
turbation that preserves TRS is zero. In our case, circular po-
larization does not preserve TRS but rather than introducing
a matrix element between counter-propagating edge states,
leads to a selective hybridization of the edge states with the
continuum at an energy differing by the photon energy from
them. This is why our results are robust against spin non-
conserving terms over a broad range of parameters.

Final remarks.– Using Floquet scattering theory we show
how laser illumination can selectively disrupt the edge states
of a two-dimensional topological insulator depending on their
spin. This selectivity, which stems from the interplay between
a spin-selective selection rule together with the hybridiza-
tion of the edge states with the continuum of another Floquet
replica, manifests by the generation of pure spin currents and
spin-polarized charge photocurrents under linearly and circu-
larly polarized laser-illumination, respectively. We emphasize
that, in both cases, the spin and charge currents flow even at
zero-bias voltage. Furthermore, the direction and spin polar-
ization of these currents can be tuned by changing the inci-
dent electronic energy and the handedness of light polariza-
tion, thereby providing an experimental handle to control pho-
tocurrents. In this sense, given the generality of our model, we
expect for the photocurrents predicted here to be experimen-
tally accessible in two-dimensional materials by using laser
illumination in the mid-infrared.
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H. Hübener, and A. Rubio, “Light-induced anomalous
Hall effect in massless Dirac fermion systems and topologi-
cal insulators with dissipation,” arXiv:1905.12981 [cond-mat,
physics:physics] (2019), arXiv: 1905.12981.

[38] H. Sambe, “Steady States and Quasienergies of a Quantum-
Mechanical System in an Oscillating Field,” Phys. Rev. A 7,
2203 (1973).

[39] G. Stefanucci, S. Kurth, A. Rubio, and E. K. U. Gross, “Time-
dependent approach to electron pumping in open quantum sys-
tems,” Phys. Rev. B 77, 075339 (2008).

[40] L. Arrachea and M. Moskalets, “Relation between scattering-
matrix and Keldysh formalisms for quantum transport driven
by time-periodic fields,” Phys. Rev. B 74, 245322 (2006).

[41] L. E. F. Foa Torres, P. M. Perez-Piskunow, C. A. Balseiro, and
G. Usaj, “Multiterminal Conductance of a Floquet Topological
Insulator,” Phys. Rev. Lett. 113, 266801 (2014).
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Electron-electron interactions play a critical role in many condensed matter phenomena1-4, and it is 

tempting to find a way to control them by changing the interactions’ strength. One possible 

approach is to place a studied electronic system in proximity of a metal, which induces additional 

screening and hence suppresses electron interactions. Here, using devices with atomically-thin gate 

dielectrics and atomically-flat metallic gates, we measure the electron-electron scattering length 

��� in graphene at different concentrations � and temperatures. The proximity screening is found 

to enhance ���  and change qualitatively its �  dependence. Counterintuitively, the screening 

becomes important only at gate dielectric thicknesses of a few nm, much smaller than the average 

separation � � �/√� between electrons. The critical thickness is given by ∼	. 	� ��, where � is the 

gate dielectric’s permittivity, and the theoretical expression agrees well with our experiment. The 

work shows that, using van der Waals heterostructures with ultra-thin dielectrics, it is possible to 

modify many-body phenomena in adjacent electronic systems.  

Elementary electrostatics tells us that the electron charge � placed at the distance � from a bulk metal 

leads to a dipole potential evolving as 2���/��  at large in-plane distances � ≫ � , which is much 

weaker than the original, unscreened Coulomb potential, �/�. Accordingly, a metallic gate placed 

sufficiently close to another electronic system can alter its electron-electron (e-e) interactions. 

Electrostatic screening by metallic gates has previously been employed to suppress charge 

inhomogeneity in graphene5,6, alter its plasmon spectra7,8 and renormalize an electronic structure of 

monolayer semiconductors9. In principle, proximity-gate screening may also affect e-e interactions. 

They can be parametrized by ℓ�� and, a priori, it is unclear how close a metallic gate should be to 

change this parameter appreciably. From the above electrostatic considerations, one can infer that 

what matters most is the ratio �/�. For a two-dimensional (2D) electron system with typical � =
10�� cm��, � ≈ 10 nm and, therefore, the inferred gate separation � � � is relatively easy to achieve 

experimentally. However, as shown below, the naïve expectations fail because of a small numerical 

factor " such that e-e interactions for massless Dirac fermions are altered only if � ≤ "� � 0.03 %�. 

For typical gate dielectrics with % < 5, the required separation falls into a 1 nm range. For massive 

charge carriers such as those in bilayer graphene and 2D semiconductors, even smaller (atomic-scale) 

� are necessary for efficient screening (Methods). It seems impossible to realize such small � because 

of inevitable surface roughness of the metal and insulating films used for gating and electrical leakage 
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through dielectrics of nanometer thickness. In this report, we achieve the extremely challenging 

conditions for proximity-gate screening by using van der Waals heterostructures with atomically-thin 

dielectric layers and atomically-flat gates.  

Our devices were graphene monolayers encapsulated between hexagonal boron nitride (hBN) crystals 

whereas graphite monocrystals served as a bottom gate (Fig. 1). These heterostructures were 

fabricated using the standard dry-transfer procedures5 described in Methods. Multiterminal Hall bar 

devices with several point contacts and closely placed voltage probes (Fig. 1a) were then defined by 

electron-beam lithography and plasma etching. An extra metal gate was deposited on top of the 

heterostructures, which allowed us to vary � without applying voltages to the bottom screening gate. 

This was particularly important for our case of ultra-thin dielectrics to avoid their accidental 

breakdown and electrical leakage. The minimum thickness �  for the gate dielectric (Fig. 1b) was 

limited to 4 hBN layers (i.e. ∼ 1.3 nm) because thinner crystals exhibited notable electron tunneling10. 

The devices typically had low-temperature ( ( ) mobility )  of about 10* cm� V��s��  and highly 

reproducible characteristics such that, at finite ( , their longitudinal resistivity -  was practically 

independent of � (Supplementary Fig. 1). This ensured that the reported behavior of ℓ�� was due to 

changes in � rather than transport characteristics. Because graphite is a semimetal with a relatively 

low carrier density of ∼10�. cm��, we also crosschecked that our conclusions were independent of 

the gate material using screening gates made from other layered metals such as Bi2Sr2CaCu2O8+x and 

TaS2 (Methods; Supplementary Fig. 2).  

To demonstrate that e-e interactions can be tuned by proximity-gate screening, a reliable diagnostic 

tool is essential. Many quantum transport characteristics are known to be affected by the strength of 

e-e interactions. For example, the phase breaking length depends on it and can be measured in 

quantum interference experiments11 (other possibilities are discussed in ref. 12). In principle, it should 

be possible to use such ‘mesoscopic physics’ tools to probe e-e interactions in graphene but, because 

of its ballistic transport at micrometer-scale distances, the approach is not easy to implement in 

practice and its results could be difficult to interpret. On the other hand, recent experiments have 

shown that graphene at finite ( and away from the charge neutrality point (NP) exhibits pronounced 

hydrodynamic effects13-17, which allowed measurements of the kinematic electron viscosity /0, and 

the extracted values of ℓ�� = 4/0/23 were in quantitative agreement with theory (23 is the Fermi 

velocity). The viscosity measurements can be carried out using three complementary approaches: 

vicinity resistance14,15, point contact geometry16,18 and the viscous Hall effect17. Below we use all three 

to show that ℓ�� changes with �. In another approach, we demonstrate that umklapp e-e scattering 

in graphene superlattices19 is also affected by proximity-gate screening.  

First, let us demonstrate the screening effect qualitatively. Figure 1c shows that the vicinity resistance 

56 is notably affected if a thin gate dielectric is employed. Vicinity measurements are discussed in 

detail in ref. 14 but, briefly, an electric current is injected through a narrow contact into a wide 

graphene channel. The negative voltage drop arising locally from a viscous electron flow is detected 

using a vicinity contact at a short distance 7 from the current-injecting contact (Fig. 1a). One can see 

from Fig. 1c that, as (  increases, 56  first decreases and then becomes negative. This indicates a 

transition from the ballistic transport regime (positive 56) into a regime where ballistics is strongly 

affected by e-e scattering15. The minimum in 56(()  corresponds to the condition ℓ�� ≈ 7  and 

indicates an onset of hydrodynamic behavior15. As ℓ��  decreases further with increasing ( , 56 
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becomes less negative and eventually positive, being dominated by currents caused by electron-

phonon scattering14,15. The dependences 56(()  shown in Fig. 1c were measured for two similar 

devices at the same 7. One had � ≈ 300 nm (conventional Si back gate) whereas the other was made 

using 4-layer hBN as the gate dielectric. Despite the similar behavior of 56((), the curve for � ≈
1.3 nm is clearly shifted to higher (. The shift direction indicates that the nearby gate caused an 

increase in ℓ��, which is equivalent to a reduction in electron temperature by ∼ 30 K. Note that, for ( 

above 100 K where the hydrodynamic regime develops, electron transport in high-quality graphene 

is universal and insensitive to experimental details.  

 

Figure 1 | Graphene devices with proximity gating and its effect on electron hydrodynamics. a, Optical 

micrograph of one of our devices with 4 sub-μm constrictions used for point-contact measurements and several 

closely spaced contacts for vicinity measurements. The wiring schematic illustrates current and voltage 

configurations for the latter measurements. b, Schematic side view of our heterostructures. c, 56 as a function 

of ( for representative devices with a close graphite gate (� ≈ 1.3 nm, red) and in the reference geometry (� =
300 nm , blue). The devices had similar geometry and ) ; same 7 = 0.5 μm . d, 5;<(()  for screened and 

reference constrictions of the same width = ≈ 0.2 μm (same color coding as in c). Dashed lines in d denote the 

resistance in the ballistic limit. Arrows in c and d indicate minima in 56 and 5;<. e and f, Viscous Hall effect for 

reference and close-gate devices (� = 300 and 1.7 nm, respectively). The color-coded curves correspond to 

different �; all measurement conditions and geometries were same, including 7 = 1 μm and ( = 200 K. The 

insets illustrate electric potentials that appear due to a viscous electron flow (the arrow and circle indicate 

positions of current and voltage contacts, respectively). The calculations20 were carried out for the 

experimentally determined ℓ�� ≈ 0.3 and 0.8 μm for panels e and f, respectively; A = 10 mT. Blue-to-red color 

scale is arbitrary but same for both panels. 
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Similar phenomenology was observed in the point contact geometry (Fig. 1a). Again, the ( -

dependence of the point contact resistance 5;< exhibits a clear minimum due to a viscous flow16. The 

shift to higher ( for the device with a proximity gate (Fig. 1d) indicates an increase in ℓ�� for a given 

(. Such influence of the proximity gating was consistently observed in all our experiments. The 56 and 

5;< dependences could also be used to extract ℓ��(() following the recipe reported in refs. 14,16. 

Unfortunately, we found that, for atomically-thin gate dielectrics, detailed behavior of 56  and, to 

some extent, 5;<  notably varied between different devices with nominally the same � . Those 

variations can be traced back to the fact that 56 is sensitive to current injector’s geometry14 whereas 

a viscous contribution to 5;<  becomes smaller for close-gate devices as compared to those with 

thicker gate dielectrics.  

In contrast to the vicinity and point-contact measurements, the viscous Hall effect17 was found to be 

very robust, yielding quantitatively same results for different devices with same �. Accordingly, for 

quantitative analysis of how ℓ�� depended on �, we focused on the latter measurements. The Hall 

viscosity experiments utilize the already discussed vicinity geometry (Fig. 1a) but a non-quantizing 

magnetic field A  is applied perpendicular to graphene17. The field leads to an asymmetry in the 

potential created by the viscous flow around the injection contact (insets of Figs. 1e,f). The viscous 

contribution asymmetric in A is called the viscous Hall resistance 5C and given by17,20  

     5C = -D( E
FGHI) J

JH,    (1)  

where D(K) is a dimensionless function20, L is the transport scattering time, A0 = M3/(8 |�| /0) is a 

characteristic magnetic field, and M3 is the Fermi energy. Because |D(K)| is a monotonically decreasing 

function of its argument for K > 0, |5C| increases with increasing ℓ�� and, accordingly, devices with 

weaker e-e scattering should exhibit larger |5C|.  
To illustrate the effect of proximity-gate screening on Hall viscosity, Figs. 1e,f plot 5C(A) for two 

representative devices with � ≈ 1.7  and 300 nm . The curves are taken under exactly the same 

conditions for several same �. As the two devices exhibited close - and L (Supplementary Fig. 1), the 

profound difference between Figs. 1e and 1f can only be attributed to different screening. The device 

with the thin dielectric exhibited much larger Hall viscosity than the reference device, and the effect 

was most pronounced at low �. This behavior proves again that the proximity screening suppresses e-

e scattering, in agreement with the conclusions reached from the vicinity and point-contact 

measurements.  

For the known transport characteristics (- and L), Eq. 1 allows us to convert 5C into ℓ��, as described 

in detail in ref. 17. Figure 2a shows examples of ℓ��(() found for close-gate and reference devices. At 

all (, the screened device displays ℓ�� approximately twice longer than that in the standard device of 

the same electronic quality. This agrees well with many-body theory (solid curves in Fig. 2; 

Supplementary Fig. 3). Importantly, the proximity-gate screening qualitatively changes the 

dependence ℓ��(�)  so that, away from the NP, ℓ��  decreases with increasing �  (Fig. 2b). This 

contrasts with monotonically increasing ℓ��(�) for the reference devices, which was also reported 

previously16,17. Figure 2c summarizes our results by showing ℓ�� measured for more than 10 different 

devices at characteristic �  and (  where viscous effects become most pronounced in graphene. 
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Despite the experimental scatter, Fig. 2c clearly shows that ℓ�� can be altered appreciably by using 

thin gate dielectrics, if � is smaller than a few nm.  

 

Figure 2 | Dependence of the e-e scattering length on distance to the gate. a, ℓ��(() extracted from Hall 

viscosity measurements for the given � . Data for a close-gate device (blue symbols) are compared with a 

reference (green). b, Density dependence of ℓ�� at 200 K (same color coding as in a). The grey-shaded region 

indicates the regime near the NP where the single-component hydrodynamic theory is not applicable14,15,21 and, 

also, the cyclotron diameter became comparable with the width of our devices17. c, ℓ�� as a function of � for 

the given �  and ( . Red and blue symbols: Results from Hall viscosity and point-contact measurements, 

respectively; shown are the average values for electron and hole doping (see panel b for an example of scatter 

due to electron-hole asymmetry). For all the panels, the solid curves are theoretical results (Supplementary 

Information).  

To explain the observed dependences of ℓ�� on � and �, we carried out numerical calculations in the 

random phase approximation for the dynamically screened interactions12,22,23. The metallic gate was 

modelled as a perfect conductor, and small departures from this model caused by a finite carrier 

density were estimated in Supplementary Section 4. The results are shown by the solid curves in Fig. 

2. No fitting parameters were used, except for multiplying all the theoretical curves by the same small 

factor of 1.3 (its non-Fermi-liquid origins are discussed in Supplementary Section 4). However, to gain 

better insight about the observed behavior, we also derived the following analytical expression  

 ℓ�� � PℏRSTS
U

�
(VWX)Y Z[\Y]S^W_` a�b�cdeS

�cdeS f�
,    (2) 

where g3 = √h� and ij3 = 4k��g3  are the Fermi and Thomas-Fermi wavenumbers, respectively. 

Here, k�� ≈ 2.2/% is graphene’s coupling constant and gl is the Boltzmann constant (Supplementary 

Section 4 discusses the case of generally anisotropic %). The expression is accurate in the Fermi-liquid 

regime (gl( ≪ M3), where it matches our numerical results (Supplementary Section 4). The last term 

in Eq. 2 appears due to the gate presence, and the key parameter describing its screening effect is 

�ij3. In the far-gate regime, � ≫ 1/ij3, Eq. 2 reduces to the standard unscreened expression23. In 

the opposite limit, � ≪ 1/ij3, e-e scattering is strongly reduced due to screening, and ℓ�� increases 

with decreasing both � and �, as 1/�� and approximately 1/√�, respectively, in agreement with our 

experiment (Fig. 2). The latter dependence is opposite to the unscreened case, where ℓ�� increases 

as √�, in agreement with the results of Fig. 2b. The crossover between the far- and close- gate regimes 

occurs at a critical distance �n  such that  �n ≈  1/2ij3 = 1/(8k��g3) , which translates into the 

previously introduced parameter " � 0.03%. For hBN with % ≈ 3.5 and at typical � = 10�� cm��, we 

obtain �n ≈ 1.1 nm, which explains why the gate screening becomes noticeable only for our smallest 
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�  (Fig. 2c). Further information about our theoretical analysis is provided in Supplementary 

Information.  

To check how robust our conclusions are, we have also examined the effect of gate-induced screening 

on umklapp e-e scattering19 that dominates resistivity - of graphene-on-hBN superlattices at elevated 

(. We made several superlattice devices with the moiré periodicity o ≈ 15 nm, as confirmed by the 

periodicity of Brown-Zak oscillations24 and the appearance of secondary NPs25-28 at the expected � (Fig. 

3a). One of the devices was the standard Hall bar with � = 300 nm, like those reported previously19. 

The other two were same in design but had a bottom graphite gate placed at short �, as in the above 

viscosity experiments. Figure 3 shows typical -(�, () measured for these graphene superlattices. For 

� = 300 nm, the observed behavior was same as reported previously, and the ( dependent part (∆-) 

of graphene superlattice’s resistivity could be described quantitatively by umklapp e-e scattering19. It 

is responsible for the rapid increase of ∆- ∝ (�  (Fig. 3b). The proximity-gate screening notably 

suppressed ∆-((), by a factor > 2 for � ≈ 1.3 nm. Our theoretical analysis (Supplementary Section 

5) shows that Δ- for the close-gate devices should exhibit the same ( dependence (∝ (�) but with a 

reduced absolute value. The umklapp e-e scattering length, ℓ��s , is governed by distinctive processes 

with a momentum transfer of ∼ ℏu where u = vw
√xo�� is the superlattice reciprocal vector. As shown 

in Supplementary Section 5, proximity screening for ℓ��s  becomes important if � < 0.1o, which again 

means that few-nm-thick gate dielectrics are essential to observe the screening effect. It is convenient 

to quantify this effect by the dimensionless ratio, ∆-(∞)/ ∆-(�) � ℓ��s (�)/ℓ��s (∞). The results are 

plotted in the inset of Fig. 3b and show good agreement with theory (for details, see Supplementary 

Section 5).   

 

Figure 3 | Suppression of umklapp e-e scattering in graphene superlattices by proximity-gate screening. a, -(�) 

of graphene-on-hBN superlattices for � ≈ 1.3 and 300 nm (purple and green curves, respectively).  Dotted and 

solid curves: ( = 2 and 200 K, respectively. Inset: Illustration of the moiré pattern arising from crystallographic 

alignment between graphene and hBN lattices. b, (-dependent part of - for superlattice devices with different 

� (color-coded symbols); � = z1 { 10�� cm�� so that superlattices’ first Brillouin zones are approximately half-

filled with holes26-28. Dashed curves: Best fit to the predicted (�  dependence19. All the devices had o ≈
15 nm and close - at 2 K. Inset: Δ-(�) for the two close-gate superlattices normalized by Δ-(∞) measured for 

the reference (far-gate) superlattice. The color-coded symbols in the inset are taken from the main panel and 

valid for all ( ≤ 120 K because of the (� dependence. Solid curve: Theory.  

To conclude, e-e scattering in monolayer graphene at finite � can be strongly suppressed if a metallic 

gate is placed at � of ∼ 1 nm. This “close-gate” regime has become accessible due to the use of van 
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der Waals assembly that allows atomically sharp interfaces and ultra-thin dielectrics. It is tempting to 

exploit the outlined strategy to assess interaction phenomena near the NP where low � allow the 

condition � ≪ 1/√�   to be satisfied easier but interpretation of some observations had proven 

difficult. Other interesting candidates are exotic phenomena driven by strong correlations (e.g., 

various many-body phases in twisted bilayer graphene29,30) and, especially, interaction effects 

governed by lengths longer than ℓ��. The experimental challenge to reach the close-gate regime can 

partially be mitigated by using high-% dielectrics. 

 

Methods 

Device fabrication. Our heterostructures were assembled using ‘stamps’ made from polypropylene 

carbonate (PPC) as a sacrificial polymer placed on polydimethylsiloxane (PDMS). Such polymer stamps 

were used to pick up exfoliated thin crystals in the following sequence: top hBN (typically thicker than 

30 nm), monolayer graphene and thin bottom hBN. The latter served as a gate dielectric in the final 

device configuration (Fig. 1b), and its thickness was determined by atomic force microscopy. The 

resulting hBN/graphene/hBN stack was then released onto relatively small graphite crystals with 

thickness of 3 z 10 nm, which were prepared in advance on an oxidized Si wafer. The stack was large 

enough to extend outside the bottom graphite region, which allowed us to make quasi-one-

dimensional contacts to graphene31 without electrically contacting the graphite gate. The metallic 

contacts were defined by electron-beam lithography. We first used a mixture of CHF3 and O2 to 

plasma-etch hBN/graphene and expose the required contact regions. This was followed by deposition 

of 2 nm Cr/ 60 nm Au to make Ohmic contacts to graphene. A gold top gate was then fabricated using 

another round of electron-beam lithography and, also, served as an etching mask for the final etching 

step to define the Hall bar geometry. 

The devices with other metallic gates (Bi2Sr2CaCu2O8+x and TaS2) required fabrication in an oxygen- and 

moisture- free atmosphere of a glovebox32 to avoid deterioration of the metal surfaces. Even using 

glovebox encapsulation, we observed a notable reduction in graphene’s quality for the above gate 

materials, presumably because of electrical charges at the exposed surfaces (for small �, typical ) 

became < 10} cm� V��s��  and charge inhomogeneity near the NP considerably increased). 

Accordingly, reliable measurements of ℓ��  in this case were only possible at high � ≳ 2.0 {
10�� cm�� (Supplementary Section 2). We also note that encapsulated graphene devices with the 

conventional gates made by metal deposition on top of a thin gate dielectric (� < 2 nm) exhibited 

extremely low ) of only ∼ 10P cm� V��s��. Such poor electronic quality made it impossible to carry 

out the ℓ�� measurements described in the main text. 

Electrical measurements. The devices were measured in a variable temperature insert that allowed 

stable (  between 2  and 300 K . The standard lock-in amplifier techniques were employed using 

excitation currents of typically 0.1 z 1 μA  at a frequency of 30.5 Hz . For measurements of Hall 

viscosity, we used the same vicinity geometry as shown in the schematic of Fig. 1a. The distance 

between injector and detector contacts was usually between 0.5  and 1.5 μm . The viscous Hall 

resistance was determined as an antisymmetric-in-A component of the vicinity resistance in fields 

below ±30 mT. For the point-contact measurements, we employed the quasi-four-probe geometry 
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by driving the current through the wide contacts (on the left and right in Fig. 1a) and using the leads 

next to the studied constrictions as voltage probes.  

Proximity screening for systems with the parabolic spectrum. The close-gate condition depends on 

the density of states at the Fermi energy of the material one wants to control. We have studied 

graphene not only because of its electronic quality but also because of the low-density of states 

provided by its Dirac spectrum. For a 2D system with the conventional parabolic spectrum, the close-

gate condition is much more difficult to achieve. In the latter case, a proximity metal gate can provide 

efficient screening of e-e interactions only for distances � below � % ���l /(2 �� ����), where �l ≈
0.5 Å is the Bohr radius, �� and ���� are the free-electron and effective masses, respectively, and �� 
is the number of spin/valley flavors. Here, % =  %� is the perpendicular component of the dielectric 

permittivity of a gate dielectric. For bilayer graphene33,34 with �� = 4, ����  ≥  0.03 �� and using hBN 

as a dielectric (%� ≈ 3.5), the close-gate condition requires � < 7 Å , which is essentially out of 

experimental reach.  
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SUPPLEMENTARY INFORMATION 

 

#1. Mean free path and mobility  

We carefully examined transport characteristics for several monolayer graphene devices with 

different dielectric thicknesses �. The mean free path ℓ with respect to momentum-non-conserving 

collisions was determined from the measured longitudinal resistivity - by using the Drude formula. 

The carrier density � was found from Hall measurements. Typical results for ℓ as a function of � are 

shown in Supplementary Fig. 1a. The mean free path first increases with increasing �  and then 

saturates for � ≳ 1.0 { 10�� cm-2. It monotonically decreases with temperature ( as expected. Such 

behavior was observed for all the measured devices independently of their �. This is elucidated by 

Supplementary Fig. 1b that shows ℓ for different � at the given � at room (. One can see that the 

measured ℓ  varied only slightly, from ~ 0.7  to 1.1 μm , depending on graphene device’s quality. 

Similarly, carrier mobilities )(�) exhibited little dependence on � (Supplementary Fig. 1c). 

 

Supplementary Figure 1 | Transport characteristics for different thicknesses of the gate dielectric. a, 

ℓ(�) for a graphene device with � � 1.3 nm at a few representative (. b, ℓ for devices with different 

� at 300 K; � = 1 { 10�� cm��. c, Density dependence )(�) at room (. The mobilities measured for 

devices with different � collapse on a single curve. The red and green curves are for gate dielectrics 

with  � 1.7 and 300 nm, respectively. The blue curve: Data from ref. 1 to indicate the generality of 

such behavior at elevated (. 

 

#2. Different screening materials  

Because graphite is a semimetal2,3 with a relatively low carrier concentration of the order of 

10�. cm��, we have checked the generality of our conclusions using other metallic substrates, namely 

Bi2Sr2CaCu2O8+x (BSCCO) and TaS2 which have concentrations of ∼ 10�� cm�� (ref. 4). To this end, 

devices similar to those shown in Fig. 1a of the main text were fabricated but, instead of graphite, 

cleaved BSCCO and TaS2 crystals served as metallic substrates. To protect them from degradation, 

fabrication had to be carried out in an argon atmosphere of a glovebox as discussed in Methods. The 

carrier mobility ) for the latter devices was comparable to that of the devices made with graphite 

screening gates but only for high � ≳ 2 { 10�� cm�� . At lower � , the electronic quality was 

insufficient to probe electron viscosity because of short ℓ, presumably due to extra charges that 

appear on the metallic surfaces exposed to the ambient atmosphere. Accordingly, for the alternative 
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screening substrates, we worked in the high � regime to measure the viscous Hall resistance and then 

extract ℓ��. Supplementary Fig. 2 shows the resulting ℓ�� for graphene devices using various screening 

materials. Within our experimental accuracy, no difference in ℓ��  could be noticed, and the 

experimental data closely followed the theoretical predictions. 

 

Supplementary Figure 2 | Electron-electron scattering in devices with different materials used for 

proximity screening. Symbols: Measured ℓ��  at 200 K and 2 { 10�� cm�� (color coded). Solid curve: 

Theory. 

 

#3. Point contact geometry  

For completeness, we also measured ℓ�� using the point-contact geometry5. By applying an electric 

current through a graphene constriction and monitoring a voltage drop at nearby contacts (see Fig. 1a 

of the main text), the point contact resistance 5;<  was measured. Supplementary Fig. 3a shows 

5;<(() for a graphene constriction with a geometrical width of � 350 nm as found by atomic force 

microscopy. The transport width = of the constriction was somewhat smaller, � 270 nm, as found by 

fitting 5;<(�) at liquid-helium (  by the standard Sharvin formula (5��  = U�
P�Y

�
�√�U  ). The smaller 

width inferred from the fit is expected and presumably caused by edge roughness5. 5;< exhibited a 

nonmonotonic  ( dependence, becoming at intermediate ( notably smaller than the ideal value in the 

ballistic limit (Supplementary Fig. 3a). This “superballistic” behavior is due to e-e scattering as 

discussed elsewhere5,6. 

To extract ℓ�� from the measurements such as those shown in Supplementary Fig. 3a, we used the 

expression5,6 

5;< = (1/5�� � �R)�� � 5< 

where 5< = �- is the contact resistance arising from the wide regions near the point contact. 5< can 

be determined accurately for the known - whereas the dimensionless coefficient � is found from 

numerical simulations5. The viscous contribution �R  to the point-contact conductivity is given by6 

�R = F|�|U�Y�Y
�ℏℓ�� . Supplementary Fig. 3b shows examples of ℓ��(() found using the above analysis. The 

behavior of  ℓ�� agrees well with that found from the Hall viscosity measurements in the main text. 

For example, ℓ�� is clearly enhanced for devices with close metallic gates. The experimental data also 
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agree with theory whereas relatively small deviations from it at high ( are due to non-Fermi-liquid 

corrections as reported in ref. 5 and, also, explained below.  

 

Supplementary Figure 3 | Electron-electron scattering length found from point-contact 

measurements. a, Point-contact resistance for a device with a close gate (� ≈ 2.0 nm) at different � 

(color coded). Dots: Experimental data. The dashed lines indicate the ideal value expected in the 

ballistic limit at low ( . b, ℓ��(()  for � = 2.0  (red) and 300 nm  (blue) for the given � . Symbols: 

Experiment. Dashed curves: Theoretical predictions with no fitting parameters. Solid curves: Same 

theory data but multiplied by a numerical coefficient of 1.3. 

 

#4. Microscopic theory of screened electron-electron scattering  

In this Section we briefly described our approach to calculate ℓ�� = 23L��. The mean free time L�� for 

e-e scattering is controlled by the one-body Green's function ��(�, �), where o = ±1 is a band index 

(o = �1 for conduction-band states and o = z1 for valence-band states). This quantity satisfies the 

Dyson equation (setting ℏ = 1), ��(�, �) = �� z D�,� z Σ�(�, �)���, where D�,�  are single-particle 

band energies measured from the chemical potential ) and Σ�(�, �) is the retarded self-energy. The 

latter quantity needs to be approximated. In weakly-correlated materials, a good approximation is the 

so-called ��  approximation7,8 in which the electron self-energy is expanded to first order in the 

dynamically screened Coulomb interaction �(�,  Ω) 

Σ�(�,  ��) = zgl( ∑ £ cY�
(�U)Y ∑ �(�,  Ω¤)¥��¦§¨�,���©��¦(� z �,  �� �  Ω¤)bª¤«�ª�¦«±�      (S1) 

where �� = (2� � 1)hgJ( is a fermionic Matsubara frequency, the sum runs over all the bosonic 

Matsubara frequencies Ω¤ = 2�hgl( , ¨�,���  is the angle between �  and � z � , and ¥��¦(¬) =
�1 � oo cos(¬)�/2 is the so-called chirality factor9. The retarded self-energy can be obtained after 

analytical continuation  �� → � �  0b. For the sake of concreteness and without loss of generality 

due to particle-hole symmetry, we focus on electron-doped graphene, i.e. on the case M3 > 0, where 

M3 = 23g3 is the Fermi energy. Here, 23 ∼ 10* m/s (g3 = √h�) is the Fermi velocity (Fermi wave 

number), with � > 0 the electron density. 

The Dyson equation combined with the approximate ��  expression for the electron self-energy 

define a self-consistent approximation, whose self-energy and Green's function can be calculated 

based on an iterative procedure. One first calculates the self-energy from the �� expression by using 
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in the right-hand side of the non-interacting Green's function ��¦(� z �,  �� �  Ω¤) → ��¦
(0)(� z

�,  �� �  Ω¤) = 1/( �� z D���,�¦). The obtained result is then replaced in the right-hand side of the 

Dyson equation, obtaining a new Green's function. The latter is then used to re-calculate the self-

energy via the �� equation, until self-consistency is achieved. Now, the key point is that deep in the 

Fermi liquid regime, i.e. for |�| ≃ g3 and |�|/M3, gl(/M3 ≪ 1,  the self-energy is a small correction 

to the bare band energy D�,�  and such self-consistency is unnecessary. In this limit indeed, 

quasiparticles are long lived because of the ineffectiveness of e-e collisions (Pauli blocking) and 

Im�Σb(�, �)� ∝ (gl(/M3) � � (�/M3) � , modulo logarithmic corrections. In this regime, it is 

therefore well justified to replace ��¦(� z �,  �� �  Ω¤) with ��¦
(0)(� z �,  �� �  Ω¤) in the right-

hand side of the �� equation obtaining the so-called �(0)� approximation7,8.  

Since this is the simplest possible theory, we use the �(0)� approximation also away from the Fermi 

liquid regime, being aware of the fact, however, that the lack of full self-consistency is expected to 

lead to inaccuracies. In particular, it is easy to demonstrate that ℓ��|²(H)³ < ℓ��|²³. Since in weakly 

correlated materials such as graphene the �� approximation is expected to be quantitatively good 

(i.e. ℓ��|²³ is expected to be close to the experimentally value of ℓ��), we do expect the non-self-

consistent result ℓ��|²(H)³  to systematically underestimate the experimentally measured ℓ�� . 

Therefore, in the main text, we have compared experimental data with ℓ��|²(H)³ after multiplying the 

latter by a constant enhancement factor of 1.3, which is independent of all microscopic parameters 

(Fig. 2 of the main text). 

The quantity ℓ��|²(H)³  can be calculated numerically once one specifies the dynamically screened 

potential �(�,  Ω¤). In the random phase approximation7, �(�, �) = �́/�1 z d́µ��(0)(�, �)], where  

µ��(0)(�, �) is the well-known density-density response function of doped graphene9 and �́ is the 2D 

Fourier transform of the e-e interaction potential, which is sensitive to screening caused by nearby 

metal gates and gate dielectrics. For our metal/hBN/graphene/hBN/metal heterostructures, 

electrostatic calculations yield 

�́ = PU�Y
dF¶·¶¸

¹º[�\dc»¼·
¼¸` ¹º[�\dc¦»¼·

¼¸`
¹º[�½d(cbc¦)»¼·

¼¸¾
     (S2) 

where � (�) is the thickness of hBN above (below) graphene, and ¿À and ¿Á are the static in-plane 

and out-of-plane permittivities of hBN. Two metal gates, modelled as perfect conductors, are placed 

above and below graphene at distances �  and � ≪ � , respectively, and are separated from 

graphene by hBN. Numerical calculations of ℓ��|²(H)³ have been carried out by using this effective 

screened e-e interaction for sufficiently large � ≈ 60 nm and known ¿À = 6.70, and ¿Á = 3.56 (see, 

for example, ref. 10). Values of �, �, and ( were variables in our calculations. Pertinent results are 

presented in Fig. 2 of the main text.  

For a qualitative understanding of the role of screening, it is useful to obtain an approximate 

expression for ℓ��|²(H)³ as a function of all system parameters. To this end, we follow ref. 8 and derive 

a formula for ℓ��|²(H)³ which is exact in the Fermi-liquid regime, gl( ≪ M3. The calculations follow 

essentially the same steps as in ref. 8, modulo minor differences, which stem from the regularity of �́ 
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in the long-wavelength i → 0 limit and will be discussed elsewhere. Indeed, limd→0 �́ = 4h������/¿Á ≡
0́, where ���� = ��/(� � �). This formula allows a simple interpretation. Having the two, top and 

bottom, gates is like having two capacitors in parallel. Indeed, we can write 0́ = ��/Å���, where the 

Å��� = Åc � Åc¦  is the sum of the two relevant geometrical capacitances (per unit area), Åc =
¿Á/(4h�) and Åc = ¿Á/(4h�). After restoring ℏ, we obtain 

lim^W_
]S →0

ℓ��|²(H)³ = PℏRSTS
U

�
(VWX)Y Z[\Y]S^W_` a�b�c�ÆÆdeS

�c�ÆÆdeS f�
         (S3). 

Eq. 2 in the main text is simply obtained from Eq. S3 by taking the limit � → ∞.  

Before concluding this section, let us comment on possible corrections to our model caused by the 

fact that real gates are not the assumed perfect conductors. The effect of a finite density-of-states in 

a metallic gate can be estimated using the Thomas-Fermi approximation. It is possible to show that, 

in this approximation, the previous asymptotic result for ℓ��|²(H)³ in the limit gl( ≪ M3 holds if one 

replaces � → � � 1/ij3, where ij3 is the Thomas-Fermi screening wavenumber in gate’s material. 

As a crude estimate for graphite, we take ij3
(Ç)

 to be the same as that of a three-dimensional metal7, 

i.e. ij3
(Ç) = »4���Çg3

(Ç)/(hℏ�¿Ç), where �Ç ≈ 0.2 ��  is the effective mass of charge carriers in 

graphene, ¿Ç ≈ 3,  and  g3
(Ç) = (3h��Ç)�/�, with �Ç ≈ 10�. cm��. This yields an extra gate spacing 

of about 9 Å. This is probably an overestimate as undoped graphene layers provide efficient screening 

at the same distance due to self-doping11. For the other metallic substrates, we find 1/ij3 ≈  2 Å, 

that corresponds to interatomic distances as expected.    

 

#5. Suppression of umklapp e-e scattering by proximity screening  

It has been shown12 that umklapp e-e scattering (Ê��) substantially increases the resistivity of high-

quality graphene-on-hBN superlattices (SL) in the range of ( between 50 and 200 K. The SL potential 

is generated by the moiré pattern that has a period o ≈ 15 nm for a perfectly aligned graphene and 

hBN crystals. Ê�� is a process where a crystal lattice (superlattice in our case) provides interacting 

electrons with an additional momentum kick such that the momentum conservation takes the form 

Ë� � ËÌ = Ë� � ËÍ � Î, where Ë�,Í and Ë�,Ì  are the initial and final momenta of two electrons near 

the Fermi level, and Î = §ÎÏ, ÎÐ© is a reciprocal vector of the crystal (Supplementary Fig. 4a). Such a 

process becomes possible only for 4g3 > u, where u = |g| = PU
√��  is the length of one of the 6 shortest 

vectors of the reciprocal SL. 

The contribution of Ê�� towards graphene’s resistivity - is given by12 

��- = ℏU
�YVS  ÒÓ����   with  ÒÓ���� = (VWX)Y

�� UYRSvVS ∑ (gÀ)� £ cÔk1cÔk3
Ö¹º[a Ôk2� Ôk4fÖ Ö∑ ∑ ×ØØ(Ù)Ø¦«±IVÙ«I Ö�

g    (S4) 

where ¨Ë  denotes an angle between Ë and K-axis, Ú = ± stands for the conductance/valence-band 

states (fixed by doping), and Ú  marks virtual intermediate states. In Eq. S4, the inverse umklapp 
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scattering length, ÒÓ���� , is determined by the sum of four Feynman diagrams shown in Supplementary 

Fig. 4b, each described by the scattering amplitude  ×ØØ(Ù)
  (  = I, II, III, IV). For example, the first 

diagram gives a contribution 

×ØØ(Û) = ³(Î)ÜÝÞÞ¦ßàák1ÝÎâàák3
Y ã(|ËÍ�ËÌ|)ÜÝßàák2âàák4

Y
ØR|k1|�Ø¦R|k1bÎ|          (S5) 

where �(Î) stands for the scattering amplitude of an electron off the moiré SL13,14, and 

´(i) = ã�(d,c,c¦)
�bã�(d,c,c¦)ä(d)            (S6) 

is the Coulomb interaction screened by both gate and the Fermi sea in graphene; Π(i ≤ 2g3) = �VS 
ℏURS 

is the Thomas-Fermi polarization operator15-18. From the form of �́ in Eq. S2, it is straightforward to 

see that, for e-e scattering with the momentum transfer i~u/2, the gate starts playing a notable 

screening role only if ���� ≲ »¶¸
¶·

�
ç ≈ 0.1o  (���� ≈ � ≪ �). Expressions for the other diagrams in 

Supplementary Fig. 4b can be obtained by changing input momenta and � in Eq. S5. 

The Ê�� contribution, computed using the same SL parameters as those in refs. 12 and 19, exhibits a 

significant suppression for � ≲ 2 nm (Supplementary Fig. 4c). In these calculations, the absolute value 

of Δ- ∝ ÒÓ����  obviously depends on the moiré potential’s strength. To compare the effect of proximity 

screening on Ê�� , without relying on a detailed choice of SL parameters, we also plot the ratio 

ÒÓ���� (∞)/ÒÓ���� (�) at � ≈ z �
� �0 and compare the theoretical results with the experimentally found 

ratio Δ-(∞)/Δ-(�) [see Fig. 3 of the main text]. 

 

Supplementary Figure 4 | Screened umklapp e-e scattering in graphene superlattices. a, Kinematics 

of Ê�� scattering. b, Feynman diagrams for ×ØØ(Ù)
. c, Additional resistivity caused by Ê�� for different 

distances to the gate (color coded).  
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Coulomb drag between adjacent electron and hole gases has attracted considerable attention, being studied 
in various two–dimensional systems, including semiconductor and graphene heterostructures. Here we report 
measurements of electron–hole drag in the Planckian plasma that develops in monolayer graphene in the 
vicinity of its Dirac point above liquid–nitrogen temperatures. The frequent electron–hole scattering forces 
minority carriers to move against the applied electric field due to the drag induced by majority carriers. This 
unidirectional transport of electrons and holes results in nominally negative mobility for the minority carriers. 
The electron–hole drag is found to be strongest near room temperature, despite being notably affected by 
phonon scattering. Our findings provide better understanding of the transport properties of charge–neutral 
graphene, reveal limits on its hydrodynamic description and also offer insight into quantum–critical systems in 
general.  
 
If electron– and hole– doped two–dimensional (2D) conductors are placed in close proximity to each other, 
Coulomb interactions between charge carriers in adjacent layers lead to electron–hole drag (for review, see 
refs.1,2). The drag was extensively studied using various electronic systems based on GaAs heterostructures 
and, more recently, graphene1-12. The strength of Coulomb interaction rapidly increases with decreasing the 
distance between 2D systems, and the ultimately strong drag is expected if electrons and holes coexist within 
the same atomic plane. Graphene near its Dirac or neutrality point (NP) provides the realization of such an 
electronic system. Indeed, close to the NP, a finite temperature T leads to thermal excitations of electrons and 
holes, whereas their relative concentrations can be controlled by gate voltage. The resulting electron–hole 
plasma is strongly interacting and represents a quantum critical system where particle–particle collisions are 
governed by Planckian dissipation13-23. The system is also often referred to as Dirac fluid, assuming inter–
carrier scattering dominates other scattering mechanisms. Because the Dirac plasma in graphene is a relatively 
simple and tunable electronic system, its behavior can be insightful for understanding of electron transport in 
more complex Planckian systems including “strange metals” and high–temperature superconductors in the 
normal state24,25. There is also an interesting conceptual overlap with relativistic electron–positron plasmas 
generated in cosmic events, which are difficult to recreate in laboratory experiments26. Previous experimental 
studies of the Dirac plasma reported its hydrodynamic flow20, the violation of the Wiedemann–Franz law17, 
giant linear magnetoresistance23 and other anomalies indicative of the quantum–critical regime18-23. So far, 
the possibility to probe mutual drag between electron and hole subsystems within the Dirac plasma has 
escaped attention.  
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Longitudinal and Hall resistivity of the Dirac plasma 
Our devices were multi-terminal Hall bars made from monolayer graphene encapsulated between two crystals 
of hexagonal boron nitride. Relatively thick graphite placed under the trilayer heterostructures served as a 
gate electrode. To avoid an obscuring contribution from edge scattering and charge accumulation at device 
boundaries12,27, it was essential to make the Hall bars no less than 10 µm in size. This allowed charge carrier 
mobilities to reach ∼106 cm² V-1 s-1 at low T (measured at finite carrier densities of a few 1011 cm-2). The remnant 
doping was also low, typically ∼2⋅1010 cm-2. We studied several such devices, and 3 of them were chosen for 
detailed analysis of their longitudinal and Hall resistivities near the NP (ρ and RH, respectively). All the devices 
exhibited practically identical characteristics so that, for brevity and consistency, we illustrate the observed 
behavior using the data obtained from one of them. Its optical micrograph is shown in the inset of Fig. 1a.   
Near the NP, where both electrons and holes are present, the total charge density in graphene is given by en 
= e(ne - nh) where ne and nh are the sheet densities of electrons and holes, respectively, and e is the electron 
charge. The charge density en can be controlled capacitively by gate voltage (Supplementary note 1). The 
device’s resistivity ρ as a function of n is shown in Fig. 1a (positive and negative n correspond to electrons and 
holes, respectively).  At low T, ρ(n) exhibits a sharp peak at the NP (red curve). It is instructive18,23 to replot 
ρ(n) in a logarithmic scale (right inset) which reveals that 𝜌𝜌 is weakly density dependent for n ≲ 1010 cm-2. The 
point at which 𝜌𝜌 becomes notably dependent on n is labelled as δn (arrow in the inset of Fig. 1a). The value of 
δn at low T provides a measure of residual charge inhomogeneity (“electron–hole puddles”)18,23. Despite its 
extra–large size (15×30 µm2), the device exhibited δn of only ∼5⋅109 cm-2 at low T. As T increased, the peak in 
ρ(n) became wider and smaller because of thermally excited electrons and holes (black curves in Figs. 1a,b). 
At room T, the measured value of δn increased by an order of magnitude with respect to that at liquid–helium 
T (inset of Fig. 1b). 

The corresponding behavior of Hall resistivity RH near the NP is shown in Fig. 1c. A small magnetic field B was 
applied perpendicular to graphene, and its value (4 mT) was carefully chosen to keep electron transport deep 
in the weak–field limit where RH remained linear in B (nonlinearities started emerging typically above 10 mT) 
and, at the same time, to ensure a large enough Hall response to record RH with high accuracy. Both conditions 

  

Figure 1| Transport characteristics of monolayer graphene near the neutrality point. (a) Resistivity at room and low T 
in zero magnetic field. Left inset: Optical micrograph of one of the studied devices. Scale bar, 10 µm. Right inset: ρ(n) 
measured at 5 K is replotted on a log-log scale. The arrow marks δn at which the resistivity starts responding to gate 
voltage. (b) Zooming in on the behavior of ρ in the vicinity of the NP at 300 K (black symbols, same curve as in a). Inset: 
same as the inset of a but at room T. (c) Room-T Hall resistivity in small B (open symbols). The green curve plots RH 
expected from the standard Drude model assuming electron-hole symmetry µe(n) = µh(n) (the curve does not depend 
on the mobilities’ absolute values). Blue curves: RH = B/ne as expected for a single carrier type. The inset explains how 
we define δnH that is analogous to δn in panels a, b. 
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were essential for our analysis described below. Away from the NP, at densities |n| > 1011 cm-2, RH evolved as 
B/ne, as expected for transport dominated by one type of charge carriers (Fig. 1c). Near the NP, RH(n) departed 
from this dependence due to the presence of both electrons and holes and changed its sign at the NP, 
indicating a switch from majority hole to majority electron transport. The range of n over which both electrons 
and holes contributed to the Hall effect can be characterized by δnH, the distance between the maximum and 
minimum in RH (see the inset of Fig. 1c). δnH did not depend on B (in the discussed limit of weak B) and 
increased with T as the density of thermally excited charge carriers increased. This is illustrated in Fig. 2a that 
shows RH(n) at three different T. As the temperature increased, the extrema in RH were broadened and moved 
further apart. Fig. 2b shows δnH measured over a wide range of T and compares the behavior with δn(T) 
determined from the broadening of the peak in ρ(n). Both δnH and δn exhibit similar values and a roughly 
parabolic T dependence. At low T, they tend to a constant value due to residual charge inhomogeneity.  
The transport behavior described above and illustrated by Figs. 1 and 2 is archetypical of high–quality 
graphene. It was previously observed in numerous experiments but not subjected to in–depth analysis. Most 
often, ρ(n) curves have been used only to evaluate the charge inhomogeneity of a device (as described above) 
and extract the field–effect mobility defined as µ(n) = 1/neρ(n). The latter expression is valid only in the case 
of one type of carrier so that, unsurprisingly, µ has been found to diverge near the NP because n goes through 
zero (blue curve in Fig. 3a). As for the behavior of RH(n), the region close to the NP has usually been ignored 
with reference to the presence of electron–hole puddles. This is justified at liquid–He temperatures but, as 
thermal excitations overpower the effects of charge inhomogeneity with increasing T, electron transport at 
the NP becomes intrinsic. This high–T regime was overlooked previously and merits better understanding, 
which is provided below.  

 
Two–fluid model for the Dirac plasma 
For two types of charge carriers present in graphene near its NP, it is sensible to try to describe the transport 
characteristics using the standard two carrier Drude model28:  

ρ(𝑛𝑛) = 1
𝑒𝑒(𝜇𝜇e𝑛𝑛e+𝜇𝜇h𝑛𝑛h)

     (1) 

 

𝑅𝑅H(𝑛𝑛) = 𝐵𝐵
𝑒𝑒

𝑛𝑛e𝜇𝜇e2−𝑛𝑛h𝜇𝜇h
2

(𝑛𝑛h𝜇𝜇h+𝑛𝑛e𝜇𝜇e)2
 ,    (2)    

 
Figure 2| Hall resistivity in low magnetic fields and thermal broadening at the NP. (a) Examples of RH(n) at different T 
(color coded). (b) Characteristic width of the region where both electrons and holes are present. Symbols: δnH and δn 
extracted from the Hall and longitudinal resistivities, respectively. Blue curves: δnH(T) expected from the standard Drude 
model that ignores electron-hole drag.  
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where µe and µh are the mobilities of electrons and holes, respectively. Their densities are given by ne,h = 
∫ 𝑓𝑓(±𝜀𝜀k,𝛩𝛩)𝐷𝐷𝐷𝐷𝐷𝐷(𝜀𝜀k)𝑑𝑑𝜀𝜀k where 𝑓𝑓(±𝜀𝜀k,𝛩𝛩) is the Fermi–Dirac distribution for electrons (+) and holes (-), and 
𝐷𝐷𝐷𝐷𝐷𝐷(𝜀𝜀k) is the density of states.  For a given n, the electrochemical potential Θ  can be found by solving the 
integral equation n = ne - nh (Supplementary note 2), which in turn allows us to find ne,h as a function of n. At 
the NP (n and Θ = 0), ne = nh ≡ nth = (2π3/3)(kBT/hvF)2 where kB and h are the Boltzmann and Planck constants, 
respectively, and vF is graphene’s Fermi velocity. At room T, the observed intrinsic broadening δnH ≈ δn was 
approximately twice smaller than nth (Fig. 2b). The room–T resistivity of ∼0.9 kOhm at the NP (Fig. 1) 
corresponds to µe = µh ≈ 47,000 cm2 V-1 s-1 and yields the scattering rate of ∼0.3 ps, in agreement with the 
Planckian frequency τP

-1 ≈ CkBT/h where C is the constant of about unity13-23.  
If the electron and hole subsystems were to respond independently to the electric field E, as the standard 
Drude model assumes, the electron–hole symmetry of graphene’s spectrum would imply equal drift velocities 
and, therefore, µe = µh (although the mobilities’ value may depend on n). Then, eq. 2 simplifies to RH(n) = 
nB/e(ne + nh)2 which is independent of scattering times. This dependence is shown in Fig. 1c by the green curve 
that has no adjustable parameters. This curve is profoundly different from those observed experimentally. The 
extrema of the Drude curve are much shallower and occur further away from the NP than in the experiment. 
It also yields δnH ≈ 2.07nth (dashed curve in Fig. 2b), which is ∼4 times larger than δnH measured at room T. If 
a finite charge inhomogeneity is included within the Drude model (solid blue curve in Fig. 2b; Supplementary 
note 4), we achieve a better match between experimental and theoretical curves for δnH at low T but obviously 
this cannot resolve the discrepancy at high T. The failure to explain the sharp transition in RH(n) near the NP 
shows that the standard Drude model, assuming non–interacting fluids, is inadequate to describe the Dirac 
plasma’s transport properties.  
Next, we relax assumptions and, empirically, allow electron and hole mobilities to be unequal and even 
negative (the latter contradicts the Drude model’s assumptions). Equations 1 and 2 contain two unknown 
functions µe(n) and µh(n) and, for each n, their values can uniquely be evaluated from the two measured 
variables, ρ and RH. Combining eqs. 1 and 2, we obtain the following expression: 

𝜇𝜇e,h(𝑛𝑛) = ± 1
𝑛𝑛𝑒𝑒ρ

�1 −�
𝑛𝑛h,e
𝑛𝑛e,h

�1 − 𝑒𝑒𝑅𝑅H
𝐵𝐵
𝑛𝑛�  �      (3). 

The electron and hole mobilities extracted using eq. 3 are plotted in Figs. 3a,b where we limit our analysis to 
T ≥ 150 K so that the density of thermally excited carriers dominates over the residual charge inhomogeneity 
(Fig. 2b).  
At the NP, the electron and hole mobilities are found to be equal as required by symmetry. Away from the NP, 
as the carrier density of either electrons or holes is increased, their mobility also increases, until it saturates 
at n of several nth, where the charge density is dominated by one type of carriers (see Supplementary Fig. 2). 
In contrast, the mobility of the minority carriers rapidly decreases away from the NP and becomes negative at 
|n| ≳ nth. Near room T, the mobility of minority carriers saturates to an absolute value comparable to that of 
majority carriers (Fig. 3a). This means that the minority carriers are dragged by majority carriers in the 
direction opposite to their expected drift direction and, if one type of carriers dominates, the other one is 
forced to drift along with a similar velocity. We observe this reversal in the drift direction for minority carriers 
over our entire temperature range (Fig. 3b) and for all devices. The behavior is attributed to strong Coulomb 
interaction between electrons and holes. For completeness, Fig. 3c shows the T dependence of the extracted 
mobilities at the NP where µe ≡ µh and at a finite density where one carrier type remains present. For charge–
neutral graphene, the mobilities evolve approximately as ∝ 1/T2 and start saturating below 150 K (Fig. 3c) 
where electron–hole puddles can no longer be neglected. Square dependence is expected because the 
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Planckian scattering time τP and the effective mass of the Dirac fermions are both linearly dependent on 1/T 
(ref.29).  

 
Boltzmann model for the Dirac plasma 
Equations 1-3 are inadequate to accurately describe an interacting plasma. The fundamental reason for this is 
that electron–hole scattering leads to momentum relaxation in the electric field direction but not in the 
perpendicular Hall field direction23. Because of this relaxation anisotropy, electron–hole scattering (described 
by time 𝜏𝜏eh) contributes to the transport coefficients in a different way compared to scattering by phonons 
and impurities which can be parametrized by another time 𝜏𝜏. Accordingly, to describe electron transport in 
the Dirac plasma at finite B, we have used the linearized Boltzmann model30 that is presented in 
Supplementary note 3. In brief, the Boltzmann model yields the following coupled Drude–like equations:   

± 𝑒𝑒𝑒𝑒
𝑚𝑚e,h 

+ 𝑢𝑢e,h
𝜏𝜏

± 𝜌𝜌h,e
𝜌𝜌e+𝜌𝜌h

�𝑢𝑢e−𝑢𝑢h
𝜏𝜏eh

� = 0         (4) 

where 𝑢𝑢e,h are the drift velocities of electrons and holes, 𝑚𝑚e,h are their energy–dependent effective masses, 
and 𝜌𝜌e,h are the mass densities (Supplementary note 3). Both 𝜌𝜌e,h and 𝑚𝑚e,h are positive and depend on n and 
T (Supplementary Fig. 3). The first two terms of eq. 4 have exactly the same form as the standard Drude 
equation describing the force acting on a charge carrier due to the electric field and an opposing “frictional” 
force proportional to 1/𝜏𝜏. The third term corresponds to an additional frictional force caused by electron–
hole scattering. This term can attain a value opposite to the electric field term and dominate over it. In the 
latter case, charge carriers would be dragged in the direction opposite to E. Solving eq. 4, we determine ρ and 
RH as a function of n and the two scattering times (these bulky but analytical expressions are provided in 
Supplementary note 3). For each n, we again have only two unknowns (𝜏𝜏eh and 𝜏𝜏) that fully define ρ and RH 
whereas all the other relevant parameters are determined by graphene’s electronic spectrum. The resulting 
coupled nonlinear equations can be solved numerically, which has allowed us to obtain both scattering times 
as shown in Figs. 4a,b.  

Figure 3| Trade-off between electron and hole mobilities near the Dirac point. (a) Room-T mobilities of electrons (solid 
symbols) and holes (open) extracted from Hall and longitudinal resistivities at low B using the modified Drude model. As 
the density of majority carriers increases away from the NP, their mobility also increases but the mobility of minority 
carrier rapidly becomes negative. Blue curve: field-effect mobility extracted under assumption of one type of charge 
carriers. The error bars arise from noise of ∼0.2 Ohm in the measured Hall resistance. (b) Same as in a but at different T 
(color coded). (c) Mobility at the NP (black symbols) and a density of 2⋅1011 cm-2 (red) as a function of T. For self-
consistency, the green curve shows the mobility calculated directly from the minimum conductivity rather than using eq. 
3. Blue curve, T2 dependence. 
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Near room T, the extracted 𝜏𝜏 is practically independent of n. With decreasing T, 𝜏𝜏 starts exhibiting a 
dependence close to √n which is expected for charged impurities and other mechanisms sensitive to screening 
by charge carriers. This square–root dependence yields a mobility independent of carrier density29, typical of 
graphene at low T. At the NP, 𝜏𝜏 depends relatively weakly on T over our entire temperature range. 
Nonetheless, note that 𝜏𝜏(n=0) first increases with increasing T, presumably due to stronger screening by the 
increasingly dense Dirac plasma. Then, above 200 K, 𝜏𝜏 decreases because of phonon scattering (Fig. 4a). As for 
𝜏𝜏eh, it exhibits relatively weak dependence on doping (note that the prefactor in the third term of eq. 4 account 
for the n dependence of electron–hole friction caused by the varying mass densities). Some electron–hole 
asymmetry observed below 200 K (Fig. 4b) originates from subtly asymmetric ρ(n) and RH(n) found in the 
experiment, probably because of remnant doping. With increasing T, 𝜏𝜏eh evolves as Planckian scattering, that 
is, 𝜏𝜏eh≈ h/CkBT where C ≈ 0.6, in good agreement with the coefficient reported previously23. Furthermore, the 
inset of Fig. 4b plots the T dependence of 𝜏𝜏/𝜏𝜏eh at the NP. It exhibits relatively little scatter thanks to the fact 
that RH(n) depends only on the ratio 𝜏𝜏/𝜏𝜏eh rather than the individual times and is very sensitive to its absolute 
value, which minimizes errors in our numerical analysis (Supplementary note 3).  
We emphasize that the ratio 𝜏𝜏/𝜏𝜏eh does not exceed 4 at any T, meaning that phonon and impurity scattering 
significantly affect electron–hole drag in the Dirac plasma, especially below 200 K. This bears ramifications for 
hydrodynamic description of the Dirac plasma. Indeed, to observe a viscous flow, it is imperative to have 
particle–particle scattering more frequent than momentum–relaxing scattering. The particle–particle 
scattering time 𝜏𝜏v that defines electron viscosity of the Dirac plasma is generally expected to be comparable 
to 𝜏𝜏eh. This means that, even under the most favorable conditions (close to room T), the ratio 𝜏𝜏/𝜏𝜏v near the 
neutrality point is modest (a factor of several at most), suppressing viscous effects, which agrees with recent 
observations31,32. At lower T where values of 𝜏𝜏eh and 𝜏𝜏 become close, it would be difficult, if not impossible, 
to observe even remnants of electron hydrodynamics.  
 
Justifying the modified Drude model  
It is instructive to calculate electron and hole mobilities from the scattering times found using the Boltzmann 
model (Supplementary note 3). The results are shown in Fig. 4c for the case of room T where our accuracy was 
highest because of the largest 𝜏𝜏/𝜏𝜏eh ≈ 4. As expected, the Boltzmann analysis also yields negative mobilities 
for minority carriers at |n|> nth and saturating drift velocities in the same direction for both electrons and 

Figure 4| Scattering times in graphene’s Dirac plasma and comparison between the Boltzmann and modified Dirac 
models. (a) Extracted 𝜏𝜏(n) caused by impurities and phonons at different T (color coded). (b) Similarly for electron-hole 
scattering. Experimental errors rapidly increase away from the NP because a contribution of 𝜏𝜏𝑒𝑒ℎ  towards the transport 
coefficients is exponentially small beyond a few nth. The inset shows the temperature dependence of 𝜏𝜏/𝜏𝜏𝑒𝑒ℎ  at the NP. (c) 
Comparison of the mobilities found using the modified Drude model (black curves, same as in Fig. 3a) and calculated 
from the Boltzmann model (red) using the scattering times from panels a and b. 
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holes, if doping is larger than a few nth. In the limit 𝜏𝜏 → ∞, both electrons and holes are expected to drift with 
the same velocity (Supplementary note 3). The finite 𝜏𝜏/𝜏𝜏eh reduces the drift velocity of minority carriers and, 
at room T, it is approximately twice smaller than the velocity of majority carriers. Although the modified Drude 
model does not distinguish between electron–hole and electron–phonon scattering, it agrees surprisingly well 
with the Boltzmann analysis. Notable deviations occur only for minority carriers and do not exceed ∼20% (Fig. 
4c). The agreement was found to be similar for all the studied devices at T above 150 K. This shows that, 
however empirical, the Drude model with different and sign–varying µe(n) and µh(n) can be used for a semi–
quantitative description of the Dirac plasma in weak fields (RH should remain linear in B; see Supplementary 
note 3). Furthermore, both Boltzmann and modified–Drude models describe equally well the measured 
dependence δnH(T) shown in Fig. 2b (Supplementary Figs. 4-5).  
 
Conclusion 
Graphene’s transport characteristics near the NP cannot possibly be understood without considering the 
strong interaction between the electron and hole subsystems within the Dirac plasma because minority 
carriers are dragged in the same direction as majority carriers. The observed behavior of both the longitudinal 
and Hall resistivities is accurately described by our Boltzmann analysis, which allows quantitative evaluation 
of the scattering rates. Inevitable scattering by phonons and impurities reduces the achievable value of the 
ratio 𝜏𝜏/𝜏𝜏eh so that the minority carriers in the Dirac plasma always lag behind majority ones. For high–quality 
encapsulated graphene, mutual drag is strongest near room T where the minority carriers drift at 
approximately half the velocity of majority carriers. This shows that impurity and phonon scattering 
significantly affects the transport properties of graphene’s Dirac plasma and, in particular, suppresses its 
viscous (hydrodynamic) behavior31-34.  
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A finite spin life-time of conduction electrons may dominate Gilbert damping of two-dimensional
metallic anti-ferromagnets or anti-ferromagnet/metal heterostructures. We investigate the Gilbert
damping tensor for a typical low-energy model of a metallic anti-ferromagnet system with honeycomb
magnetic lattice and Rashba spin-orbit coupling for conduction electrons. We distinguish three
regimes of spin relaxation: exchange-dominated relaxation for weak spin-orbit coupling strength,
Elliot-Yafet relaxation for moderate spin-orbit coupling, and Dyakonov-Perel relaxation for strong
spin-orbit coupling. We show, however, that the latter regime takes place only for the in-plane
Gilbert damping component. We also show that anisotropy of Gilbert damping persists for any
finite spin-orbit interaction strength provided we consider no spatial variation of the Néel vector.
Isotropic Gilbert damping is restored only if the electron spin-orbit length is larger than the magnon
wavelength. Our theory applies to MnPS3 monolayer on Pt or to similar systems.

I. INTRODUCTION

Magnetization dynamics in anti-ferromagnets con-
tinue to attract a lot of attention in the context
of possible applications1–4. Various proposals utilize
the possibility of THz frequency switching of anti-
ferromagnetic domains for ultrafast information storage
and computation5,6. The rise of van der Waals magnets
has had a further impact on the field due to the pos-
sibility of creating tunable heterostructures that involve
anti-ferromagnet and semiconducting layers7.
Understanding relaxation of both the Néel vector and

non-equilibrium magnetization in anti-ferromagnets is
recognized to be of great importance for the function-
ality of spintronic devices8–13. On one hand, low Gilbert
damping must generally lead to better electric control of
magnetic order via domain wall motion or ultrafast do-
main switching14–16. On the other hand, an efficient con-
trol of magnetic domains must generally require a strong
coupling between charge and spin degrees of freedom due
to a strong spin-orbit interaction, that is widely thought
to be equivalent to strong Gilbert damping.

In this paper, we focus on a microscopic analysis of
Gilbert damping due to Dyakonov-Perel and Elliot-Yafet
mechanisms. We apply the theory to a model of a two-
dimensional Néel anti-ferromagnet with a honeycomb
magnetic lattice.

Two-dimensional magnets typically exhibit either
easy-plane or easy-axis anisotropy, and play crucial
roles in stabilizing magnetism at finite temperatures17,18.
Easy-axis anisotropy selects a specific direction for mag-
netization, thereby defining an axis for the magnetic or-
der. In contrast, easy-plane anisotropy does not select a
particular in-plane direction for the Néel vector, allowing
it to freely rotate within the plane. This situation is anal-
ogous to the XY model, where the system’s continuous
symmetry leads to the suppression of out-of-plane fluc-
tuations rather than fixing the magnetization in a spe-
cific in-plane direction19,20. Without this anisotropy, the

magnonic fluctuations in a two-dimensional crystal can
grow uncontrollably large to destroy any long-range mag-
netic order, according to the Mermin-Wagner theorem21.

Recent density-functional-theory calculations for
single-layer transition metal trichalgenides22, predict the
existence of a large number of metallic anti-ferromagnets
with honeycomb lattice and different types of magnetic
order as shown in Fig. 1. Many of these crystals may
have the Néel magnetic order as shown in Fig. 1a and are
metallic: FeSiSe3, FeSiTe3, VGeTe3, MnGeS3, FeGeSe3,
FeGeTe3, NiGeSe3, MnSnS3, MnSnS3, MnSnSe3,
FeSnSe3, NiSnS3. Apart from that it has been predicted
that anti-ferromagnetism can be induced in graphene by
bringing it in proximity to MnPSe3

23 or by bringing it
in double proximity between a layer of Cr2Ge2Te6 and
WS2

24.

Partly inspired by these predictions and recent
technological advances in producing single-layer anti-
ferromagnet crystals, we propose an effective model to
study spin relaxation in 2D honeycomb anti-ferromagnet
with Néel magnetic order. The same system was studied
by us in Ref. 25, where we found that spin-orbit cou-
pling introduces a weak anisotropy in spin-orbit torque
and electric conductivity. Strong spin-orbit coupling was
shown to lead to a giant anisotropy of Gilbert damping.

Our analysis below is built upon the results of Ref. 25,
and we investigate and identify three separate regimes
of spin-orbit strength. Each regime is characterized by
qualitatively different dependence of Gilbert damping on
spin-orbit interaction and conduction electron transport
time. The regime of weak spin-orbit interaction is dom-
inated by exchange field relaxation of electron spin, and
the regime of moderate spin-orbit strength is dominated
by Elliot-Yafet spin relaxation. These two regimes are
characterized also by a universal factor of 2 anisotropy
of Gilbert damping. The regime of strong spin-orbit
strength, which leads to substantial splitting of electron
Fermi surfaces, is characterized by Dyakonov-Perel relax-
ation of the in-plane spin component and Elliot-Yafet re-
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FIG. 1. Three anti-ferromagnetic phases commonly found
among van-der-Waals magnets. Left-to-right: Néel, zig-zag,
and stripy.

laxation of the perpendicular-to-the-plane Gilbert damp-
ing which leads to a giant damping anisotropy. Isotropic
Gilbert damping is restored only for finite magnon wave
vectors such that the magnon wavelength is smaller than
the spin-orbit length.

Gilbert damping in a metallic anti-ferromagnet can be
qualitatively understood in terms of the Fermi surface
breathing26. A change in the magnetization direction
gives rise to a change in the Fermi surface to which the
conduction electrons have to adjust. This electronic re-
configuration is achieved through the scattering of elec-
trons off impurities, during which angular momentum is
transferred to the lattice. Gilbert damping, then, should
be proportional to both (i) the ratio of the spin life-time
and momentum life-time of conduction electrons, and (ii)
the electric conductivity. Keeping in mind that the con-
ductivity itself is proportional to momentum life-time,
one may conclude that the Gilbert damping is linearly
proportional to the spin life-time of conduction electrons.
At the same time, the spin life-time of localized spins is
inversely proportional to the spin life-time of conduc-
tion electrons. A similar relation between the spin life-
times of conduction and localized electrons also holds
for relaxation mechanisms that involve electron-magnon
scattering27.

Our approach formally decomposes the magnetic sys-
tem into a classical sub-system of localized magnetic mo-
ments and a quasi-classical subsystem of conduction elec-
trons. A local magnetic exchange couples these sub-
systems. Localized magnetic moments in transition-
metal chalcogenides and halides form a hexagonal lat-
tice. Here we focus on the Néel type anti-ferromagnet
that is illustrated in Fig. 1a. In this case, one can de-
fine two sub-lattices A and B that host local magnetic
moments SA and SB, respectively. For the discussion of
Gilbert damping, we ignore the weak dependence of both
fields on atomic positions and assume that the modulus
S = |SA(B)| is time-independent.

Under these assumptions, the magnetization dynamics
of localized moments may be described in terms of two
fields

m =
1

2S

(
SA + SB

)
, n =

1

2S

(
SA − SB

)
, (1)

which are referred to as the magnetization and staggered

magnetization (or Néel vector), respectively. Within the
mean-field approach, the vector fields yield the equations
of motion

ṅ = − J n×m+ n× δs+ +m× δs−, (2a)

ṁ =m× δs+ + n× δs−, (2b)

where dot stands for the time derivative, while δs+ and
δs− stand for the mean staggered and non-staggered non-
equilibrium fields that are proportional to the variation of
the corresponding spin-densities of conduction electrons
caused by the time dynamics of n and m fields. The en-
ergy J is proportional to the anti-ferromagnet exchange
energy for localized momenta.
In Eqs. (2) we have omitted terms that are propor-

tional to easy axis anisotropy for the sake of compact-
ness. These terms are, however, important and will be
introduced later in the text.
In the framework of Eqs. (2) the Gilbert damping can

be computed as the linear response of the electron spin-
density variation to a time change in both the magneti-
zation and the Néel vector (see e. g. Refs.25,28,29).
In this definition, Gilbert damping describes the re-

laxation of localized spins by transferring both total and
staggered angular momenta to the lattice by means of
conduction electron scattering off impurities. Such a
transfer is facilitated by spin-orbit interaction.
The structure of the full Gilbert damping tensor can be

rather complicated as discussed in Ref. 25. However, by
taking into account easy axis or easy plane anisotropy we
may reduce the complexity of relevant spin configurations
to parameterize

δs+ = α∥
mṁ∥ + α⊥

mṁ⊥ + αmn∥ × (n∥ × ṁ∥), (3a)

δs− = α∥
nṅ∥ + α⊥

n ṅ⊥ + αnn∥ × (n∥ × ṅ∥), (3b)

where the superscripts ∥ and ⊥ refer to the in-plane
and perpendicular-to-the-plane projections of the corre-

sponding vectors, respectively. The six coefficients α
∥
m,

α⊥
m, αm, α

∥
n, α⊥

n , and αn parameterize the Gilbert damp-
ing.

Inserting Eqs. (3) into the equations of motion of
Eqs. (2) produces familiar Gilbert damping terms. The
damping proportional to time-derivatives of the Néel vec-
tor n is in general many orders of magnitude smaller than
that proportional to the time-derivatives of the magneti-
zation vector m25,30. Due to the same reason, the higher
harmonics term αmn∥ × (n∥ × ∂tm∥) can often be ne-
glected.

Thus, in the discussion below we may focus mostly on

the coefficients α
∥
m and α⊥

m that play the most important
role in the magnetization dynamics of our system. The
terms proportional to the time-derivative of n correspond
to the transfer of angular momentum between the sub-
lattices and are usually less relevant. We refer to the
results of Ref. 25 when discussing these terms.

All Gilbert damping coefficients are intimately related
to the electron spin relaxation time. The latter is rel-
atively well understood in non-magnetic semiconductors



3

with spin-orbital coupling. When a conducting electron
moves in a steep potential it feels an effective magnetic
field caused by relativistic effects. Thus, in a disordered
system, the electron spin is subject to a random magnetic
field each time it scatters off an impurity. At the same
time, an electron also experiences precession around an
effective spin-orbit field when it moves in between the
collisions. Changes in spin direction between collisions
are referred to as Dyakonov-Perel relaxation31,32, while
changes in spin-direction during collisions are referred to
as Elliot-Yafet relaxation33,34.

The spin-orbit field in semiconductors induces a char-
acteristic frequency of spin precession Ωs, while scalar
disorder leads to a finite transport time τ of the con-
ducting electrons. One may, then, distinguish two limits:
(i) Ωsτ ≪ 1 in which case the electron does not have
sufficient time to change its direction between consec-
utive scattering events (Elliot-Yafet relaxation), and (ii)
Ωsτ ≫ 1 in which case the electron spin has multiple pre-
cession cycles in between the collisions (Dyakonov-Perel
relaxation).

The corresponding processes define the so-called spin
relaxation time, τs. In a 2D system the spin life-time

τ
∥
s , for the in-plane spin components, appears to be dou-
ble the size of the life-time of the spin component that
is perpendicular to the plane, τ⊥s

32. This geometric ef-
fect has largely been overlooked. For non-magnetic 2D
semiconductor one can estimate35,36

1

τ
∥
s

∼

{
Ω2

sτ, Ωsτ ≪ 1

1/τ, Ωsτ ≫ 1
, τ∥s = 2τ⊥s . (4)

A pedagogical derivation and discussion of Eq. 4 can
be found in Refs. 35 and 36. Because electrons are con-
fined in two dimensions the random spin-orbit field is
always directed in-plane, which leads to a decrease in the
in-plane spin-relaxation rate by a factor of two compared
to the out-of-plane spin-relaxation rate as demonstrated
first in Ref. 32 (see Refs. 36–40 as well). The reason is
that the perpendicular-to-the-plane component of spin is
influenced by two components of the randomly changing
magnetic field, i. e. x and y, whereas the parallel-to-the-
plane spin components are only influenced by a single
component of the fluctuating fields, i. e. the x spin pro-
jection is influenced only by the y component of the field
and vice-versa. The argument has been further general-
ized in Ref. 25 to the case of strongly separated spin-orbit
split Fermi surfaces. In this limit, the perpendicular-to-
the-plane spin-flip processes on scalar disorder potential
become fully suppressed. As a result, the perpendicular-
to-the-plane spin component becomes nearly conserved,
which results in a giant anisotropy of Gilbert damping in
this regime.

In magnetic systems that are, at the same time, con-
ducting there appears to be at least one additional energy
scale, ∆sd, that characterizes exchange coupling of con-
duction electron spin to the average magnetic moment of
localized electrons. (In the case of s-d model description

it is the magnetic exchange between the spin of conduc-
tion s electron and the localized magnetic moment of d
or f electron on an atom.) This additional energy scale
complicates the simple picture of Eq. (4) especially in the
case of an anti-ferromagnet. The electron spin precession
is now defined not only by spin-orbit field but also by
∆sd. As the result the conditions Ωsτ ≪ 1 and ∆sdτ ≫ 1
may easily coexist. This dissolves the distinction between
Elliot-Yafet and Dyakonov-Perel mechanisms of spin re-
laxation. One may, therefore, say that both Elliot-Yafet
and Dyakonov-Perel mechanisms may act simultaneously
in a typical 2D metallic magnet with spin-orbit coupling.
The Gilbert damping computed from the microscopic
model that we formulate below will always contain both
contributions to spin-relaxation.

II. MICROSCOPIC MODEL AND RESULTS

The microscopic model that we employ to calculate
Gilbert damping is the so-called s–d model that couples
localized magnetic momenta SA and SB and conducting
electron spins via the local magnetic exchange ∆sd. Our
effective low-energy Hamiltonian for conduction electrons
reads

H = vf p ·Σ+
λ

2

[
σ×Σ

]
z
−∆sd n ·σΣzΛz +V (r), (5)

where the vectors Σ, σ and Λ denote the vectors of Pauli
matrices acting on sub-lattice, spin and valley space,
respectively. We also introduce the Fermi velocity vf ,
Rashba-type spin-orbit interaction λ, and a random im-
purity potential V (r).
The Hamiltonian of Eq. (5) can be viewed as the

graphene electronic model where conduction electrons
have 2D Rashba spin-orbit coupling and are also cou-
pled to anti-ferromagnetically ordered classical spins on
the honeycomb lattice.

The coefficients α
∥
m and α⊥

m are obtained using linear
response theory for the response of spin-density δs+ to
the time-derivative of magnetization vector ∂tm. Impu-
rity potential V (r) is important for describing momen-
tum relaxation to the lattice. This is related to the an-
gular momentum relaxation due to spin-orbit coupling.
The effect of random impurity potential is treated pertur-
batively in the (diffusive) ladder approximation that in-
volves a summation over diffusion ladder diagrams. The
details of the microscopic calculation can be found in the
Appendices.
Before presenting the disorder-averaged quantities

α
∥,⊥
m , it is instructive to consider first the contribution

to Gilbert damping originating from a small number of
electron-impurity collisions. This clarifies how the num-
ber of impurity scattering effects will affect the final re-
sult.
Let us annotate the Gilbert damping coefficients with

an additional superscript (l) that denotes the number
of scattering events that are taken into account. This
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ᾱ
(0)
‖

ᾱ
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FIG. 2. Gilbert damping in the limit ∆sd = 0. Dotted (green)
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corrected) results for ᾱ
⊥,∥.
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means, in the diagrammatic language, that the corre-
sponding quantity is obtained by summing up the ladder
diagrams with ≤ l disorder lines. Each disorder line cor-
responds to a quasi-classical scattering event from a sin-
gle impurity. The corresponding Gilbert damping coeffi-
cient is, therefore, obtained in the approximation where
conduction electrons have scattered at most l number
of times before releasing their non-equilibrium magnetic
moment into a lattice.

To make final expressions compact we define the di-

mensionless Gilbert damping coefficients ᾱ
∥,⊥
m by extract-

ing the scaling factor

α∥,⊥
m =

A∆2
sd

πℏ2v2fS
ᾱ∥,⊥
m , (6)

where A is the area of the unit cell, vf is the Fermi ve-
locity of the conducting electrons and ℏ = h/2π is the
Planck’s constant. We also express the momentum scat-
tering time τ in inverse energy units, τ → ℏτ .
Let us start by computing the coefficients ᾱ

∥,⊥(l)
m in the

formal limit ∆sd → 0. We can start with the “bare bub-
ble” contribution which describes spin relaxation without
a single scattering event. The corresponding results read

ᾱ
(0)
m,⊥ = ετ

1− λ2/4ε2

1 + λ2τ2
, (7a)

ᾱ
(0)
m,∥ = ετ

(
1 + λ2τ2/2

1 + λ2τ2
− λ2

8ε2

)
, (7b)

where ε denotes the Fermi energy which we consider pos-
itive (electron-doped system).

In all realistic cases, we have to consider λ/ε ≪ 1,
while the parameter λτ may in principle be arbitrary. For
λτ ≪ 1 the disorder-induced broadening of the electron
Fermi surfaces exceeds the spin-orbit induced splitting.
In this case one basically finds no anisotropy of “bare”

damping: ᾱ
(0)
m,⊥ = ᾱ

(0)
m,∥. In the opposite limit of substan-

tial spin-orbit splitting one gets an ultimately anisotropic

damping ᾱ
(0)
m,⊥ ≪ ᾱ

(0)
m,∥. This asymptotic behavior can be

summarized as

ᾱ
(0)
m,⊥ = ετ

{
1 λτ ≪ 1,

(λτ)−2 λτ ≫ 1,
(8a)

ᾱ
(0)
m,∥ = ετ

{
1 λτ ≪ 1,
1
2

(
1 + (λτ)−2

)
λτ ≫ 1,

(8b)

where we have used that ε≫ λ.
The results of Eq. (8) modify by electron diffusion. By

taking into account up to l scattering events we obtain

ᾱ
(l)
m,⊥ = ετ

{
l +O(λ2τ2) λτ ≪ 1,

(1 + δl0)/(λτ)
2 λτ ≫ 1,

(9a)

ᾱ
(l)
m,∥ = ετ

{
l +O(λ2τ2) λτ ≪ 1,

1− (1/2)l+1 +O((λτ)
−2

) λτ ≫ 1,
(9b)

where we have used ε≫ λ again.
From Eqs. (9) we see that the Gilbert damping for

λτ ≪ 1 gets an additional contribution of ετ from each
scattering event as illustrated numerically in Fig. 2. This
leads to a formal divergence of Gilbert damping in the
limit λτ ≪ 1. While, at first glance, the divergence looks
like a strong sensitivity of damping to impurity scatter-
ing, in reality, it simply reflects a diverging spin life-time.
Once a non-equilibrium magnetization m is created it
becomes almost impossible to relax it to the lattice in
the limit of weak spin-orbit coupling. The formal diver-

gence of α⊥
m = α

∥
m simply reflects the conservation law

for electron spin polarization in the absence of spin-orbit
coupling such that the corresponding spin life-time be-
comes arbitrarily large as compared to the momentum
scattering time τ .
By taking the limit l → ∞ (i. e. by summing up the

entire diffusion ladder) we obtain compact expressions

ᾱ⊥
m ≡ ᾱ

(∞)
m,⊥ = ετ

1

2λ2τ2
, (10a)

ᾱ∥
m ≡ ᾱ

(∞)
m,∥ = ετ

1 + λ2τ2

λ2τ2
, (10b)

which assume ᾱ⊥
m ≪ ᾱ

∥
m for λτ ≫ 1 and ᾱ⊥

m = ᾱ
∥
m/2

for λτ ≪ 1. The factor of 2 difference that we observe
when λτ ≪ 1, corresponds to a difference in the elec-

tron spin life-times τ⊥s = τ
∥
s /2 that was discussed in the

introduction32.
Strong spin-orbit coupling causes a strong out-of-plane

anisotropy of damping, ᾱ⊥
m ≪ ᾱ

∥
m which corresponds to
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a suppression of the perpendicular-to-the-plane damping
component. As a result, the spin-orbit interaction makes
it much easier to relax the magnitude of the mz compo-
nent of magnetization than that of in-plane components.

Let us now turn to the dependence of ᾱm coefficients on
∆sd that is illustrated numerically in Fig. 3. We consider
first the case of absent spin-orbit coupling λ = 0. In
this case, the combination of spin-rotational and sub-
lattice symmetry (the equivalence of A and B sub-lattice)
must make Gilbert damping isotropic (see e. g.25,41). The
direct calculation for λ = 0 does, indeed, give rise to the

isotropic result ᾱ⊥
m = ᾱ

∥
m = ετ(ε2+∆2

sd)/2∆
2
sd, which is,

however, in contradiction to the limit λ→ 0 in Eq. (10).
At first glance, this contradiction suggests the exis-

tence of a certain energy scale for λ over which the
anisotropy emerges. The numerical analysis illustrated
in Fig. 4 reveals that this scale does not depend on the
values of 1/τ , ∆sd, or ε. Instead, it is defined solely by
numerical precision. In other words, an isotropic Gilbert
damping is obtained only when the spin-orbit strength
λ is set below the numerical precision in our model.
We should, therefore, conclude that the transition from
isotropic to anisotropic (factor of 2) damping occurs ex-
actly at λ = 0. Interestingly, the factor of 2 anisotropy is
absent in Eqs. (8) and emerges only in the diffusive limit.

We will see below that this paradox can only be re-
solved by analyzing the Gilbert damping beyond the in-
finite wave-length limit.

One can see from Fig. 3 that the main effect of finite
∆sd is the regularization of the Gilbert damping diver-
gency (λτ)−2 in the limit λτ ≪ 1. Indeed, the limit of
weak spin-orbit coupling is non-perturbative for ∆sd/ε≪
λτ ≪ 1, while, in the opposite limit, λτ ≪ ∆sd/ε ≪ 1,
the results of Eqs. (10) are no longer valid. Assuming
∆sd/ε≪ 1 we obtain the asymptotic expressions for the
results presented in Fig. 3 as

ᾱ⊥
m =

1

2
ετ

{
2
3
ε2+∆2

sd

∆2
sd

λτ ≪ ∆sd/ε,

1
λ2τ2 λτ ≫ ∆sd/ε,

(11a)

ᾱ∥
m = ετ

{
2
3
ε2+∆2

sd

∆2
sd

λτ ≪ ∆sd/ε,

1 + 1
λ2τ2 λτ ≫ ∆sd/ε,

(11b)

which suggest that ᾱ⊥
m/ᾱ

∥
m = 2 for λτ ≪ 1. In the op-

posite limit, λτ ≫ 1, the anisotropy of Gilbert damping

grows as ᾱ
∥
m/ᾱ⊥

m = 2λ2τ2.
The results of Eqs. (11) can also be discussed in terms

of the electron spin life-time, τ
⊥(∥)
s = ᾱ

⊥(∥)
m /ε. For the

inverse in-plane spin life-time we find

1

τ
∥
s

=


3∆2

sd/2ε
2τ λτ ≪ ∆sd/ε,

λ2τ ∆sd/ε≪ λτ ≪ 1,

1/τ 1 ≪ λτ,

(12)

that, for ∆sd = 0, is equivalent to the known result of
Eq. (4). Indeed, for ∆sd = 0, the magnetic exchange
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⊥

[ε
τ
]
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ᾱm,‖
ᾱm,⊥

FIG. 3. Numerical results for the Gilbert damping compo-
nents in the diffusive limit (vertex corrected)as the function
of the spin-orbit coupling strength λ. The results correspond
to ετ = 50 and ∆sdτ = 0.1 and agree with the asymptotic
expressions of Eq. (11). Three different regimes can be dis-

tinguished for ᾱ
∥
m: i) spin-orbit independent damping ᾱ

∥
m ∝

ε3τ/∆2
sd for the exchange dominated regime, λτ ≪ ∆sd/ε, ii)

the damping ᾱ
∥
m ∝ ε/λ2τ for Elliot-Yafet relaxation regime,

∆sd/ε ≪ λτ ≪ 1, and iii) the damping ᾱ
∥
m ∝ ετ for the

Dyakonov-Perel relaxation regime, λτ ≫ 1. The latter regime
is manifestly absent for ᾱ⊥

m in accordance with Eqs. (12,13).

plays no role and one observes the cross-over from Elliot-
Yafet (λτ ≪ 1) to Dyakonov-Perel (λτ ≫ 1) spin relax-
ation.
This cross-over is, however, absent in the relaxation of

the perpendicular spin component

1

τ⊥s
= 2

{
3∆2

sd/2ε
2τ λτ ≪ ∆sd/ε,

λ2τ ∆sd/ε≪ λτ,
(13)

where Elliot-Yafet-like relaxation extends to the regime
λτ ≫ 1.
As mentioned above, the factor of two anisotropy in

spin-relaxation of 2D systems, τ
∥
s = 2τ⊥s , is known in the

literature32 (see Refs.36–38 as well). Unlimited growth of

spin life-time anisotropy, τ
∥
s /τ⊥s = 2λ2τ2, in the regime

λτ ≪ 1 has been described first in Ref. 25. It can be qual-
itatively explained by a strong suppression of spin-flip
processes for z spin component due to spin-orbit induced
splitting of Fermi surfaces. The mechanism is effective
only for scalar (non-magnetic) disorder. Even though
such a mechanism is general for any magnetic or non-
magnetic 2D material with Rashba-type spin-orbit cou-
pling, the effect of the spin life-time anisotropy on Gilbert
damping is much more relevant for anti-ferromagnets. In-
deed, in an anti-ferromagnetic system the modulus of m
is, by no means, conserved, hence the variations of per-
pendicular and parallel components of the magnetization
vector are no longer related.
In the regime, λτ ≪ ∆sd/ε the spin life-time is de-

fined by exchange interaction and the distinction between
Dyakonov-Perel and Elliot-Yafet mechanisms of spin re-
laxation is no longer relevant. In this regime, the spin-
relaxation time is by a factor (ε/∆sd)

2 larger than the
momentum relaxation time.
Let us now return to the problem of emergency of the
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FIG. 4. Numerical evaluation of Gilbert damping anisotropy
in the limit λ → 0. Isotropic damping tensor is restored only
if λ = 0 with ultimate numerical precision. The factor of 2
anisotropy emerges at any finite λ, no matter how small it
is, and only depends on the numerical precision n, i.e. the
number of digits contained in each variable during computa-
tion. The crossover from isotropic to anisotropic damping can
be understood only by considering finite, though vanishingly
small, magnon q vectors.

factor of 2 anisotropy of Gilbert damping at λ = 0. We
have seen above (see Fig. 4) that, surprisingly, there ex-
ists no energy scale for the anisotropy to emerge. The
transition from the isotropic limit (λ = 0) to a finite
anisotropy appeared to take place exactly at λ = 0. We
can, however, generalize the concept of Gilbert damping
by considering the spin density response function at a
finite wave vector q.

To generalize the Gilbert damping, we are seeking a
response of spin density at a point r, δs+(r) to a time
derivative of magnetization vectors ṁ∥ and ṁ⊥ at the
point r′. The Fourier transform with respect to r − r′

gives the Gilbert damping for a magnon with the wave-
vector q.

The generalization to a finite q-vector shows that the
limits λ → 0 and q → 0 cannot be interchanged. When
the limit λ → 0 is taken before the limit q → 0 one
finds an isotropic Gilbert damping, while for the oppo-
site order of limits, it becomes a factor of 2 anisotropic.
In a realistic situation, the value of q is limited from
below by an inverse size of a typical magnetic domain
1/Lm, while the spin-orbit coupling is effective on the
length scale Lλ = 2πℏvf/λ. In this picture, the isotropic
Gilbert damping is characteristic for the case of suffi-
ciently small domain size Lm ≪ Lλ, while the anisotropic
Gilbert damping corresponds to the case Lλ ≪ Lm.

In the limit qℓ≪ 1, where ℓ = vfτ is the electron mean

−2 0 2
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0.0

2.5
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gy
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FIG. 5. Band-structure for the effective model of Eq. (5)
in a vicinity of K valley assuming nz = 1. Electron bands
touch for λ = 2∆sd. The regime λ ≤ 2∆sd corresponds to
spin-orbit band inversion. The band structure in the valley
K′ is inverted. Our microscopic analysis is performed in the
electron-doped regime for the Fermi energy above the gap as
illustrated by the top dashed line. The bottom dashed line
denotes zero energy (half-filling).

free path, we can summarize our results as

ᾱ⊥
m = ετ


ε2+∆2

sd

2∆2
sd

λτ ≪ qℓ≪ ∆sd/ε,

1
3
ε2+∆2

sd

∆2
sd

qℓ≪ λτ ≪ ∆sd/ε,
1

2λ2τ2 λτ ≫ ∆sd/ε,

, (14a)

ᾱ∥
m = ετ


ε2+∆2

sd

2∆2
sd

λτ ≪ qℓ≪ ∆sd/ε,

2
3
ε2+∆2

sd

∆2
sd

qℓ≪ λτ ≪ ∆sd/ε,

1 + 1
λ2τ2 λτ ≫ ∆sd/ε,

(14b)

which represent a simple generalization of Eqs. (11).
The results of Eqs. (14) correspond to a simple behav-

ior of Gilbert damping anisotropy,

ᾱ∥
m/ᾱ

⊥
m =

{
1 λτ ≪ qℓ,

2
(
1 + λ2τ2

)
qℓ≪ λτ,

(15)

where we still assume qℓ≪ 1.

III. ANTI-FERROMAGNETIC RESONANCE

The broadening of the anti-ferromagnet resonance
peak is one obvious quantity that is sensitive to Gilbert
damping. The broadening is however not solely defined
by a particular Gilbert damping component but depends
also on both magnetic anisotropy and anti-ferromagnetic
exchange.
To be more consistent we can use the model of Eq. (5)

to analyze the contribution of conduction electrons to an
easy axis anisotropy. The latter is obtained by expanding
the free energy for electrons in the value of nz, which has
a form E = −Kn2z/2. With the conditions ε/λ ≫ 1 and
ε/∆sd ≫ 1 we obtain the anisotropy constant as

K =
A

2πℏ2v2

{
∆2

sdλ 2∆sd/λ ≤ 1,

∆sdλ
2/2 2∆sd/λ ≥ 1,

(16)
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where A is the area of the unit cell. Here we assume
both λ and ∆sd positive, therefore, the model natu-
rally gives rise to an easy axis anisotropy with K > 0.
In real materials, there exist other sources of easy axis
or easy plane anisotropy. In-plane magneto-crystalline
anisotropy also plays an important role. For example,
Néel-type anti-ferromagnets with easy-axis anisotropy
are FePS3, FePSe3 or MnPS3, whereas those with easy
plane and in-plane magneto-crystalline anisotropy are
NiPS3 and MnPSe3. Many of those materials are, how-
ever, Mott insulators. Our qualitative theory may still
apply to materials like MnPS3 monolayers at strong elec-
tron doping.

The transition from 2∆sd/λ ≥ 1 to 2∆sd/λ ≤ 1 in
Eq. (16) corresponds to the touching of two bands in the
model of Eq. (5) as illustrated in Fig. 5.

Anti-ferromagnetic magnon frequency and life-time in
the limit q → 0 are readily obtained by linearizing the
equations of motion

ṅ = − J n×m+Km×n⊥ + n×(α̂mṁ) , (17a)

ṁ =K n×n⊥ + n× (α̂nṅ) , (17b)

where we took into account easy axis anisotropy K and
disregarded irrelevant terms m×(α̂nṅ) and m× (α̂mṁ).
We have also defined Gilbert damping tensors such as

α̂mṁ = α
∥
mṁ∥ + α⊥

mṁ⊥, α̂nṅ = α
∥
nṅ∥ + α⊥

n ṅ⊥.
In the case of easy axis anisotropy we can use the lin-

earized modes n = ẑ+ δn∥ e
iωt, m = δm∥ e

iωt, hence we
get the energy of q = 0 magnon as

ω = ω0 − iΓ/2, (18)

ω0 =
√
JK, Γ = Jα∥

n +Kα∥
m (19)

where we took into account that K ≪ J . The expression
for ω0 is well known due to Kittel and Keffer42,43.

Using Ref. 25 we find out that α
∥
n ≃ α⊥

m(λ/ε)2 and

α⊥
n ≃ α

∥
m(λ/ε)2, hence

Γ ≃ α∥
m

(
K +

J/2

ε2/λ2 + ε2τ2

)
, (20)

where we have simply used Eqs. (10). Thus, one may

often ignore the contribution Jα
∥
n as compared to Kα

∥
m

despite the fact that K ≪ J .
In the context of anti-ferromagnets, spin-pumping

terms are usually associated with the coefficients α
∥
n in

Eq. (3b) that are not in the focus of the present study.
Those coefficients have been analyzed for example in Ref.
25. In this manuscript we simply use the known results
for αn in Eqs. (17-19), where we illustrate the effect of
both spin-pumping coefficient αn and the direct Gilbert
damping αm on the magnon life time. One can see from
Eqs. (19,20) that the spin-pumping contributions do also
contribute, though indirectly, to the magnon decay. The
spin pumping contributions become more important in
magnetic materials with small magnetic anisotropy. The
processes characterized by the coefficients αn may also be
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λτ
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FIG. 6. Numerical evaluation of the inverse Gilbert damping

1/ᾱ
∥
m as a function of the momentum relaxation time τ . The

inverse damping is peaked at τ ∝ 1/λ which also corresponds
to the maximum of the anti-ferromagnetic resonance quality
factor in accordance with Eq. (21).

interpreted in terms of angular momentum transfer from
one AFM sub-lattice to another. In that respect, the spin
pumping is specific to AFM, and is qualitatively differ-
ent from the direct Gilbert damping processes (αm) that
describe the direct momentum relaxation to the lattice.
As illustrated in Fig. 6 the quality factor of the anti-

ferromagnetic resonance (for a metallic anti-ferromagnet
with easy-axis anisotropy) is given by

Q =
ω0

Γ
≃ 1

α
∥
m

√
J

K
. (21)

Interestingly, the quality factor defined by Eq. (21) is
maximized for λτ ≃ 1, i. e. for the electron spin-orbit
length being of the order of the scattering mean free path.

The quantities 1/
√
K and 1/ᾱ

∥
m are illustrated in

Fig. 6 from the numerical analysis. As one would ex-
pect, the quality factor vanishes in both limits λ → 0
and λ → ∞. The former limit corresponds to an over-
damped regime hence no resonance can be observed. The

latter limit corresponds to a constant α
∥
m, but the reso-

nance width Γ grows faster with λ than ω0 does, hence
the vanishing quality factor.
It is straightforward to check that the results of

Eqs. (20,21) remain consistent when considering systems
with either easy-plane or in-plane magneto-crystalline
anisotropy. Thus, the coefficient α⊥

m normally does not
enter the magnon damping, unless the system is brought
into a vicinity of spin-flop transition by a strong external
field.

IV. CONCLUSION

In conclusion, we have analyzed the Gilbert damping
tensor in a model of a two-dimensional anti-ferromagnet
on a honeycomb lattice. We consider the damping mech-
anism that is dominated by a finite electron spin life-time
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due to a combination of spin-orbit coupling and impu-
rity scattering of conduction electrons. In the case of a
2D electron system with Rashba spin-orbit coupling λ,
the Gilbert damping tensor is characterized by two com-

ponents α
∥
m and α⊥

m. We show that the anisotropy of
Gilbert damping depends crucially on the parameter λτ ,
where τ is the transport scattering time for conduction
electrons. For λτ ≪ 1 the anisotropy is set by a geo-

metric factor of 2, α
∥
m = 2α⊥

m, while it becomes infinitely

large in the opposite limit, α
∥
m = (λτ)2α⊥

m for λτ ≫ 1.
Gilbert damping becomes isotropic exactly for λ = 0, or,
strictly speaking, for the case λ ≪ ℏvfq, where q is the
magnon wave vector.

This factor of 2 is essentially universal, and is a geomet-
ric effect: the z-component relaxation results from fluctu-
ations in two in-plane spin components, whereas in-plane
relaxation stems from fluctuations of the z-component
alone. This reflects the subtleties of our microscopic
model, where the mechanism for damping is activated
by the decay of conduction electron momenta, linked to
spin-relaxation through spin-orbit interactions.

We find that Gilbert damping is insensitive to mag-
netic order for λ ≫ ∆sd/ετ , where ∆sd is an effective
exchange coupling between spins of conduction and local-
ized electrons. In this case, the electron spin relaxation
can be either dominated by scattering (Dyakonov-Perel
relaxation) or by spin-orbit precession (Elliot-Yafet re-
laxation). We find that the Gilbert damping component
α⊥
m ≃ ε/λ2τ is dominated by Elliot-Yafet relaxation irre-

spective of the value of the parameter λτ , while the other

component crosses over from α
∥
m ≃ ε/λ2τ (Elliot-Yafet

relaxation) for λτ ≪ 1, to α
∥
m ≃ ετ (Dyakonov-Perel re-

laxation) for λτ ≫ 1. For the case λ ≪ ∆sd/ετ the spin
relaxation is dominated by interaction with the exchange
field.

Crucially, our results are not confined solely to the Néel
order on the honeycomb lattice: we anticipate a broader
applicability across various magnetic orders, including
the zigzag order. This universality stems from our focus
on the large magnon wavelength limit. The choice of the
honeycomb lattice arises from its unique ability to main-
tain isotropic electronic spectra within the plane, coupled
with the ability to suppress anisotropy concerning in-
plane spin rotations. Strong anisotropic electronic spec-
tra would naturally induce strong anisotropic in-plane
Gilbert damping, which are absent in our results.

Finally, we show that the anti-ferromagnetic resonance

width is mostly defined by α
∥
m and demonstrate that the

resonance quality factor is maximized for λτ ≈ 1. Our
microscopic theory predictions may be tested for systems
such as MnPS3 monolayer on Pt and similar heterostruc-
tures.
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Appendix A: Microscopic framework

The microscopic model that we employ to calculate
Gilbert damping belongs to a class of so-called s–d mod-
els that describe the physical system in the form of a
Heisenberg model for localized spins and a tight-binding
model for conduction electrons that are weakly coupled
by a local magnetic exchange interaction of the strength
∆sd.
Our effective electron Hamiltonian for a metallic

hexagonal anti-ferromagnet is given by25

H0 = vfp ·Σ+
λ

2
[σ ×Σ]z −∆sdn · σΣzΛz, (A1)

where the vectorsΣ, σ andΛ denote the vectors of Pauli-
matrices acting on sub-lattice, spin and valley space re-
spectively. We also introduce the Fermi velocity vf ,
Rashba-type spin-orbit interaction λ.
To describe Gilbert damping of the localized field n

we have to add the relaxation mechanism. This is pro-
vided in our model by adding a weak impurity potential
H = H0 + V (r). The momentum relaxation due to scat-
tering on impurities leads indirectly to the relaxation of
Heisenberg spins due to the presence of spin-orbit cou-
pling and exchange couplings.
For modeling the impurity potential, we adopt a delta-

correlated random potential that corresponds to the
point scatter approximation, where the range of the im-
purity potential is much shorter than that of the mean
free path (see e.g. section 3.8 of Ref. 44), i.e.

⟨V (r)V (r′)⟩ = 2πα(ℏvf )2δ(r− r′), (A2)

where the dimensionless coefficient α ≪ 1 characterizes
the disorder strength. The corresponding scattering time
for electrons is obtained as τ = ℏ/παϵ, which is again
similar to the case of graphene.
The response of symmetric spin-polarization δs+ to the

time-derivative of non-staggered magnetization, ∂tm, is
defined by the linear relation

δs+α =
∑
β

Rαβ |ω=0 ṁβ , (A3)

where the response tensor is taken at zero frequency25,45.
The linear response is defined generally by the tensor

Rαβ =
A∆2

sd

2πS

∫
dp

(2πℏ)2
〈
Tr
[
GR

ε,pσαG
A
ε+ℏω,pσβ

]〉
, (A4)
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where G
R(A)
ε,p are standing for retarded(advanced) Green

functions and the angular brackets denote averaging over
disorder fluctuations.

The standard recipe for disorder averaging is the diffu-
sive approximation46,47 that is realized by replacing the
bare Green functions in Eq. (A4) with disorder-averaged
Green functions and by replacing one of the vertex op-
erators σx or σy with the corresponding vertex-corrected
operator that is formally obtained by summing up ladder
impurity diagrams (diffusons).

In models with spin-orbit coupling, the controllable dif-
fusive approximation for non-dissipative quantities may
become, however, more involved as was noted first in
Ref. 48. For Gilbert damping it is, however, sufficient to
consider the ladder diagram contributions only.

The disorder-averaged Green function is obtained by
including an imaginary part of the self-energy ΣR (not
to be confused here with the Pauli matrix Σ0,x,y,z) that
is evaluated in the first Born approximation

ImΣR = 2παv2f

∫
dp

(2π)2
Im

1

ε−H0 + i0
. (A5)

The real part of the self-energy leads to the renormaliza-
tion of the energy scales ε, λ and ∆sd.
In the first Born approximation, the disorder-averaged

Green function is given by

GR
ε,p =

1

ε−H0 − i ImΣR
. (A6)

The vertex corrections are computed in the diffusive
approximation. The latter involves replacing the vertex
σα with the vertex-corrected operator,

σvc
α =

∞∑
l=0

σ(l)
α , (A7)

where the index l corresponds to the number of disorder
lines in the ladder.

The operators σ
(l)
α can be defined recursively as

σ(l)
α =

2ℏv2f
ετ

∫
dp

(2π)2
GR

ε,pσ
(l−1)
α GA

ε+ℏω,p, (A8)

where σ
(0)
α = σα.

The summation in Eq. (A7) can be computed in the
full operator basis, Bi={α,β,γ} = σαΣβΛγ , where each
index α, β and γ takes on 4 possible values (with zero
standing for the unity matrix). We may always normalize
TrBiBj = 2δij in an analogy to the Pauli matrices. The
operators Bi are, then, forming a finite-dimensional space
for the recursion of Eq. (A8).

The vertex-corrected operators Bvc
i are obtained by

summing up the matrix geometric series

Bvc
i =

∑
j

(
1

1−F

)
ij

Bj , (A9)

where the entities of the matrix F are given by

Fij =
ℏv2f
ετ

∫
dp

(2π)2
Tr
[
GR

ε,pBiG
A
ε+ℏω,pBj

]
. (A10)

Our operators of interest σx and σy can always be de-
composed in the operator basis as

σα =
1

2

∑
i

Bi Tr (σαBi) , (A11)

hence the vertex-corrected spin operator is given by

σvc
α =

1

2

∑
ij

Bvc
i Tr(σαBi). (A12)

Moreover, the computation of the entire response tensor
of Eq. (A4) in the diffusive approximation can also be
expressed via the matrix F as

Rαβ=
α0ετ

8ℏ
∑
ij

[TrσαBi]

[
F

1−F

]
ij

[TrσβBj ] , (A13)

where α0 = A∆2
sd/πℏ2v2fS is the coefficient used in

Eq. (6) to define the unit of the Gilbert damping.
It appears that one can always choose the basis of

Bi operators such that the computation of Eq. (A13)
is closed in a subspace of just three Bi operators with
i = 1, 2, 3. This enables us to make analytical computa-
tions of Eq. (A13).

Appendix B: Magnetization dynamics

The representation of the results can be made some-
what simpler by choosing x axis in the direction of the
in-plane projection n∥ of the Néel vector, hence ny = 0.
In this case, one can represent the result as

δs+ = c1n∥ × (n∥ × ∂tm∥) + c2∂tm∥ + c3∂tm⊥ + c4n,

where n dependence of the coefficients ci may be param-
eterized as

c1 =
r11 − r22 − r31(1− n2z)/(nxnz)

1− n2z
, (B1a)

c2 = r11 − r31(1− n2z)/(nxnz), (B1b)

c3 = r33, (B1c)

c4 = (r31/nz) ∂tmz + ζ(∂tm) · n. (B1d)

The analytical results in the paper correspond to the
evaluation of δs± up to the second order in ∆sd using
perturbative analysis. Thus, zero approximation corre-
sponds to setting ∆sd = 0 in Eqs. (A1,A5).
The equations of motion on n and m are given by

Eqs. (2),

∂tn = − J n×m+ n× δs+ +m× δs−, (B2a)

∂tm =m× δs+ + n× δs−, (B2b)
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It is easy to see that the following transformation leaves
the above equations invariant,

δs+ → δs+ − ξ n, δs− → δs− − ξm, (B3)

for an arbitrary value of ξ.
Such a gauge transformation can be used to prove that

the coefficient c4 is irrelevant in Eqs. (B2).
In this paper, we compute δs± to the zeroth order in

|m| – the approximation which is justified by the sub-
lattice symmetry in the anti-ferromagnet. A somewhat
more general model has been analyzed also in Ref. 25 to
which we refer the interested reader for more technical
details.

Appendix C: Anisotropy constant

The anisotropy constant is obtained from the grand po-
tential energy Ω for conducting electrons. For the model
of Eq. (A1) the latter can be expressed as

Ω = −
∑
ς=±

1

β

∫
dε g(ε)νς(ε), (C1)

where β = 1/kBT is the inverse temperature, ς = ± is
the valley index (for the valleys K and K ′), GR

ς,p is the
bare retarded Green function with momentum p and in
the valley ς. We have also defined the function

g(ε) = ln (1 + exp[β(µ− ε)]) , (C2)

where µ is the electron potential, and the electron density
of states in each of the valleys is given by,

νς(ε) =
1

π

∫
dp

(2πℏ)2
ImTrGR

ς,p, (C3)

where the trace is taken only over spin and sub-lattice
space,

In the metal regime considered, the chemical potential
is assumed to be placed in the upper electronic band.
In this case, the energy integration can be taken only for
positive energies. The two valence bands are always filled
and can only add a constant shift to the grand potential
Ω that we disregard.

The evaluation of Eq. (C1) yields the following density
of states

ντ (ε) =
1

2πℏ2v2f


0 0 < ε < ε2
ε/2 + λ/4 ε2 < ε < ε1,

ε ε > ε1,

(C4)

where the energies ε1,2 correspond to the extremum
points (zero velocity) for the electronic bands. These
energies, for each of the valleys, are given by

ε1,ς =
1

2

(
+ λ+

√
4∆2 + λ2 − 4ς∆λnz

)
, (C5a)

ε2,ς =
1

2

(
− λ+

√
4∆2 + λ2 + 4ς∆λnz

)
(C5b)

where ς = ± is the valley index.

In the limit of zero temperature we can approximate
Eq. (C1) as

Ω = −
∑
ς=±

1

β

∫ ∞

0

dε (µ− ε)νς(ε). (C6)

Then, with the help of Eq. (C1) we find,

Ω = − 1

24πℏ2v2f

∑
ς=±

[
(ε1,ς − µ)2(4ε1,ς − 3λ+ 2µ)

+(ε2,ς − µ)2(4ε2,ς + 3λ+ 2µ)
]
. (C7)

By substituting the results of Eqs. (C5) into the above
equation we obtain

Ω = − 1

24πℏ2v2f

[
(4∆2 − 4nz∆λ+ λ2)2/3

+(4∆2 + 4nz∆λ+ λ2)2/3 − 24∆µ+ 8µ3
]
. (C8)

A careful analysis shows that the minimal energy cor-
responds to nz = ±1 so that the conducting electrons
prefer an easy-axis magnetic anisotropy. By expanding
in powers of n2z around nz = ±1 we obtain Ω = −Kn2z/2,
where

K =
1

2πℏ2v2

{
|∆2λ| |λ/2∆| ≥ 1,

|∆λ2|/2 |λ/2∆| ≤ 1.
(C9)

This provides us with the easy axis anisotropy of Eq. (16).
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23 P. Högl, T. Frank, K. Zollner, D. Kochan, M. Gmitra, and
J. Fabian, Phys. Rev. Lett. 124, 136403 (2020).
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We investigate the first-order correction to the anomalous Hall conductivity of 2D massive Dirac
fermions arising from electron-electron interactions. In a fully gapped system in the limit of zero
temperature, we find that this correction vanishes, confirming the absence of perturbative corrections
to the topological Hall conductivity. At finite temperature or chemical potential, we find that the
total Hall response decays faster than in the noninteracting case, depending on the strength of
electron-electron interactions. These features, which could potentially be observed experimentally,
show the importance of two-body interactions for anomalous Hall transport.

I. INTRODUCTION

After the discovery of the quantum Hall effect, the-
oretical effort was directed towards understanding the
robustness of the quantization of the Hall conductivity
σH , which in the absence of interactions is related to a
topological invariant [1, 2]. In a seminal paper [3], Cole-
man and Hill showed that two-particle interactions do not
modify the value of σH at zero temperature, if the Fermi
energy lies in the bulk band gap, which was later general-
ized to nonrelativistic interactions in Ref. [4]. This raises
the question whether the Hall conductivity is robust to
the effects of interactions in systems at finite temperature
or chemical potential. To answer this question, we inves-
tigate the impact of electron-electron (e-e) interactions
in the archetypal model of the anomalous Hall effect [5],
a two-dimensional system of massive Dirac fermions.

Aside from its foundational significance, this issue also
has practical implications since real-world materials ex-
ist at nonzero temperatures and are rarely completely
free of doping. It has been demonstrated that certain
many-body interactions, for example, that between elec-
trons [6–8], or that between electrons and phonons [9],
can substantially influence Hall responses. For instance,
in the anomalous Hall and spin Hall effects, the presence
of quenched disorder can yield outcomes remarkably at
odds with noninteracting results [10, 11]. These include
a faster decay of Hall responses with growing chemical
potential, changes in sign, and, in some cases, even the
complete elimination of these effects. However, while it
may be possible to mitigate disorder in a material by
refining the growth process, the omnipresent e-e interac-
tions cannot be easily eliminated. Thus, it is fundamen-
tal to understand how they affect the Hall response to be
able to predict and explain experimental results.

In this paper, we study the correction to the anoma-
lous Hall effect of massive Dirac fermions to first order
in the strength of e-e interactions. We start by intro-
ducing the model Hamiltonian and calculate the zeroth-

∗ alexandra-daria.dumitriu-iovanescu@outlook.com
† alessandro.principi@manchester.ac.uk

and first-order response functions. We find that the first-
order response is divergent. Divergences can be removed
by renormalizing the bare parameters, which enter the
model. In this way, we obtain a finite expression for the
first-order correction to the Hall conductivity.
The first-order correction naturally depends on the

form of the e-e interaction. Here, we initially address
the case of a contact potential, whose relative simplicity
allows us to do significant analytical progress. We re-
late such a potential to the Coulomb interaction between
electrons in an overscreened regime. We show that inter-
action corrections can be large enough to counterbalance
the noninteracting contribution to the Hall conductivity.
In particular, we show that the anomalous Hall conduc-
tivity can decay faster with chemical potential than what
is predicted in the noninteracting case. We then compute
the same correction for an unscreened Coulomb potential,
and show that it exhibits similar features. Thus, we con-
firm that they are robust irrespective of the precise form
of the interaction.

II. DESCRIPTION OF THE MODEL

We consider massive Dirac fermions in two dimensions,
whose dynamics is described by the many-body Hamil-
tonian (hereafter, we set h̄ = 1)

Ĥ =
∑
αβ,k

ψ̂†
α,k(d(k) · σαβ − µ δαβ)ψ̂β,k

+
1

2

∑
q ̸=0

∑
αk,βk′

ψ̂†
α,k− q

2
ψ̂†
β,k′+ q

2
Vqψ̂β,k′− q

2
ψ̂α,k+ q

2
,

(1)

where ψλ,k (ψ†
λ,k) destroys (creates) a particle with mo-

mentum k and pseudospin λ, µ is the chemical poten-
tial, H(k) = d(k) · σ is the single-particle Hamiltonian,
d(k) = (vFkx, vFky,∆) and σ = (σx, σy, σz) is a vector
of Pauli matrices. Here, ∆ is half the band gap, while
vF is the Fermi velocity. The energy of these particles is
±εk, where εk =

√
(vFk)2 +∆2 and the ± sign identi-

fies the conduction and valence bands, respectively. Fi-
nally, Vq is the e-e interaction, which will be specified
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FIG. 1. (a) Noninteracting contribution to the current-
current response function χjxjy (q, iω). [(b)–(d)] The first-
order contributions to χjxjy (q, iω) due to vertex corrections
(b), and self-energy insertions [(c)–(d)]. In these diagrams,
solid lines are MGFs, dashed lines represent electron-electron
interactions, while solid dots stand for current vertices.

later. The noninteracting Matsubara Green’s function
(MGF) corresponding to our Hamiltonian takes the form

G(0)(k, iωn) =
[
(iωn + µ)σ0 − H(k)

]−1
, where iωn is a

fermionic Matsubara frequency and σ0 is the unit matrix.
Within the linear-response formalism [12], the Hall

conductivity is defined in terms of the current-current
response function χjxjy (q, ω) as

σH = lim
ω→0

[
ie2

ω
χjxjy (q = 0, ω)

]
. (2)

Figure 1 summarizes the diagrammatic calculation of
χjxjy (q, iω) to zeroth [panel (a)] and first order [panels
(b)–(d)] in the e-e interaction. There, solid lines repre-
sent noninteracting MGFs, while dashed lines represent
the e-e interaction. Finally, the solid dots are the current
operators jx/y = vFσx/y.

III. ZEROTH-ORDER CONTRIBUTION

At zeroth order in interaction we find the Hall conduc-
tivity [12](see Appendix A)

σ
(0)
H (µ, T ) = − e2

2h
(1−F+

−2(µ̄, T̄ )), (3)

which recovers [13] the well-known zero-temperature re-
sult for the anomalous Hall conductivity at a finite doping
(see, e.g., Ref. [14]), as well as the finite-temperature gen-
eralization of the Chern number, the so-called “Ulhmann
number” [15]. In Eq. (3) we defined the integral

F±
n =

∫ ∞

1

dx xn
(

1

e(x−µ̄)/T̄ + 1
± 1

e(x+µ̄)/T̄ + 1

)
, (4)

where µ̄ = µ/∆, T̄ = kBT/∆ are the chemical potential
and the temperature, measured in units of (half) the gap.

IV. FIRST-ORDER CONTRIBUTION

Figures 1(b) and 1(c)–1(d) show the first-order dia-
grams, which yield the exchange and self-energy correc-
tions to σH , respectively [16].

We start by evaluating the self-energy insertion, i.e.

−Σ(k) =

k′, iω′
n

V (k− k′)

= −Σ0(k)σ0 −Σ(k) · σ, (5)

where

Σ0(k) = −1

2

∫
d2k′

(2π)2
V (k − k′)Φ+

k′ , (6)

Σ(k) =
1

2

∫
d2k′

(2π)2
d(k′)

εk′
V (k − k′)Φ−

k′ , (7)

are independent of the external frequency. We defined
Φ±

k = 1−fh(εk)±fe(εk), where fe(ε)=[e(ε−µ)/(kBT )+1]−1

and fh(ε)= [e(ε+µ)/(kBT )+1]−1 are the Fermi–Dirac dis-
tribution functions for electrons and holes, respectively.

Adding the contributions from diagrams 1(b)– 1(d),
and expanding to first order in frequency, we find the
first-order correction to the current-current response
function

χ
(1)
jxjy

(q = 0, iω) → −ωv
2
F∆

4

∫
d2k

(2π)2

{
−

[
2Σ0(k)

ε3k

∂Φ+
k

∂εk

]
+

[
2Σ⊥(k)

ε2k∆

∂Φ−
k

∂εk

]

+

∫
d2k′

(2π)2
V (k − k′)

v2F(k · k′ − k′2)

ε3kε
2
k′

∂Φ−
k′

∂εk′
Φ−

k

}
, (8)

where we split Σ into Σ∥ = (Σx,Σy) and Σ⊥ = Σz.
In Appendix B we show that the terms in the self-energy
containing Σ∥ cancel similar terms from the exchange

diagram. This is a consequence of the Ward identity [17].

Although the contribution from Σ∥ cancels between
diagrams, Eq. (8) still depends on Σ0(k) and Σ⊥(k),
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both of which suffer from ultraviolet (UV) divergences
and must be regularized by introducing a cutoff Λ (see
below). For a contact potential V (k) = Vc, where Vc is a
constant, which does not depend on the momentum car-
ried by the interaction, these divergences are quadratic
∝ Λ2 (for Σ0) or linear ∝ Λ (for Σ∥ and Σ⊥). For a

Coulomb potential V (k) = 2πe2/(κk) for a medium with
dielectric constant κ, the quadratic divergence becomes
linear, while the linear ones become logarithmic.

A. Regularization of divergences

In order to deal with these divergences, we introduce
the UV cutoff in momentum Λ by employing a type
of Pauli–Villars [17][18] regularization scheme: The in-
teraction is modified in such a way as to vanish fast
enough at large momentum, so that the integrals be-
come convergent. More explicitly, the interaction be-

comes V (k) → V (k)
[
1+ (|k|/Λ)n

]−1
, where n is a natu-

ral number. The integrals in Eq. (8) then contain cutoff-
dependent pieces signifying the presence of divergences,
as well as finite parts. The latter become independent of
the cutoff in the limit Λ → ∞.

UV divergences are absorbed into the redefinition of
the parameters, which enter into the Hamiltonian. Bare
parameters (xbare, where x ≡ µ, vF,∆) are defined in
terms of physical ones (xph) as xbare = xph+δxCT. Here,
δxCT are the counterterms. From here on, we assume the
Hamiltonian is defined in terms of renormalized param-
eters and hence omit the label “ph”.

Using the Dyson equation and the expression given in
Eq. (5), we write the dressed MGF as a function of the
bare parameters

G−1(k) =
(
iωn + µ+ δµCT − Σ0(k)

)
σ0

−
(
d(k) + δdCT(k) +Σ(k)

)
· σ, (9)

where δdCT(k) = (δvCT
F kx, δv

CT
F ky, δ∆

CT). Thus, the
divergences introduced by Σ0(k), Σ∥(k), and Σ⊥(k) are
canceled by the renormalization of the chemical poten-
tial, Fermi velocity, and energy gap, respectively. The
explicit expressions of the counterterms, which are con-
sistent with previous results from Refs. [19, 20] are given
below for the two separate cases of e-e interaction.

We remark on a notable feature of the Hall response.
Because of the topological nature of the Hall response,

i.e. the fact that χ
(0)
jxjy

is independent of vF, no additional

first-order counterterm diagram is produced from χ
(0)
jxjy

as a consequence of the renormalization vF → vF+δv
CT
F .

At the same time, there is no divergence to first order
that would have to be canceled by such a counterterm
diagram. This is precisely due to the cancellation of the
Σ∥ terms between self-energy and vertex diagrams. This
in turn implies that the renormalization of the chemi-
cal potential and band gap are sufficient to ensure the
finiteness of first-order response.

For the case of a contact potential Vc, we find that the
counterterms are [see Eqs. (C1)–(C3)]

δµCT

µ
= − N0Vc

4 sinc(2π/n)

∆

µ

(
vFΛ

∆

)2

, (10)

δvCT
F

vF
= − N0Vc

4 sinc(π/n)

(
vFΛ

∆

)
, (11)

δ∆CT

∆
= −N0Vc

2

(
vFΛ

∆sinc(π/n)
− 1

)
, (12)

where N0 = ∆/(2πv2F) is the density of states (at zero
temperature) at the bottom of the conduction band.
Thus, after some lengthy algebra (see Appendix C), we

find the contribution from the first-order diagrams

σ
(1)
H =

σ̄H
2

[F+
−2(1−F+

−2 − 2F+
0 )− 2F−

1 F−
−3

+ F+
0 (fh(∆) + fe(∆) + 1)−F−

1 (fh(∆)− fe(∆))].

(13)

This equation is one of the central results of our
paper. We reintroduced the factors of h̄ and defined
σ̄H = N0Vc e

2/2h as our effective coupling constant mul-
tiplied by one fourth of the conductance quantum (since
we neglect spin and valley degeneracies).
We evaluate Eq. (13) numerically as a function of both

chemical potential and temperature. We start by dis-
cussing the case when the factor N0Vc is constant, i.e. it
is independent of temperature and chemical potential. In
this case, the behavior of the first-order correction to the
Hall conductivity as a function of doping and tempera-
ture is shown in Fig. 2. The particle-hole symmetry is
clearly reflected in the fact that the correction is an even
function of the chemical potential. An important feature
of the Hall response that can be inferred from Fig. 2(a) is
the fact that the first-order correction vanishes at T̄ = 0
when the chemical potential is placed inside the gap, i.e.
|µ̄| ≤ 1. This is not by chance, but it is a consequence
of the Coleman–Hill theorem [3], which states that there
are no perturbative corrections to the topological part of
the Hall conductivity. It is worth noting that the valid-
ity of this theorem for our model is not a trivial state-
ment, since the original proof assumed Lorentz invariance
while nonretarded e-e interactions break Lorentz invari-
ance [21]. The theorem was extended to nonretarded in-
teractions between electrons described by tight-binding
models in Ref. [4].
Figure 2(b) shows the temperature dependence of the

correction σ
(1)
H for a set of values of the chemical po-

tential. All curves have the same asymptotic behavior,
which highlights the logarithmic divergence at high tem-

peratures, i.e. σ
(1)
H → ln 2(ln T̄ + C)σ̄H , where C ≈ 0.98.

Figure 2(c) shows σ
(1)
H as a function of chemical poten-

tial for fixed values of temperature. The curve at T̄ = 0
clearly proves the validity of the Coleman–Hill theorem,
i.e. the vanishing of the correction to the Hall conduc-
tivity within the band gap. In the Fermi liquid regime
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FIG. 2. (a) The first-order correction due to contact e-e in-

teractions to the Hall conductivity σ
(1)
H as a function of both

chemical potential and temperature. (b) The correction σ
(1)
H

as a function of temperature, for various chemical potentials,
along the cuts shown in the same colours in (a). A logarith-
mic divergence at high temperatures can be observed. (c) The

correction σ
(1)
H as a function of the chemical potential, along

the cuts shown in the same colours in (a), for fixed values
of the temperature. At large doping, curves converge to the
value of 5/4. (Insets) Magnifications of the main plots in a
similar range of values as the 3D plot.

(i.e. for small temperatures and |µ̄| > 1) the correction

approaches the limit σ
(1)
H → (5µ̄2 − 2|µ̄| − 3)/(4µ̄2)σ̄H .
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FIG. 3. A comparison between the noninteracting (σ
(0)
H ,

dashed lines) and full (σH = σ
(0)
H + σ

(1)
H , solid lines) Hall

conductivities. Note that an overall minus sign was intro-
duced. (a) Curves are shown as a function of temperature for
fixed values of the chemical potential for a heavily screened
Coulomb interaction. (b) Curves are shown as a function of
chemical potential for fixed values of temperature for a heav-
ily screened Coulomb interaction. [(c),(d)] Same as (a) and
(b), respectively, for an unscreened Coulomb interaction with
an effective fine structure constant α = 0.8. [(e),(f)] Same as
(a) and (b), respectively, for an unscreened Coulomb interac-
tion with α = 0.5.

B. Overscreened Coulomb interactions

When the density of states is large, the interaction
is heavily screened. For a static Thomas–Fermi screen-
ing [22], the contact potential becomes Vc ≈ ν−1, where
ν(µ, T ) = ∂µn(µ, T ) is the thermodynamic density of
states. The effective coupling constant N0Vc becomes

N0Vc = 4T̄

[∫
|x|>1

dx|x| cosh−2

(
x− µ̄

2T̄

)]−1

. (14)

The Hall conductivity to first order in interaction,

σH = σ
(0)
H + σ

(1)
H , is shown with solid lines in Figs. 3(a)

and 3(b). Comparing it with the noninteracting result
(dashed lines), we see that e-e interactions in the high
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screening regime can be strong enough to offset the non-

interacting Hall response: σH vanishes quicker than σ
(0)
H

with increasing chemical potential or temperature. This
effect is similar to that of white-noise disorder, which
strongly suppresses the anomalous Hall conductivity at
high electron density [10].

Figure 3(b) also shows that the conductivity can be-
come negative at large enough chemical potentials. This
feature is most likely an artifact of the truncation to first-
order in perturbation theory, since the choice Vc ≈ ν−1

does not allow the potential to be arbitrarily small. We
thus expect that summing higher order terms would rem-
edy this feature. Note that even though Eq. (14) is for-
mally valid only when the carrier density is large, we still
continued the dark-blue-solid line (T̄ = 0) into the inter-
val |µ̄| ≤ 1 in Fig. 3(b) for completeness. This can be

done because, due to the Coleman–Hill theorem, σ
(1)
H is

always zero in that region, irrespective of the exact form
of Vc. A similar reasoning holds for the dark-red-solid
line (µ̄ = 0) in Fig. 3(a) at very low temperatures.

C. Unscreened Coulomb interaction

As before, UV divergences are isolated and absorbed
into their corresponding counterterms [Eqs. (D1)–(D3)]

δµCT

µ
= −α

2

∆

µ

(
vFΛ

∆sinc(π/n)

)
, (15)

δvCT
F

vF
= −α

4

[
ln

(
vFΛ

∆

)
+ ln 2 + 1

]
, (16)

δ∆CT

∆
= −α

2

[
ln

(
vFΛ

∆

)
+ ln 2

]
, (17)

with α = e2/(κh̄vF) the effective fine structure constant.

The Hall conductivity as a function of temperature and
chemical potential is shown in Figs. 3(c)–3(f). The exact
expression for σH can be found in Appendix D.

In order to compare these results with those obtained
for the high screening regime, we have chosen the value
of the effective fine structure constant to be α = 0.8
[panels (c)–(d)] and α = 0.5 [panels (e)–(f)]. Similar
to Figs. 3(a)–3(b), in both cases σH (solid lines) decays

faster than σ
(0)
H (dashed lines) as the temperature and

the chemical potential increase. In Figs. 3(c) and 3(d)
we can see that choosing α = 0.8 gives a result of striking
similarity with the high-screening regime. For |µ̄| >∼ 3,
the Hall conductivity becomes negative, thus exhibiting
the same artifact as Fig. 3(b).

Picking a smaller value of the coupling constant, e.g.
α = 0.5, moves the spurious zero of σH to larger values
of the chemical potential, as can be seen in Fig. 3(f).
This indicates that Hall conductivity becoming negative
is most likely an artifact of truncation to first order.

V. DISCUSSION AND CONCLUSIONS

We calculated the first-order correction to the Hall con-
ductivity due to e-e interactions. Firstly, we showed that
the topological part of the Hall conductivity is robust
against interactions, in agreement with the Coleman–Hill
theorem. Secondly, we found that the effect of interac-
tions can be strong enough to offset the noninteracting
contribution. As a result, the total Hall conductivity
goes to zero faster than the noninteracting one when ei-
ther the temperature or the chemical potential increase.
These features are present for both heavily screened and
unscreened e-e interactions.
Note that this calculation pertains to the continuum

model of a single Dirac cone. In a lattice model, mas-
sive Dirac fermions can be found as low-energy quasi-
particle excitations of, e.g., a two-dimensional hexagonal
lattice with broken sub-lattice symmetry. In this case,
massive Dirac fermions of masses ∆K and ∆K′ and op-
posite chiralities would appear in two distinct points of
the Brillouin zone, K and K ′ respectively. Then the
total Hall conductivity is the sum of the Hall conductiv-
ities of the two fermion species. This implies that, if the
system is invariant under time-reversal symmetry, such

that ∆K = ∆K′ , then σH = σ
(0)
H + σ

(1)
H exactly can-

cels between the two valleys. However, if time-reversal
symmetry is broken but spatial inversion symmetry is
preserved, such that ∆K = −∆K′ , then they add up to
a finite value.
It is important to point out that the two valleys can be

treated separately. This is because intervalley Coulomb
backscattering is suppressed by a large intervalley mo-
mentum transfer |K − K ′| and therefore can be safely
neglected. This remains true also for the contact inter-
action which should be interpreted as a heavily screened
Coulomb potential. In fact, the interaction appears as
contact only at length scales larger than the screening
length. On the other hand, on smaller scales it recovers
the original unscreened Coulomb interaction. We stress
that this is consistent with our choice of regularization
scheme, which forces the potential to decay when the
momentum transfer exceeds the cut-off value Λ, which is
taken to be much smaller than |K−K ′|. Thus, interval-
ley backscattering can always be neglected.
Possible experimental platforms where these results

can be tested include any gapped Dirac material with
broken time-reversal symmetry. For instance, a gap can
be opened in graphene via substrate effects [23], while
creating an imbalance in the population of the opposite
valleys by exposing it to circularly polarized light [24].
Moreover, a gap can also be induced by placing graphene
in a chiral cavity [25] or by proximity coupling it to a
ferromagnet [26–28]. We note that if the gap originates
from the coupling to a ferromagnet, then the magnitude
of the gap can decrease with temperature together with
the magnetization in the substrate, which may make the
Hall conductivity decay even faster (depending on the
value of the Curie temperature) than simply due to e-
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e interactions. As an alternative to graphene, the ef-
fect could also be observed in certain transition-metal
dichalcogenides [29, 30], which have the advantage of a
pre-existing gap due to spin-orbit coupling, and at the
surfaces of 3D topological insulators [31, 32].

We stress that our results are applicable to other effects
beyond anomalous Hall transport. We expect similar
corrections to exist in, e.g., spin-Hall [33, 34] or orbital-
Hall [35, 36] conductivities of sufficiently clean materials,
although more work is needed to clarify the impact of e-e
interactions on these effects.

ACKNOWLEDGMENTS

A.D.D.-I. and D.-A.D. acknowledge support from the
Engineering and Physical Sciences Research Council,
Grant No. EP/T517823/1. A.P. and A.E.K. acknowl-
edge support from the Leverhulme Trust under the Grant
Agreement No. RPG-2019-363. The authors also ac-
knowledge support from the European Commission un-
der the EU Horizon 2020 MSCA-RISE-2019 programme
(Project No. 873028 HYDROTRONICS).

Appendix A: Zeroth-order diagram

In the reverse order of the arrows in the diagram from
Fig. 1(a), we use the finite-temperature Feynman rules
given in Sec. 6.4 in Ref. [12][37] to calculate the nonin-
teracting current-current response function

χ
(0)
jxjy

(q, iω) =
1

β

∑
iωm

∫
k

Tr[G(0)(k, iωm)jx

×G(0)(k + q, iωm + iω)jy]

= −ωv
2
F∆

2

∫
k

fe(−εk)− fe(εk)

ε3k
. (A1)

In this equation we used the shorthand notation
∫
k
=∫

dk/(2π)2 for the integral, and
∑

iωm
for the sum over

Matsubara frequencies. The key advantage for evaluat-
ing this sum lies in the fact that the Fermi–Dirac dis-
tribution function fe(z) = [eβz + 1]−1 has its poles at
fermionic Matsubara frequencies iωm = i(2m + 1)π/β,
where m is an integer, and the corresponding residues
are Res[fe(z)] = −1/β. For a function of known simple
poles, g(z) = Πj(z − zj)

−1,

1

β

∑
iωm

g(iωm) =
∑
j

Res
z=zj

[
g(z)

]
fe(zj). (A2)

After performing the Wick rotation to real frequen-
cies iω → ω + i0+ and using the Kubo formula given in
Eq. (2), we obtain the Hall conductivity

σ
(0)
H (µ, T ) = −e

2∆

4π

∫ ∞

∆

dεk
fe(−εk)− fe(εk)

ε2k
.(A3)

Using the Fermi–Dirac-like integral defined before in
Eq. (4) and reintroducing the factors of h̄, we finally get

σ
(0)
H (µ̄, T̄ ) = − e2

2h

(
1−F+

−2(µ̄, T̄ )
)
. (A4)

At zero temperature, we can take the limit of F±
n ,

F+
n (µ̄, 0) =

∫ |µ̄|

1

dxxn =
|µ̄|n+1 − 1

n+ 1
, (A5)

F−
n (µ̄, 0) = sign(µ̄)

∫ |µ̄|

1

dxxn = sign(µ̄)
|µ̄|n+1 − 1

n+ 1
,

(A6)

which are true for |µ̄| > 1, but F±
n (|µ̄| ≤ 1, 0) = 0 when

the chemical potential lies inside the gap.

It can easily be seen that in this limit we get σ
(0)
H =

−e2/2h when |µ̄| ≤ 1 and σ
(0)
H (µ̄, 0) = −(e2/2h)(1/|µ̄|)

otherwise. This recovers the well-known result for the
anomalous Hall conductivity from Ref. [14].

Appendix B: First-order diagrams

Using the same Feynman rules for the other three diagrams, i.e. Figs. 1(b)–1(d), we calculate the response functions

χEX
jxjy (0, iω) = − 1

β2

∑
iωn,iω′

n

∫
k

∫
k′
V (k − k′) Tr[jxG

(0)(k, iωn + iω)G(0)(k′, iω′
n + iω)jyG

(0)(k′, iω′
n)G

(0)(k, iωn)], (B1)

χSE1
jxjy (0, iω) =

1

β

∑
iωn

∫
k

Tr[jxG
(0)(k, iωn + iω)Σ(k)G(0)(k, iωn + iω)jyG

(0)(k, iωn)], (B2)

χSE2
jxjy (0, iω) =

1

β

∑
iωn

∫
k

Tr[jxG
(0)(k, iωn + iω)jyG

(0)(k, iωn)Σ(k)G
(0)(k, iωn)]. (B3)

The first one is the easiest to evaluate, and it can be simplified by using a parity transformation k → −k and
k′ → −k′. The latter two, however, have second-order poles, which need to be treated carefully. These poles give rise
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to derivatives of the occupation functions, and change Eq. (A2) into

1

β

∑
iωm

g(iωm) =
∑

j∈{j1,j2}

Res
z=zj

[
g(z)

]
fe(zj) +

∑
j2

[
dfe(z)

dz

(
(z − zj2)

2g(z)
)]

z=zj2

, (B4)

where j1 and j2 are the simple and double poles, respectively.
After summing over the Matsubara frequencies and performing the traces over the Pauli matrices, we find that the

first-order current-current response functions are

χEX
jxjy (0, iω) = −ωv

2
F∆

4

∫
k

∫
k′
V (k − k′)

[
ε2k′ +∆2

ε3k′ε3k
+
v2Fk

′ · k
ε3k′ε3k

]
Φ−

k′Φ
−
k , (B5)

χSE
jxjy = ω

vF∆

2

∫
k

{
Σ0(k)

[
vF
ε3k

∂Φ+
k

∂εk

]
+Σ∥(k) ·

v2Fk

εk

[
3

ε4k
Φ−

k − 1

ε3k

∂Φ−
k

∂εk

]
+Σ⊥(k)

vF
∆

[
3∆2 − ε2k

ε5k
Φ−

k − ∆2

ε4k

∂Φ−
k

∂εk

]}

= ω
vF∆

2

∫
k

{
Σ0(k)

[
vF
ε3k

∂Φ+
k

∂εk

]
−Σ∥(k) ·

v2Fk

εk

∂

∂εk

(
Φ−

k

ε3k

)
+Σ⊥(k)

vF
∆

[(
2

ε3k
− 3

ε4k

v2Fk
2

εk

)
Φ−

k +

(
v2Fk

2

ε4k
− 1

ε2k

)
∂Φ−

k

∂εk

]}

= ω
vF∆

2

∫
k

{
Σ0(k)

[
vF
ε3k

∂Φ+
k

∂εk

]
−Σ∥(k) ·

[
∇2D

k

(
Φ−

k

ε3k

)]
+Σ⊥(k)

[
vF
∆

∇2D
k ·

(
k
Φ−

k

ε3k

)
− vF
ε2k∆

∂Φ−
k

∂εk

]}
, (B6)

where Σ0 is given in Eq. (6) and we split Σ from Eq. (7) into Σ∥ = (Σx,Σy) and Σ⊥ = Σz. When integrating the

above by parts, ∇2D
k gives both vanishing boundary terms and the 2D divergence (gradient) of Σ∥(Σ⊥),

∇2D
k ·Σ∥(k) = ∇2D

k ·
(
1

2

∫
k′

d∥(k
′)

εk′
V (k − k′)Φ−

k′

)
=

1

2

∫
k′

[
∇2D

k′ ·
(
d∥(k

′)

εk′

)
Φ−

k′ +
d∥(k

′)

εk′
·∇2D

k′

(
Φ−

k′

)]
V (k − k′)

=
vF
2

∫
k′

[(
ε2k′ +∆2

ε3k′

)
Φ−

k′ +
k′

εk′
·∇2D

k′

(
Φ−

k′

)]
V (k − k′), (B7)

∇2D
k Σ⊥(k) = ∇2D

k

(
1

2

∫
k′

∆

εk′
V (k − k′)Φ−

k′

)
=

∆

2

∫
k′

[
∇2D

k′

(
1

εk′

)
Φ−

k′ +
1

εk′
∇2D

k′

(
Φ−

k′

)]
V (k − k′)

=
∆

2

∫
k′

[(
−v

2
Fk

′

ε3k′

)
Φ−

k′ +
1

εk′
∇2D

k′

(
Φ−

k′

)]
V (k − k′). (B8)

Plugging these expressions back into Eq. (B6) gives an exact cancellation with the exchange response function

χSE
jxjy (0, iω) =− ω

vF∆

2

∫
k

{
− Σ0(k)

[
vF
ε3k

∂Φ+
k

∂εk

]
−∇2D

k ·Σ∥(k)

(
Φ−

k

ε3k

)
+∇2D

k Σ⊥(k) ·
(
vFk

∆

Φ−
k

ε3k

)
+Σ⊥(k)

vF
ε2k∆

∂Φ−
k

∂εk

}

=− ω
vF∆

2

∫
k

{
− Σ0(k)

[
vF
ε3k

∂Φ+
k

∂εk

]
+

[
Σ⊥(k)

vF
ε2k∆

∂Φ−
k

∂εk

]
− 1

2

∫
k′
V (k − k′)

vFk
′

ε3kεk′
·∇2D

k′ (Φ−
k′)Φ

−
k

+
1

2

∫
k′
V (k − k′)

vFk

ε3kεk′
·∇2D

k′ (Φ−
k′)Φ

−
k

}
+ ω

v2F∆

4

∫
k

∫
k′
V (k − k′)

[
ε2k′ +∆2 + v2Fk · k′

ε3kε
3
k′

]
Φ−

k Φ
−
k′︸ ︷︷ ︸

=−χEX
jxjy

(0,iω)

, (B9)

which is in accordance with the Ward identity. Summing the two leaves us with the result previously given in Eq. (8).
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We isolate the divergences in Σ0, Σ∥, and Σ⊥ by separating the contribution of the holes (in the lower band) from

that of the Fermi sea, i.e., using the fact that Φ±
k = fe(−εk)± fe(εk) = 1− (fh(εk)∓ fe(εk)). Since both fe(εk) and

fh(εk) are exponentially suppressed at large momentum, only the terms containing the unity are UV divergent

Σ0(k) = −1

2

∫
k′
V (k − k′)Φ+

k′ = −1

2

∫
k′
V (k − k′)(1− fh(εk′) + fe(εk′))

= −1

2

∫
k′
V (k − k′)− 1

2

∫
k′
V (k − k′)(fe(εk′)− fh(εk′)), (B10)

Σ∥(k) =
1

2

∫
k′
V (k − k′)

d∥(k
′)

εk′
Φ−

k′ =
1

2

∫
k′
V (k − k′)

vFk
′

εk′
(1− fh(εk′)− fe(εk′))

=
vF
2

∫
k′
V (k − k′)

k′

εk′
− 1

2

∫
k′
V (k − k′)

vFk
′

εk′
(fe(εk′) + fh(εk′)), (B11)

Σ⊥(k) =
1

2

∫
k′
V (k − k′)

∆

εk′
Φ−

k′ =
1

2

∫
k′
V (k − k′)

∆

εk′
(1− fh(εk′)− fe(εk′))

=
∆

2

∫
k′
V (k − k′)

1

εk′
− 1

2

∫
k′
V (k − k′)

∆

εk′
(fe(εk′) + fh(εk′)). (B12)

The divergences introduced by Σ0, Σ∥, and Σ⊥ become finite after the renormalization of the chemical potential,
Fermi velocity and energy gap, respectively. Since these divergences depend on the form of the interaction, we treat
the case of a constant contact potential V (k) = Vc and that of a Coulomb potential V (k) = 2πe2/(κk) separately.

Appendix C: Constant contact potential

We consider a regularised potential of the form V (k) → Vc [1 + (|k|/Λ)n]−1
, where n is an integer. Introducing the

counterterms in the previous equations leaves us with

Σ0(k)− δµCT = −1

2

∫
k′
V (k′)− 1

2

∫
k′
V (k − k′)(fe(εk′)− fh(εk′))− δµCT

= − VcΛ
2

8π sinc(2π/n)
− δµCT − 1

2

∫
k′
V (k − k′)(fe(εk′)− fh(εk′))

= −µ

[
N0Vc

4 sinc(2π/n)

∆

µ

(
vFΛ

∆

)2

+
δµCT

µ

]
︸ ︷︷ ︸

=0

−1

2

∫
k′
V (k − k′)(fe(εk′)− fh(εk′)), (C1)

Σ∥(k) + δvCT
F k =

1

2

∫
k′
V (k′)

vF(k + k′)

εk+k′
− 1

2

∫
k′
V (k − k′)

vFk
′

εk′
(fe(εk′) + fh(εk′)) + δvCT

F k

=
vF
2

∫
k′
V (k′)

(
�
��
k′

εk′
+ k

ε2k′ +∆2

2ε3k′
+O(k2)

)
− 1

2

∫
k′
V (k − k′)

vFk
′

εk′
(fe(εk′) + fh(εk′)) + δvCT

F k

= k

(
VcΛ

8π sinc(π/n)
+ δvCT

F

)
− 1

2

∫
k′
V (k − k′)

vFk
′

εk′
(fe(εk′) + fh(εk′))

= vFk

[
N0Vc

4 sinc(π/n)

vFΛ

∆
+
δvCT

F

vF

]
︸ ︷︷ ︸

=0

−1

2

∫
k′
V (k − k′)

vFk
′

εk′
(fe(εk′) + fh(εk′)), (C2)

Σ⊥(k) + δ∆CT =
∆

2

∫
k′
V (k′)

1

εk+k′
− 1

2

∫
k′
V (k − k′)

∆

εk′
(fe(εk′) + fh(εk′)) + δ∆CT

=
∆

2

∫
k′
V (k′)

(
1

εk′
− k ·

�
�
�v2Fk
′

ε3k′
+O(k2)

)
− 1

2

∫
k′
V (k − k′)

∆

εk′
(fe(εk′) + fh(εk′)) + δ∆CT
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=
VcΛ

4π sinc(π/n)

∆

vF
− Vc

4π

∆2

v2F
+ δ∆CT − ∆

2

∫
k′
V (k − k′)

fe(εk′) + fh(εk′)

εk′

= ∆

[
N0Vc

2 sinc(π/n)

vFΛ

∆
− N0Vc

2
+
δ∆CT

∆

]
︸ ︷︷ ︸

=0

−∆

2

∫
k′
V (k − k′)

fe(εk′) + fh(εk′)

εk′
, (C3)

where the crossed terms vanish by rotational symmetry and integrals of all O(k2) terms vanish identically in the limit
Λ → ∞.
Note that in addition to the divergence itself, we also absorbed a finite constant term into δ∆CT in the last line.

This is required to ensure that, after the renormalization, ∆ is the “physical mass”, which is defined as the pole of
the dressed Green’s function at zero momentum (at zero electron density). When µ = 0 and T = 0, all the Fermi–
Dirac distribution functions above vanish. Thus this requirement translates to Σ⊥(k = 0) + δ∆CT = 0. Choosing
not to absorb this constant in the counterterm would make the renormalized mass related to the physical mass as
∆ = ∆ph(1 +N0Vc/2)

−1.
Plugging the (now finite) expressions for Σ0 and Σ⊥ from Eqs. (C1) and (C3) into Eq. (8), we can perform the

substitution iω → ω + i0+, and use the Kubo formula to recover the Hall conductivity given in Eq. (13).
When the temperature is zero and the chemical potential lies inside the gap |µ̄| ≤ 1, all functions F±

n are identically
zero. However, when |µ̄| > 1, we use the zero-temperature limits of F±

n given in Eqs. (A5) and (A5)(A) and the fact

that fh(∆) + fe(∆)
T→0−−−→ 1 and fh(∆)− fe(∆)

T→0−−−→ −sign(µ̄), to find the limit

σ
(1)
H

T→0−−−→ 5|µ̄|2 − 2|µ̄| − 3

4|µ̄|2
σ̄H , (C4)

which at large doping converges to a finite value, i.e., σ
(1)
H → 5/4 σ̄H , as shown in Fig. 2(c).

For the high-temperature regime, we evaluate the following limits separately:

F+
0 =

∫ ∞

1

dx

(
1

e(x−µ̄)/T̄ + 1
+

1

e(x+µ̄)/T̄ + 1

)
= T̄

∫ ∞

1/T̄

dx

(
1

ex−µ̄/T̄ + 1
+

1

ex+µ̄/T̄ + 1

)
T→∞−−−−→ 2T̄ ln 2, (C5)

F+
−2 =

∫ ∞

1

dx
1

x2

(
1

e(x−µ̄)/T̄ + 1
+

1

e(x+µ̄)/T̄ + 1

)
=

1

T̄

∫ ∞

1/T̄

dx
d

dx

(
− 1

x

)(
1

ex−µ̄/T̄ + 1
+

1

ex+µ̄/T̄ + 1

)
=

[
1

e(1−µ̄)/T̄ + 1
+

1

e(1+µ̄)/T̄ + 1

]
+

1

T̄

∫ ∞

1/T̄

dx
d

dx
(lnx)

d

dx

(
1

ex−µ̄/T̄ + 1
+

1

ex+µ̄/T̄ + 1

)
= 1− 1

2T̄
+O(T̄−3) +

1

T̄

[
ln T̄

(
−1

2
+O(T̄−2)

)]
− 1

T̄

∫ ∞

1/T̄

dx lnx
d2

dx2

(
1

ex−µ̄/T̄ + 1
+

1

ex+µ̄/T̄ + 1

)
︸ ︷︷ ︸

C=6 log(A)−0.5γ−0.5−0.66 ln(2)≈0.24

T→∞−−−−→ 1− 1

2T̄
ln T̄ − 1

T̄
(C + 0.5), (C6)

F−
1 =

∫ ∞

1

dxx

(
1

e(x−µ̄)/T̄ + 1
− 1

e(x+µ̄)/T̄ + 1

)
= T̄ 2

∫ ∞

1/T̄

dxx

(
1

ex−µ̄/T̄ + 1
− 1

ex+µ̄/T̄ + 1

)
= T̄ 2 1

T̄
ln

(
e(µ̄−1)/T̄ + 1

e−(µ̄+1)/T̄ + 1

)
− 1

T̄
(Li2(−e−(1−µ̄)/T̄ )− Li2(−e−(µ̄+1)/T̄ ))

T→∞−−−−→ 2T̄ (µ̄ ln 2), (C7)

F−
−3 =

∫ ∞

1

dx
1

x3

(
1

e(x−µ̄)/T̄ + 1
− 1

e(x+µ̄)/T̄ + 1

)
=

1

T̄ 2

∫ ∞

1/T̄

dx
d

dx

(
− 1

2x2

)(
1

ex−µ̄/T̄ + 1
− 1

ex+µ̄/T̄ + 1

)
= − 1

2T̄ 2

[
− µ̄T̄

2
+O(T̄−1)

]
+

1

2T̄ 2

∫ ∞

1/T̄

dx
d

dx

(
− 1

x

)
d

dx

(
1

ex−µ̄/T̄ + 1
− 1

ex+µ̄/T̄ + 1

)
=

µ̄

4T̄
− 1

2T̄

[
µ̄

4T̄
+O(T̄−3)

]
+

1

2T̄ 2

∫ ∞

1/T̄

dx
1

x

d2

dx2

(
1

ex−µ̄/T̄ + 1
− 1

ex+µ̄/T̄ + 1

)
︸ ︷︷ ︸

O(T̄−3)

T→∞−−−−→ µ̄

4T̄
, (C8)
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where we used square brackets for the boundary terms, γ for Euler’s constant, A for Glaisher’s constant [for the
constant C in Eq. (C6)], and neglected terms of order O(T̄−2). The latter is because the highest temperature
divergence in these terms was linear and this can only be multiplied by terms of order O(T̄ 0) and O(T̄−1) to give a

nonvanishing contribution to the expansion of σ
(1)
H as T̄ → ∞. Also note that in this limit fe(∆)+fh(∆) → 1−1/(2T̄ )

and fe(∆)− fh(∆) → µ̄/(2T̄ ). Imposing these limits to Eq. (13), we finally arrive at

σ
(1)
H

T→∞−−−−→ ln 2(ln T̄ + 2C + 0.5)σ̄H ≈ ln 2(ln T̄ + 0.98)σ̄H . (C9)

Appendix D: Coulomb potential

In the case of a Coulomb potential, O(k2) terms no longer vanish in the limit Λ → ∞, but instead they give a
finite contribution. Since the terms containing sums and differences of Fermi–Dirac distributions remain the same as
in Eqs. (B10)–(B12), we only look at the contribution from the Fermi sea when introducing the counterterms

ΣFS
0 (k)− δµCT = −1

2

∫
k′
V (k′)− δµCT = −1

2

∫
k′

2πe2

κk′(1 + |k′|n/Λn)
− δµCT = −µ

[
α

2

∆

µ

vFΛ

∆sinc(π/n)
+
δµCT

µ

]
︸ ︷︷ ︸

=0

,(D1)

ΣFS
∥ (k) + kδvCT

F =
vF
2

∫
k′
V (k − k′)

k′

εk′
+ kδvCT

F =
vF
2

∫
k′

2πe2

κ|k − k′|
(
1 + |k − k′|n/Λn

) k′

εk′
+ kδvCT

F

=
v2Fe

2

κ

∫ 1

0

dx√
x(1− x)

∫
k′

k′(1 + |k − k′|n/Λn
)−1

xv2F(k − k′)2 + (1− x)(v2Fk
′2 +∆2)

+ kδvCT
F

=
v2Fe

2

κ

∫ 1

0

dx√
x(1− x)

∫
k′

(k′ + xk)
(
1 + |k′|n/Λn

)−1

v2Fk
′2 + (1− x)(xv2Fk

2 +∆2)
+ k

e2

8κ
+ kδvCT

F

= vFk

[
α

4
ln

(
vFΛ

∆

)
+
α

4
(1 + ln 2) +

δvCT
F

vF

]
︸ ︷︷ ︸

=0

−vFk
α

4

[
εk −∆

2(εk +∆)
+ ln

(
εk +∆

2∆

)]
, (D2)

ΣFS
⊥ (k) + δ∆CT =

∆

2

∫
k′
V (k − k′)

1

εk′
+ δ∆CT =

∆

2

∫
k′

2πe2

κ|k − k′|
(
1 + |k − k′|n/Λn

) 1

εk′
+ δ∆CT

=
∆e2

κ

∫ 1

0

dx√
x(1− x)

∫
k′

vF
(
1 + |k − k′|n/Λn

)−1

xv2F(k − k′)2 + (1− x)(v2Fk
′2 +∆2)

+ δ∆CT

=
∆vFe

2

κ

∫ 1

0

dx√
x(1− x)

∫
k′

(
1 + |k′|n/Λn

)−1

v2Fk
′2 + (1− x)(xv2Fk

2 +∆2)
+ δ∆CT

= ∆

[
α

2
ln

(
vFΛ

∆

)
+
α

2
ln 2 +

δ∆CT

∆

]
︸ ︷︷ ︸

=0

−α
2
∆ ln

(
εk +∆

2∆

)
, (D3)

which we simplified by employing rotational symmetry. To get to the second lines of Eqs. (D2) and (D3) we used the
Feynman parametrization formula

1

AαBβ
=

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

dx
xα−1(1− x)β−1(
xA+ (1− x)B

)α+β
, (D4)

with terms A = v2F(k − k′)2 and B = ε2k = v2Fk
′2 +∆2 and exponents α = β = 1/2.

As discussed in the previous subsection, we choose to absorb a finite constant term into δ∆CT to ensure that our
definition of the energy gap corresponds to the “physical mass”. However, unlike the case of the contact potential,
there is an extra k-dependent piece in Eq. (D3) introduced by the self-energy, but it vanishes when k = 0.

The regularized potential used above should be read as V (k − k′) =
(
2πe2/(κ|k − k′|)

)(
1 + |k − k′|n/Λn

)−1
,

such that when changing the variable k′ → k′ + xk in the third line of Eq. (D2), we are left with an extra term
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ke2/(8κ). Note that there is a finite constant absorbed in the counterterm δvCT
F similar to the one from the mass

renormalization, but this does not influence our final result, as the latter does not depend on the way the Fermi

velocity is renormalized. This can be better understood by noting that ∂vFσ
(0)
H = 0 back in Eq. (A3), which means

that there are no counterterm diagrams introduced by the renormalization of vF.
Note that in addition to the contributions from the Fermi sea given in Eqs. (D1) and (D3), Σ0 and Σ⊥ also

contain temperature and chemical potential dependent pieces. The latter are integrals over Fermi–Dirac distribution
functions fe(εk′)± fh(εk′) and were given previously in Eqs. (B10) and (B12). Once we plug these together with the
renormalized Fermi sea contributions given by Eqs. (D1) and (D3) back into Eq. (8), we notice that the resulting
integrand nontrivially depends on the angle φ between k and k′, unlike the case of the contact potential. This appears
in the form

∫
dφV (k − k′) and

∫
dφV (k − k′) k · k′, which multiplied by κ/(2πe2) can be written as∫ 2π

0

dφ
1

|k − k′|
=

∫ 2π

0

dφ
1√

k2 + k′2 − 2kk′ cosφ
=

∫ 2π

0

dφ
1√

k2 + k′2 − 2kk′ cos(φ+ π)

= 2

∫ π

0

dφ
1√

k2 + k′2 + 2kk′ cosφ
= 2

∫ π

0

dφ
1√

(k + k′)2 − 4kk′ sin2(φ/2)

=
4

k + k′

∫ π/2

0

dφ
1√

1− 4kk′

(k+k′)2 sin
2 φ

=
4

k + k′
K

(
2
√
kk′

k + k′

)
, (D5)

∫ 2π

0

dφ
k · k′

|k − k′|
= 2

∫ π

0

dφ
kk′ cosφ√

k2 + k′2 − 2kk′ cosφ
= −2

∫ π

0

dφ
kk′
(
1− 2 sin2(φ/2)

)
√
k2 + k′2 + 2kk′

(
1− 2 sin2(φ/2)

)
= −4kk′

∫ π/2

0

dφ
1√

(k + k′)2 − 4kk′ sin2 φ
+ 8kk′

∫ π/2

0

dφ
sin2 φ√

(k + k′)2 − 4kk′ sin2 φ

= − 4kk′

k + k′
K

(
2
√
kk′

k + k′

)
+ 2(k + k′)

∫ π/2

0

dφ

4kk′

(k+k′)2 sin
2 φ√

1− 4kk′

(k+k′)2 sin
2 φ

= − 4kk′

k + k′
K

(
2
√
kk′

k + k′

)
+ 2(k + k′)

(
−E

(
2
√
kk′

k + k′

)
+K

(
2
√
kk′

k + k′

))

=
2(k2 + k′2)

k + k′
K

(
2
√
kk′

k + k′

)
− 2(k + k′)E

(
2
√
kk′

k + k′

)
, (D6)

where K and E are complete elliptic integrals of the first and second kind, respectively [38]. Plugging these integrals
into Eq. (8), we find the Hall conductivity

σ
(1)
H =− e2

2h
α

1

4π

∫ ∞

0

dk̄ k̄

∫ ∞

0

dk̄′ k̄′

{
K

(
2
√
k̄k̄′

k̄ + k̄′

)[
4

k̄ + k̄′

(
1

ε̄3k

∂Φ+
k

∂ε̄k
(Φ+

k′ − 1) +
1

ε̄2kε̄k′

∂Φ−
k

∂ε̄k
(Φ−

k′ − 1)

)

− 2(k̄ − k̄′)

ε̄2kε̄
3
k′

∂Φ−
k

∂ε̄k
Φ−

k′

]
− E

(
2
√
k̄k̄′

k̄ + k̄′

)
2(k̄ + k̄′)

ε̄2kε̄
3
k′

∂Φ−
k

∂ε̄k
Φ−

k′

}
+
e2

2h

α

2

∫ ∞

0

dk̄
k̄

ε̄2k

∂Φ−
k

∂ε̄k
ln

(
ε̄k + 1

2

)
, (D7)

where all the barred quantities are dimensionless k̄ = vFk/∆, ε̄k = εk/∆. This expression can be evaluated numerically

as a function of both temperature and chemical potential, and its contribution added to σ
(0)
H is shown in Figs. 3(c)–3(f)

for different values of α.
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Non-conservation of the valley density and its implications for the observation of the
valley Hall effect
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We show that the conservation of the valley density in multi-valley and time-reversal-invariant
insulators is broken in an unexpected way by the electric field that drives the valley Hall effect.
This implies that fully-gapped insulators can support a valley Hall current in the bulk and yet show
no valley density accumulation on the edges. Thus, the valley Hall effect cannot be observed in
such systems. If the system is not fully gapped then valley density accumulation at the edges is
possible and can result in a net generation of valley density. The accumulation has no contribution
from undergap states and can be expressed as a Fermi surface average, for which we derive an
explicit formula. We demonstrate the theory by calculating the valley density accumulations in an
archetypical valley-Hall insulator: a gapped graphene nanoribbon. Surprisingly, we discover that a
net valley density polarization is dynamically generated for some types of edge terminations.

Introduction—The valley Hall effect (VHE) in non-
topological systems has recently stirred considerable con-
troversy [1–9]. When the band structure features two
valleys with a non-vanishing distribution of Berry cur-
vature, electrons skew in the direction orthogonal to the
applied electric field, even in the absence of magnetic
field. However, since the system is not topological, elec-
trons originating from one valley skew in the opposite
direction of those from the other valley giving rise to a
zero (charge) Hall current but to a finite valley Hall cur-
rent jv(r, t). This is defined as the difference between
charge currents of electrons originating in opposite val-
leys. When this current hits the edge of the system,
a valley density nv(r, t) (or, more physically, a density
of orbital magnetic moment [10]), is expected to accu-
mulate at its boundaries. This assumes that the valley
density obeys a standard continuity equation [5, 6]. This
seems a reasonable assumption: the two valleys are well-
separated in momentum space, up to the point that they
could ideally be taken as completely disconnected.

Some authors [1, 6] went further and claimed that even
a fully-gapped non-topological insulator such as graphene
aligned with hexagonal boron nitride (hBN) [3, 4] can ex-
hibit nonlocal charge transport mediated by transverse
undergap valley currents flowing in the bulk of the ma-
terial. The authors of Ref. [6] argued that, at finite tem-
perature, the valley-density accumulation could drive a
“squeezed edge current” (parallel to the edges) in appar-
ent agreement with experimental observations [2]. How-
ever, other authors [7–9] found from microscopic cal-
culations that there is no valley density accumulation
and no edge current in the simple graphene/hBN model.
They proposed that the observed nonlocal resistances
are caused by substrate-induced edge states crossing the
Fermi level [7] or by substrate-induced valley-dependent
scattering [9]. In the case of a fully gapped insulator
this leaves us with the following puzzle: on one hand,
the electric field drives a finite dissipationless valley Hall

current in the bulk; on the other hand, time reversal
symmetry implies that a valley density accumulation—
a time-reversal-odd quantity—cannot appear in response
to an electric field, unless there is dissipation, which is
impossible if there are no states at the Fermi level. So
where did the valley current go?

In this paper we solve the puzzle by observing that
the valley density does not satisfy the conventional con-
tinuity equation when an electric field is present. This
includes the field applied in order to drive the valley Hall
current. The reason is that the electric field breaks the
conservation of crystal momentum and therefore of valley
number, which depends explicitly on crystal momentum.
As a result, the bulk valley current is internally short-
circuited as electrons flow from one valley to the other
(and thus switch the sign of the Berry curvature) under
the action of the very same electric field that drives the
valley Hall current in the first instance. The process is
schematically illustrated in Fig. 1.

Our results have profound implications for the observa-
tion of the VHE [11]. In a fully gapped time-reversal in-
variant insulator the undergap valley current is incapable
of producing a valley density accumulation on the edge.
This makes observing the VHE impossible in such sys-
tems, unless, e.g., the valley degeneracy is lifted (see, for
example, Refs. [12–14]) or carriers are selectively injected
into a single valley via circularly polarized light [15]. In
these cases, however, an anomalous Hall effect “in dis-
guise” is measured. This also means that the non-local
resistance detection in Refs. [1, 16–19] must have been
caused by partially occupied bands or edge states.

In metallic systems, which support a Fermi surface, our
predictions for the valley density accumulation are quite
different from those of the conventional theory which
treats the entire bulk valley Hall current as the source
of the accumulation. In particular, the value of the ac-
cumulation depends on the form of the electronic wave
functions near the edge. The length over which it occurs

ar
X

iv
:2

21
1.

12
42

8v
3 

 [
co

nd
-m

at
.m

es
-h

al
l]

  4
 O

ct
 2

02
3



2

(b)

𝑘!

𝑘"

!′ !

! !′

! !′

IIII

II

(a)

𝐾

−𝝅 𝝅𝟎
𝑘

E

𝐾′

FIG. 1. Cyclic flow of the Bloch wave vector under the action
of an electric field in the x direction. In both panels, the valley
charge is −1 in the red regions and +1 in the green regions.
Also shown are the Berry curvature hot spots with positive
value near K and negative value near K′. Panel (a) shows
the flow in a one-dimensional ribbon where the valley charge
is non-conserved (changes sign) when k crosses the origin of
momentum space. At the same time the Berry curvature, and
hence the anomalous velocity also changes sign ensuring the
existence of a steady valley Hall current. In a fully gapped
insulator the flow does not alter the occupation of the states
(i.e., a full band remains full) so there is no change in the
valley density. Panel (b) shows examples of flows in a two-
dimensional periodic system. In both cases the assumption
of time-reversal symmetry rules out the possibility of a valley
density response arising from the magneto-electric polarizabil-
ity of the Bloch states.

is not related to the carrier diffusion length as in, e.g.,
Ref. [5], but reflects the much shorter localization length
of edge states, as observed in some experiments [20], or
the Fermi wavelength of bulk states. Perhaps the most
important result of this study is that the valley density
in the VHE is not simply transported from one edge to
the other: it can be simultaneously generated on both
edges by processes that involve the electric field in the
bulk of the material.

Summary of main ideas—We consider a generic system
in the shape of a strip of finite width which is indefinitely
extended along the x axis. As we show below, the conti-
nuity equation satisfied by the valley density is

∂tnv(y, t) + ∂yj
y
v (y, t) = −e2E(t)

∑

k

S(k)∂kfk(y) , (1)

where the electric field is in the x direction, which is
parallel to the edge, and the valley current is in the y
direction, perpendicular to the edge [21]. The system is
assumed to be macroscopically homogeneous along x so
that the valley density and current depend only on y. The
electronic states (in the absence of the electric field) are
taken to be of the form ψk,n(x, y) = eikxuk,n(x, y)/

√
2π

where k is the x-component of the Bloch wave vector
and n is the band index. The sum over k in Eq. (1)
stands for

∫
dk/(2π). The mixed electronic distribu-

tion fk(y) = a−1
∫ a

0
dx
∑

n fk,n
∣∣uk,n(x, y)

∣∣2 is defined in
terms of the electronic wave functions and the occupa-
tions of the corresponding states fk,n, with the integral

taken over one period a in the x direction. S(k) is a “val-
ley charge” function (odd under time reversal), which is
a smooth periodic function of k in the Brillouin zone. We
assume that the band structure features only two valleys,
thus S(k) assigns number +1 to states around one val-
ley and −1 to states around the other valley. The valley
density operator is n̂v(r) ≡ −(e/2)

∑
j

{
S(k̂j), δ(r− r̂j)

}

where r̂j and k̂j are the position and Bloch momentum
operator (along the edge) of the j-th electron, respec-
tively, and {Â, B̂} ≡

(
ÂB̂+ B̂Â

)
[22]. The valley current

density is ĵv(r) ≡ −(e/4)
∑

j

{
S(k̂j),

{
v̂j , δ(r − r̂j)

}}
,

where v̂j is the velocity operator of the j-th electron.

Because k̂ is a constant of motion, n̂v and ĵv(r) obey
a conventional continuity equation in the absence of the
electric field.
As we show below, in a fully gapped time-reversal in-

variant insulator, in which no edge or bulk state crosses
the Fermi level, and at zero temperature, the right-hand
side of Eq. (1) completely cancels the nearly-quantized
contribution due to the second term on the left hand
side. In this case, therefore, the valley density accumu-
lation vanishes, even though there is a finite valley cur-
rent in the bulk. In all other cases the cancellation is
not exact. The correct equation for the density accu-
mulation in the absence of relaxation processes is then
∂tnv(y, t) = −Qs(y), where the source term

Qs(y) =
e2E

a

∫ a

0

dx
∑

k,n

(∂kfk,n)S(k)
∣∣uk,n(x, y)

∣∣2 , (2)

is a Fermi surface property. Note that Qs(y) cannot be
written, in general, as the divergence of a current. In fact,
this is only possible if its integral over the whole strip
vanishes, which implies that density accumulates at one
edge and depletes at the other [23]. However, if the width
of the strip is macroscopically large, the source term is
localized on the edges. One can then define the “effec-
tive current” Is, obtained by integrating Eq. (2) across
a given edge, that feeds the valley number accumulation
thereat. Since valley density is not conserved, the sum of
the effective currents associated with the two edges does
not have to be zero. Is can be split as Is = Ies + Ibs ,
where Ies = e2E

∑
k,e (∂kfk,e)S(k) is the contribution of

edge states. Here, the sum over e is that over edge states.
The calculation of the contribution of bulk states, Ibs , is
complicated by the fact that the integral over y cannot
be extended to infinity before performing the sum over n
and k: the result would diverge. Nevertheless, a closed
expression can be obtained in terms of the probability
amplitude for Bloch waves to scatter off the edge [see
Eq. (6) below]. Once Is is known, the valley number ac-
cumulation can be estimated as Isτtr, where τtr is the
intra- or inter-valley momentum relaxation time for the
bulk or edge states’ contribution, respectively.
Anomalous continuity equation—We consider a 2D

crystal periodic in the x direction with period a = 1
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and with the edges positioned at y = 0 and y = −W . A
uniform electric field of magnitude E oscillating at fre-
quency ω is applied along the x direction. For the sake
of conciseness, hereafter we set ℏ = 1. Thus the conduc-
tance quantum e2/h is equal to e2/(2π), where e is the
electron charge. From the Kubo formula [24, 25], the y
component of the valley current (averaged over x) is [26]

jyv (y, ω) = iEe2
∑

k,n,n′

∫ y

0

dy′(εk,n − εk,n′)

× S(k)Lk,nn′(ω)Wk,nn′(y′)Ak,n′n, (3)

and the valley density (also averaged over x)

nv(y, ω) = − iEe2

ω + i0

∑

k,n

∂kfk,n S(k)Wk,nn(y)

−Ee2
∑

k,n,n′

S(k)Lk,nn′(ω)Wk,nn′(y)Ak,n′n, (4)

where Lk,nn′(ω) ≡ (fk,n − fk,n′)/(ω + εk,n −
εk,n′ + i0) is the usual Lindhard factor [25],

Wk,nn′(y) ≡
∫ 1

0
dxu†k,n(x, y)uk,n′(x, y), and

Ak,n′n =
∫ 1

0
dx
∫ 0

−W
dy u†k,n′(x, y)i∂kuk,n(x, y) is the

Berry connection. The Fourier transform of Eq. (1)
follows directly [26] from Eqs. (3) and (4):

−iωnv(y, ω) + ∂yj
y
v (y, ω) = −e2E

∑

k

S(k)∂kfk(y). (5)

The vanishing of valley density accumulation—Let us
first assume that the system is a fully gapped time-
reversal invariant insulator. The first term on the right
hand side of Eq. (4) vanishes because ∂kfk,n = 0, since
there are no bands that cross the Fermi level. In [26]
we show that, due to time-reversal symmetry, the second
line on the right hand side of Eq. (4) is proportional to ω,
so the valley density accumulation vanishes in the limit of
static electric field. This result implies that ∂yj

y
v (y) can

be different from zero—as it must necessarily be, since
the valley Hall current is finite in the bulk but vanishes
at the edges—yet this finite divergence does not cause
any density change at the edge or anywhere else. The
resolution of this apparent paradox is provided by the
anomalous term on the right hand side of Eq. (1) which
exactly matches the divergence term on the left-hand side
when the system is gapped. The undergap current does
not produce a density accumulation.

The source of valley density—Let us now consider the
case in which some energy levels cross the Fermi level.
The first term on the right hand side of Eq. (4) causes
the density to grow at a constant rate, leading to a break-
down of linear response theory unless a limiting momen-
tum relaxation mechanism, such as intra- or inter-valley
scattering, is taken into account. The Fermi surface term,
obtained by multiplying Eq. (4) by −iω and taking the

(a) (b)

(c) (d)

FIG. 2. Panel (a) and (c): Gapped graphene nanoribbon
with zig-zag boundaries on both edges and a zig-zag and a
bearded edge (at the top), respectively. Red (blue) discs sig-
nify atoms of the σ = A (σ = B) sublattice, l labels the unit
cells, m the rows in each unit cell. Panel (b) and (d): Band
structures of nanoribbons of panels (a) and (c), respectively,
for N = 20 and ∆ = 0.2t. Non-topological edge states are
depicted by blue lines.

ω → 0 limit, is the “source term” Qs(y) in Eq. (2). As
discussed above, the integral of Qs(y) over y across a sin-
gle edge can be interpreted as an effective current Is that
feeds the density accumulation thereat. Is has contribu-
tions from both edge and bulk states that cross the Fermi
level. The latter give (for the edge at y = 0)

Ibs = −2e2E
∑

λ,k,p>0

∂kf
λ
k,p Im

[
[vλk,p]

†vλk,−pRλ(k, p)

p+ i0

]
, (6)

where momentum integration is restricted to the valley
with valley number +1, p is momentum in the y direc-
tion measured from the valley bottom, vλk,p are envelope
amplitudes of propagating stationary states, labelled by
index λ, Rλ(k, p) is the reflection probability amplitude
(|Rλ(k, p)| = 1) (see [26] for details).

Example: “gapped graphene”—To demonstrate the
main features of the general theory developed above,
we calculate the valley Hall current and the valley den-
sity accumulation rate for a nanoribbon of “gapped
graphene”—a model system that captures some aspects
of monolayer graphene on a gap-inducing hBN substrate.
Lattice sites are labelled with a unit cell number l and a
composite index (m,σ), where m = 1, . . . , N denotes the
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row, while σ = A,B distinguishes the sublattice within
a given row. The y coordinate will be assumed to take
integer values to mark the position within a row and half-
integer values to mark the position in between the rows.
The two sublattices, A and B, have different on-site po-
tentials ±∆. Electrons are assumed to hop only between
nearest neighbors. We neglect spin-orbit interaction and
therefore consider spinless electrons.

For the nanoribbon we consider two terminations: a)
zig-zag boundaries on both edges [Fig. 2(a)] and b) a
zig-zag and a bearded edge [Fig. 2(c)]. These lattice ter-
minations ensure that the valley number is conserved by
the unperturbed Hamiltonian. Each unit cell consists of
N horizontal rows, with two atoms in each row as shown
in Fig. 2(a), except the edge rows, where one atom may
be missing as shown in Fig. 2(c).

The band structures for the two terminations, shown
in Figs. 2(b) and (d), respectively, feature two bands
separated by a gap equal to 2|∆| with minima at k =
±2π/3. These points define the two valleys in the one-
dimensional Brillouin zone. When the lattice is termi-
nated with zig-zag boundaries on both edges, two dis-
persionless bands of edge states [blue lines in Fig. 2(b)]
connect the two valleys and become bulk states for |k| <
2π/3. The upper (lower) band of edge states resides on
the upper (lower) edge in Fig. 2 (a).

Our main results are presented in Fig. 3. For a Fermi
energy in the gap (εF = 0) and at zero temperature, we
find that nv(m, 0) = 0 for either termination, consistent
with the fact that there are no states at the Fermi level.
At the same time jyv (m+1/2, 0) = −Ee2 ·sign(∆)/(2π)+
O(∆/t) for 1 ≤ m ≤ N − 1 as shown in panel (a), blue
line: this is the undergap current associated with the
nearly-quantized Hall conductance (the actual value −0.9
deviates from the ideal quantized value −1 due to the
finite bandwidth of the model) [26].

When the system is doped with electrons (εF = 0.3t),
the current distributions differ dramatically for the two
terminations, as shown by the red lines in Figs. 3 (a)
and (b). In the case of the double zig-zag termination
the current shows a linear variation across the ribbon (red
line in (a)), changing sign about the center of the ribbon.
This behavior is completely at odds with our intuition,
which would lead us to expect an approximately constant
current in the bulk, but not entirely unexpected, because
there is no scattering and electrons propagate ballisti-
cally. Of greater physical interest, however, is the valley
density accumulation rate which is shown in Fig. 3 (c).
There is a significant cancellation between −∂yjyv (green
line) and the non-conservation term (black line) at the
edges. The sum of the two results in a density accumu-
lation rate which displays oscillations (red dots) on the
scale of half the Fermi wavelength and two spikes of equal
signs at the edges. These are the result of interference
between the electronic waves incident on and reflected off
the edge. The fact that the accumulation rate does not

(a) (b)

(c) (d)

FIG. 3. Panel (a): Gapped graphene nanoribbon with zig-
zag edges: the blue dashed line shows the valley Hall current
as a function of position at Fermi energy εF = 0 and the red
solid line shows the same quantity at εF = 0.3t Panel (b):
Same as in (a) for a nanoribbon with one edge zig-zag and
the other bearded. Panel (c): The green line shows the valley
density accumulation rate contributed by the valley Hall cur-
rent in the doped nanoribbon with zig-zag edges. The black
line shows the contribution of the non-conservation term, and
the red dotted line is the sum of the two, i.e., the total accu-
mulation rate. Panel (d): Same as in (c) for the nanoribbon
with one zig-zag and one bearded edge. In all plots N = 100,
∆ = 0.1t. In plots (c) and (d) εF = 0.3t.

integrate to zero is the result of the anomaly on the right-
hand side of Eq. (5): valley number is pumped from one
valley into the other via a partially filled band of edge
states connecting the two (upper blue line in Fig. 2 (b)).
This opens the way to an intriguing possibility of gener-
ating a net valley density polarization by purely electri-
cal means, as opposed to the standard optical methods.
Notice, however, that the form of valley density accu-
mulation rate cannot be predicted from the valley Hall
current alone and depends on the boundary conditions.

The zig-zag+bearded termination presents us with a
more familiar scenario. Panel (b) of Fig. 3 shows that the
valley Hall current is approximately constant (−0.55 in
units of e2E/(2π) at εF = 0.3t) in the bulk. At the same
time the valley density accumulation rate, presented in
panel (d) has spikes of opposite signs on the two edges.
This suggests a more conventional picture of valley den-
sity being transported from one edge to the other. The
reason for the overall valley number conservation is, in
contrast to the previous example, absence of any partially
filled bands that would connect the two valleys.

Conclusion—The modified continuity equation (1) al-



5

lows us to explain how a non-vanishing undergap val-
ley current can coexist with a vanishing valley density
accumulation in a fully gapped non-topological time-
reversal-invariant system with perfectly degenerate val-
leys. Any valley density accumulation requires the exis-
tence of states at the Fermi level and furthermore it is
a dissipative process which requires a scattering mecha-
nism to reach a steady state. We have provided closed
expressions for calculating valley density accumulation
rates on the edges of a two-dimensional material and we
have applied them to the gapped graphene model: these
formulas show that the connection between bulk currents
and measurable edge accumulations is much more com-
plex than previously suspected. This, in particular, leads
us to surmise that any physical system in which evidence
of the VHE has been found either by Kerr rotation mi-
croscopy [11] or by non-local resistance measurements
[1, 16–19] cannot be a true insulator but must have par-
tially populated bulk or edge states.
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Supplemental Material

Everywhere below ℏ = 1.

I. THE SETUP

We consider a 2D system periodic in the x direction
and of finite width W in the y direction. We will take
the period in the x direction to be equal to one. We divide
the system into unit cells, labelled by index l. We assume
that the periodic direction is chosen such that the valley
index remains a good quantum number, i.e., edges are
chosen to be parallel to the separation between the val-
leys in momentum space (one of the edges will be taken to
be at y = 0 and the other at y = −W ). The Bloch eigen-

states are denoted as ψk,n(x, y) = uk,n(x, y)e
ikx/

√
2π,

where k is the wavevector in the x direction and n is
the band index. To take account of the spin-orbit in-
teraction, we will assume that both ψk,n and uk,n are
two-dimensional spinors. We apply the electric field of
magnitude E in the direction parallel to the edges (i.e.,
the x direction), i.e., the Hamiltonian is perturbed by a
potential term eEx̂, where −e is the electron charge and
x̂ the position operator.

For graphene nanoribbon with zig-zag and bearded
edges (which preserve the valley number), the role of
coordinates (x, y) is played by unit cell number l and
combined index (m,σ), where m = 1 . . . N denotes the
two-atom horizontal row in each unit cell and σ the atom
(A or B) within it (see Fig. 1 (a), (c) in the main text).
Note that a row may miss an atom of either sublattice, as
in Fig. 1 (c), where it misses an A atom in row 1 of each
unit cell. Everywhere below when displaying the results
for densities and currents in the nanoribbon, the position
on the y axis will only be resolved down to the row num-
ber m. Therefore, the y coordinate will be replaced by a
discrete index that will take integer values marking the
position in a certain row and half-integer values marking
the position (half-way) between the rows.

II. POSITION OPERATOR IN BLOCH STATE
BASIS

The derivation of the position operator representation
in the Bloch state basis here follows closely Ref. [1]. Con-
sider a wavepacket χ(x, y) that is a superposition of Bloch
eigenstates with coefficients χk,n

χ(x, y) =
∑

n

∫
dkχk,nψk,n(x, y). (1)

The application of the position operator x̂ to χ(x, y) gives

x̂χ(x, y) =
∑

n

∫
dk χk,n xψk,n(x, y)

=
∑

n

∫
dkχk,n

(
− i∂kψk,n(x, y)

+ ieikx∂kuk,n(x, y)/
√
2π
)
. (2)

We integrate by parts in the first term, while discard-
ing the boundary contribution. Furthermore, we expand
i∂kuk,n in the series of functions uk,n so that

i∂kuk,n(x, y) =
∑

n′

uk,n′(x, y)Ak,n′n, (3)

with Ak,n′n =
∫ 1

0
dx
∫ 0

−W
dy u†k,n′(x, y)i∂kuk,n(x, y). As

a result, we obtain (lightening the notation by suppress-
ing x and y dependence)

x̂χ =
∑

n

∫
dk
[
(i∂kχk,n)ψk,n + χk,nAk,n′nψk,n′

]

=
∑

nn′

∫
dkdk′ ψk′,n′ xk′n′;kn χk,n, (4)

where

xk′n′;kn = −i∂kδ(k − k′)δnn′ + δ(k − k′)Ak,n′n. (5)

III. VALLEY NUMBER AND VALLEY HALL
CURRENT OPERATORS

Here everything refers to just one electron, the gener-
alization to many electrons is trivial. The operator that
gives valley density at position x = (x, y) has the form

n̂v(x, y) = −e
2

{
n̂(x, y), S(k̂)

}
, (6)

where n̂(x, y) = |x, y⟩⟨x, y| is the particle density oper-
ator at position (x, y) (with any spin polarization) and
the curly brackets stand for an anticommutator.
Note that the particle density operator satisfies the

continuity equation

∂tn̂(x, y, t) +∇ĵ(x, y, t) = 0, (7)

with a particle number current

ĵ(x, y) =
1

2

{
v̂, n(x, y)

}
, (8)

where v̂ is the velocity operator. Operator S(k̂), on the
other hand, is a constant of motion. Therefore, taking
the time derivative of Eq. (6) at time t, we obtain

∂tn̂v(x, y, t) +∇ĵv(x, y, t) = 0, (9)
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where

ĵv(x, y) = −e
2

{
ĵ(x, y), S(k̂)

}

= −e
4

{
{v̂, n̂(x, y)}, S(k̂)

}
. (10)

Note also that n̂(x, y) = δ(x−r̂), where r̂ is the electron’s
position operator.

IV. KUBO FORMULA FOR VALLEY NUMBER
AND VALLEY HALL CURRENT

The Kubo formula [2, 3] allows one to calculate the
change in the ensemble average of an observable caused
by a perturbation to first order in its strength. If the
Hamiltonian is perturbed by an operator B̂ exp(−iωt)
then, long after the perturbation was turned on, the en-
semble average of the observable Â will be oscillating at
the frequency ω with the amplitude

A(ω) =
∑

αβ

fα − fβ
ω + εα − εβ + i0

AαβBβα. (11)

Here, α and β label eigenstates of the unperturbed
Hamiltonian, whose eigenvalues are εα and εβ , respec-
tively. Furthermore, Aαβ and Bβα are matrix elements

of operators Â and B̂ between eigenstates α and β, while
fα,β = (exp[(εα,β−εF)/(kBT )]+1)−1 are the occupation
numbers of such states.

For the nanoribbon, the unperturbed stationary states
are labelled by the value of (quasi)momentum k and by
the band index n. In the case of a harmonic electric field
applied parallel to the edge, B̂ = eEx̂. Using Eq. (5),
the matrix elements of the perturbation are then given
by the equation

Bk′n′;kn = eExk′n′;kn

= eE
(
− i∂kδ(k − k′)δnn′ + δ(k − k′)Ak,n′n

)
.

(12)

The role of observable Â is played by either n̂v(x, y) or

ĵv(x, y), depending on the response function under con-
sideration. Matrix elements of operator n̂v(x, y) between
stationary states are

[n̂v(x, y)]kn;k′n′ = −e
2
⟨k, n|

{
n̂(x, y), S(k̂)

}
|k′, n′⟩

= −e
2

(
S(k) + S(k′)

)
⟨k, n|n̂(x, y)|k′, n′⟩

= − e

4π

(
S(k) + S(k′)

)
e−i(k−k′)x

× u†k,n(x, y)uk′,n′(x, y), (13)

where we have used the fact that, by definition, n̂(x, y) =
|x, y⟩⟨x, y| and ⟨x, y|k, n⟩ = ψk,n(x, y). For k = k′,
Eq. (13) becomes

[n̂v(x, y)]kn;kn′ = − e

2π
u†k,n(x, y)uk,n′(x, y)S(k). (14)

Matrix elements of operator ĵv(x, y) are given by

[ĵv(x, y)]kn;k′n′ = −e
2

(
S(k) + S(k′)

)
[ĵ(x, y)]kn;k′n′ .

(15)

At k′ = k we obtain

[ĵv(x, y)]kn;kn′ = −eS(k)[ĵ(x, y)]kn;kn′ . (16)

Note that due to Eq. (7) the following identity is true

∇⟨k, n|ĵ(x, y)|k, n′⟩ = −i⟨k, n|[Ĥ, n̂(x, y)]|k, n′⟩
= i(εk,n′ − εk,n)⟨k, n|n̂(x, y)|k, n′⟩.

(17)

Plugging into this equation n̂(x, y) = |x, y⟩⟨x, y| and

ψk,n(x, y) = uk,n(x, y)/
√
2π will give

∇[ĵ(x, y)]
kn,kn′ =

i(εk,n′ − εk,n)

2π
u†k,n(x, y)uk,n′(x, y).

(18)

Let us integrate this equation along the length of one
unit cell and using the periodicity of [j(x, y)]kn,kn′ in the
x direction discard the boundary terms. The result will
be

∂y

∫ 1

0

dx
[
ĵy(x, y)

]
kn,kn′

=
i(εk,n′ − εk,n)

2π

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y).

(19)

Now using the fact that ĵy must vanish at the boundary
of the strip at y = 0, we can integrate this equation with
respect to y to obtain

∫ 1

0

dx
[
ĵy(x, y)

]
kn,kn′ =

i(εk,n′ − εk,n)

2π

∫ y

0

dy′
∫ 1

0

dx′

× u†k,n(x
′, y′)uk,n′(x′, y′).

(20)

From Eqs. (16) and (20) we can now obtain that

∫ 1

0

dx
[
ĵyv (x, y)

]
kn,kn′ = − ieS(k)

2π

(
εk,n′ − εk,n

) ∫ y

0

dy′
∫ 1

0

dx′ u†k,n(x
′, y′)uk,n′(x′, y′). (21)
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In calculating the linear response, we will average over the length of the unit cell in the x direction, so that Eq. (21)
will turn out to be useful. The linear response formula for the valley Hall current, averaged over the length of the
unit cell, has the form

jyv (y, ω) = eE

∫ 1

0

dx
∑

nn′

∫
dkdk′

(fk,n − fk′,n′)

ω + εk,n − εk′,n′ + i0
[jyv (x, y)]kn;k′n′(−i∂kδ(k − k′)δnn′ + δ(k − k′)Ak,n′n).(22)

Integrating by parts the first term in the round brackets and then evaluating the integral with respect to k′ will give

jyv (y, ω) =
ieE

ω + i0

∫ 1

0

dx
∑

n

∫
dk ∂kfk,n [j

y
v (x, y)]kn;kn

+ eE

∫ 1

0

dx
∑

nn′

∫
dk

fk,n − fk,n′

ω + εk,n − εk,n′ + i0
[jyv (x, y)]kn;kn′Ak,n′n. (23)

The first term vanishes because the unit cell average
∫ 1

0
dx [jyv (x, y)]kn,kn in that term vanishes, see Eq. (21) at n = n′.

Plugging Eq. (21) into the second line, we obtain

jyv (y, ω) = ie2E

∫ y

0

dy′
∑

nn′

∫
dk

2π

(fk,n − fk,n′)(εk,n − εk,n′)

ω + εk,n − εk,n′ + i0

∫ 1

0

dx′ u†k,n(x
′, y′)uk,n′(x′, y′)S(k)Ak,n′n, (24)

which gives Eq. (3) of the main text. Next, let us calculate the valley number response. According to Eq. (11), it is
given by the equation, averaged across the length of the unit cell,

nv(y, ω) = eE

∫ 1

0

dx
∑

nn′

∫
dkdk′

fk,n − fk′,n′

ω + εk,n − εk′,n′ + i0
[nv(x, y)]kn,k′n′(−i∂kδ(k − k′)δnn′ + δ(k − k′)Ak,n′n). (25)

Integrating by parts the first term in the round brackets and using Eq. (14), we obtain

nv(y, ω) = − ie2E

ω + i0

∑

n

∫
dk

2π
∂kfk,nS(k)

∫ 1

0

dxu†k,n(x, y)uk,n(x, y)

− e2E
∑

nn′

∫
dk

2π

fk,n − fk,n′

ω + εk,n − εk,n′ + i0
S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n, (26)

which is Eq. (4) in the main text. In the limit of zero
frequency, if there is a partially filled band such that
∂kfk,n does not vanish, the first term gives the dominant
contribution. One can demonstrate that if the system is
gapped and time-reversal symmetry is not broken, the
second term on the right-hand side of Eq. (26) is of or-
der O(ω) and, therefore, vanishes. This fact, which is
demonstrated in Sect. VIII below, was used in the main
text to discard its contribution to the valley density ac-
cumulation.

V. THE VALLEY DENSITY RESPONSE IS
GAUGE INVARIANT

Let us demonstrate in this section that the valley den-
sity response, Eq. (4) in the main text, is gauge invariant.
The first line of Eq. (4) is obviously gauge invariant so
let us turn to the second line. This is proportional to

P (ω + i0) =
∑

n,n′

∫
dk

2π
S(k)

fk,n − fk,n′

ω + εk,n − εk,n′ + i0

×
∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n.(27)

Let us change phases of all the stationary states as
follows

uk,n(x, y) → e−iϕk,nuk,n(x, y). (28)

After this the Berry connection Ak,n′n changes as
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Ak,n′n →
∫ 1

0

dx

∫ 0

−W

dy u†k,n′(x, y)
(
i∂kuk,n(x, y)

)
ei(ϕk,n′−ϕk,n)

+

∫ 1

0

dx

∫ 0

−W

dy u†k,n′(x, y)uk,n(x, y)(∂kϕk,n)e
i(ϕk,n′−ϕk,n). (29)

Using the normalization condition this can be rewritten as

Ak,n′n → Ak,n′ne
i(ϕk,n′−ϕk,n) + δn,n′(∂kϕk,n). (30)

Let us now plug the modified states (28) into Eq. (27). This will result in the following change

P (ω + i0) →
∑

n,n′

∫
dk

2π
S(k)

fk,n − fk,n′

ω + εk,n − εk,n′ + i0

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)ei(ϕk,n−ϕk,n′ )

×
(
Ak,n′ne

i(ϕk,n′−ϕk,n) + δn,n′(∂kϕk,n)
)
. (31)

The second term in the round brackets multiplies fk,n − fk,n′ and disappears. The phases in the rest of the equation
cancel each other. Therefore, P (ω + i0) will not change, which means that it is gauge invariant.

VI. PROOF OF THE CONTINUITY EQUATION

In this section we demonstrate the validity of Eq. (1)
in the main text. Let us multiply Eq. (26) by −iω. By

representing ω as ω = ω+ εk,n− εk,n′ − (εk,n− εk,n′), we
can rewrite the result as

−iωnv(y, ω) = − Ee2
∑

n

∫
dk

2π
∂kfk,nS(k)

∫ 1

0

dxu†k,n(x, y)uk,n(x, y)

+ iEe2
∑

nn′

∫
dk

2π
(fk,n − fk,n′)S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n

− iEe2
∑

nn′

∫
dk

2π

(fk,n − fk,n′)(εk,n − εk,n′)

ω + εk,n − εk,n′ + i0
S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n. (32)

Let us work on the sum in the second line of this equation,

I(y) ≡
∑

nn′

∫
dk

2π
(fk,n − fk,n′)S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n. (33)

Let us divide this sum in two across the minus sign and relabel n to n′ and vica versa in the second sum. The result
reads

I(y) =
∑

nn′

∫
dk

2π
fk,nS(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n −
∑

nn′

∫
dk

2π
fk,nS(k)

∫ 1

0

dxu†k,n′(x, y)uk,n(x, y)Ak,nn′ .

(34)

Now let us plug into this equation the definition for Ak,nn′

Ak,nn′ ≡
∫ 1

0

dx′
∫ 0

−W

dy′ u†k,n(x
′, y′)

(
i∂kuk,n′(x′, y′)

)
= −

∫ 1

0

dx′
∫ 0

−W

dy′
(
i∂ku

†
k,n(x

′, y′)
)
uk,n′(x′, y′). (35)

The result will read

I(y) =
∑

nn′

∫ 1

0

dx

∫ 1

0

dx′
∫ 0

−W

dy′
∫

dk

2π
fk,nS(k)u

†
k,n(x, y)uk,n′(x, y)u†k,n′(x

′, y′)
(
i∂kuk,n(x

′, y′)
)

+
∑

nn′

∫ 1

0

dx

∫ 1

0

dx′
∫ 0

−W

dy′
∫

dk

2π
fk,nS(k)u

†
k,n′(x, y)uk,n(x, y)

(
i∂ku

†
k,n(x

′, y′)
)
uk,n′(x′, y′). (36)
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Let us first perform summation over n′ by using the completeness relation

∑

n′

uk,n′(x, y)u†k,n′(x
′, y′) = 12

∑

l

δ(y − y′)δ(x− x′ − l), (37)

where 12 is the identity operator in the spin space, and then perform integration over x′ and y′. This will lead to

I(y) =
∑

n

∫
dk

2π
fk,nS(k)

∫ 1

0

dxu†k,n(x, y)
(
i∂kuk,n(x, y)

)
+
∑

n

∫
dk

2π
fk,nS(k)

∫ 1

0

dx
(
i∂ku

†
k,n(x, y)

)
uk,n(x, y).

(38)

Joining the two sums together we obtain

I(y) =
∑

n

∫ 1

0

dx

∫
dk

2π
fk,nS(k)i∂k

(
u†k,n(x, y)uk,n(x, y)

)
. (39)

Plugging this into Eq. (32), we obtain

−iωnv(y, ω) = − Ee2
∑

n

∫
dk

2π
∂kfk,nS(k)

∫ 1

0

dxu†k,n(x, y)uk,n(x, y)

− Ee2
∑

n

∫
dk

2π
fk,nS(k)

∫ 1

0

dx ∂k

(
u†k,n(x, y)uk,n(x, y)

)

− iEe2
∑

n,n′

∫
dk

2π

(fk,n − fk,n′)(εk,n − εk,n′)

ω + εk,n − εk,n′ + i0
S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n. (40)

We combine the first two lines to obtain

−iωnv(y, ω) = − Ee2
∑

n

∫
dk

2π

∫ 1

0

dx ∂k

(
fk,nu

†
k,n(x, y)uk,n(x, y)

)
S(k)

− iEe2
∑

n,n′

∫
dk

2π

(fk,n − fk,n′)(εk,n − εk,n′)

ω + εk,n − εk,n′ + i0
S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n. (41)

From Eq. (24), the divergence of the current is obtained to be

∂yj
y
v (y, ω) = iEe2

∑

nn′

∫
dk

2π

(fk,n − fk,n′)(εk,n − εk,n′)

ω + εk,n − εk,n′ + i0
S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n, (42)

which is the term on the second line of Eq. (41). Combining Eq. (41) and (42), we obtain Eq. (1) in the main text.

VII. LIGHTNING SPEED DERIVATION OF
THE CONTINUITY EQUATION

The continuity equation derived in the previous sec-
tion can be easily derived using Heisenberg equations of
motion. Everywhere below operators are given in the
Heisenberg picture. The equation of motion for the val-
ley density has the form

∂tn̂v(r, t) = i
[
Ĥ(t) + eE(t)x̂(t), n̂v(r, t)

]
. (43)

Recall that in the absence of the electric field valley den-
sity satisfies a continuity equation, i.e.,

i
[
Ĥ(t), n̂v(r, t)

]
= −∇ĵv(r, t), (44)

with the current defined as in Eq. (10). Now using defi-
nition (6) and the fact that

[x̂, S(k̂)] = iS′(k̂), (45)

where the prime indicates a derivative, one can obtain

[x̂(t), n̂v(r, t)
]
= − ie

2

{
S′(k̂(t)

)
, n̂(r, t)

}
. (46)

Thus the equation of motion for the valley density has
the form

∂tn̂v(r, t) +∇ĵv(r, t) =
e2E(t)

2

{
S′(k̂(t)

)
, n̂(r, t)

}
.

(47)



6

Replacing all the operators in this equation with their
many-body versions and then calculating the ensemble
average to first order in E will give Eq. (1) in the main
text.

VIII. TIME REVERSAL SYMMETRY IMPLIES
NO STATIC VALLEY POLARIZATION

Consider Eq. (4) in the main text and take the second
line from that equation. It is proportional to

P (ω + i0) =
∑

n,n′

∫
dk

2π
S(k)

fk,n − fk,n′

ω + εk,n − εk,n′ + i0

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n. (48)

Assume presence of time-reversal symmetry which acts on the electron’s wavefunction as

Tψ(x, y) = −iσyψ∗(x, y). (49)

For the Bloch states this implies that

(−iσy)u∗k,n(x, y) = αk,nu−k,ñ(x, y), (50)

or

u∗k,n(x, y) = αk,niσyu−k,ñ(x, y), (51)

where ñ labels another stationary state which satisfies εk,n = ε−k,ñ and αk,n is a possible phase factor. Plugging
Eq. (51) into the connection Ak,n′n in Eq. (48), we obtain

Ak,n′n = i

∫ 1

0

dx

∫ 0

−W

dy ut−k,ñ′(x, y)
(
∂ku

∗
−k,ñ(x, y)

)
αk,n′α∗

k,n

+ i

∫ 1

0

dx

∫ 0

−W

dy αk,n′

(
∂kα

∗
k,n

)
ut−k,ñ′(x, y)u∗−k,ñ(x, y), (52)

where superscript t stands for ‘transposed’. Interchanging the electron wavefunctions in the bilinear products and
using the normalization condition, this equation can be rewritten as

Ak,n′n = i

∫ 1

0

dx

∫ 0

−W

dy u†−k,ñ(x, y)
(
− ∂ku−k,ñ′(x, y)

)
αk,n′α∗

k,n + iαk,n

(
∂kα

∗
k,n

)
δn,n′

= A−k,ññ′αk,n′α∗
k,n + iαk,n

(
∂kα

∗
k,n

)
δn,n′ . (53)

Analogously,

u†k,n(x, y)uk,n′(x, y) = αk,nα
∗
k,n′u

†
−k,ñ′(x, y)u−k,ñ(x, y). (54)

Let us now substitute Eqs. (53) and (54) into Eq. (48). We obtain

P (ω + i0) =
∑

n,n′

∫
dk

2π
S(k)

fk,n − fk,n′

ω + εk,n − εk,n′ + i0

∫ 1

0

dxu†−k,ñ′(x, y)u−k,ñ(x, y)αk,nα
∗
k,n′

×
(
A−k,ññ′αk,n′α∗

k,n + iαk,n

(
∂kα

∗
k,n

)
δn,n′

)
. (55)

The term in the round brackets proportional to δn,n′ gives a vanishing contribution to the sum and overall all the
phases disappear. Let us also take into account that εk,n = ε−k,ñ, εk,n′ = ε−k,ñ′ and, consequently, fk,n = f−k,ñ and
fk,n′ = f−k,ñ′ . Let us make use of these identities to make the summand only depend on ñ and ñ′ and then also note
that summation over n and n′ is the same as summation over ñ and ñ′. Changing the summation variables from the
former to the latter and then relabelling these back to n and n′, we obtain

P (ω + i0) =
∑

n,n′

∫
dk

2π
S(k)

f−k,n − f−k,n′

ω + ε−k,n − ε−k,n′ + i0

∫ 1

0

dxu†−k,n′(x, y)u−k,n(x, y)A−k,nn′ . (56)
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Changing the integration variable from k to −k, relabelling the summation indices from n to n′ and vice versa, and
using the fact that S(−k) = −S(k), we obtain

P (ω + i0) = −
∑

n,n′

∫
dk

2π
S(k)

fk,n − fk,n′

−ω + εk,n − εk,n′ − i0

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n = −P (−ω − i0). (57)

If the system is fully gapped, at small frequency the i0 prescription is irrelevant and can be neglected so that Eq. (57)
implies that P (ω) = −P (−ω), which means that the second line of Eq. (4) is of order O(ω) and can be neglected at
zero frequency.

IX. VALLEY HALL CURRENT AT VANISHING
FREQUENCY

At vanishing frequency, the following relation holds
(compare Eqs. (24) and (33)):

jyv (y, 0) = ie2E

∫ y

0

dy′ I(y′). (58)

Plugging the result (39) into this equation, we obtain

jyv (y, 0) = −e2E
∫ y

0

dy′
∫ 1

0

dx′
∑

n

∫
dk

2π
fk,nS(k)

× ∂k

(
u†k,n(x

′, y′)uk,n(x
′, y′)

)
. (59)

X. EFFECTIVE VALLEY CURRENT

Let us try to evaluate the integral

Qs(y) = e2E
∑

n

∫
dk

2π

(
∂kfk,n

)
S(k)

×
∫ 1

0

dxu†k,n(x, y)uk,n(x, y) (60)

in the thermodynamic limit, i.e., for the ribbon width
W → ∞. Assume that the chemical potential is in the
conduction or valence band. Due to the factor ∂kfk,n the
integral over k and sum over n are restricted to the Fermi
surface which consists of two disjoints parts, one in each
valley. Due to time reversal symmetry the two parts give
equal contributions to the integral, so we can calculate
just one and multiply the result by two, i.e.,

Qs(y) = 2e2E
∑

n

∫

S(k)=1

dk

2π

(
∂kfk,n

)

×
∫ 1

0

dxu†k,n(x, y)uk,n(x, y). (61)

Everything from now on refers to the valley with valley
number +1. Assuming that in the sum over n and in-
tegral over k we never go too far away from the bottom
of the valley, we can use the envelope wave function de-
scription for the stationary states. Suppose energy eigen-
states for a system without boundaries are described by

a set of multicomponent valence (conduction) band en-
velope amplitudes vλk,p with energies ελ(k, p), where p is
the component of momentum along y measured from the
bottom of the valley and λ is a discrete label counting
the stationary states. Now let us introduce the bound-
aries at y = 0 and y = −W . Assume that the scattering
off the boundaries does not mix eigenstates with different
values of λ and that ελ(k,−p) = ελ(k,+p). Then the va-
lence (conduction) band envelope wave-functions for the
system with boundaries will have the form

uλk,m(y) = Nλ(k, pm)
(
vλk,pm

eipmy

+Rλ(k, pm)vλk,−pm
e−ipmy

)
, (62)

which is nothing but a sum of an incident and a reflected
wave. Here Rλ(k, p) is the probability amplitude for scat-
tering off the boundary at y = 0, momenta pm take dis-
crete positive values (labelled by m), with the distance
between them approaching π/W as W → ∞, and an
overall factor Nλ(k, pm) is chosen such that

∫ 0

−W

dy [uλk,m]†(y)uλk,m(y) = 1. (63)

Note that at large W

|Nλ(k, p)|2 =
1

2W
+O

(
1

W 2

)
. (64)

In terms of the envelope wave-functions the expression
for Qs(y) takes the form

Qs(y)

= 2e2E
∑

m,λ

∫

S(k)=1

dk

2π

(
∂kf

λ
k,m

)
[uλk,m]†(y)uλk,m(y),

(65)

Plugging Eq. (62) into this equation, we obtain

Qs(y) = 4e2E
∑

m,λ

∫

S(k)=1

dk

2π

(
∂kf

λ
k,m

)

×
(
1 +Re

(
[vλk,pm

]†vλk,−pm
Rλ(k, pm)e−2ipmy

))
,

(66)
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where we used the normalization condition |vλk,p|2 = 1

and the fact that |Rλ(k, p)| = 1. Let us consider values
of y such that |y| ≪W , which means that we are keeping
very close to the edge at y = 0. In this case each term in
the sum over m is not much different from the next one
and we can exchange the sum over m for an integral with
respect to p. More precisely, to evaluate the sum over m
we can use the Euler–Maclaurin formula, which will give
us an expansion in powers of 1/W and the leading-order
term is obtained by simply exchanging the sum over m
for an integral over m. This in turn can be exchanged for
an integral over p via p = πm/W . Taking into account
Eq. (64), this will lead to

Qs(y) = 4e2E
∑

λ

∫

p>0

dp

2π

∫

S(k)=1

dk

2π

(
∂kf

λ
k,p

)

×
(
1 +Re

(
[vλk,p]

†vλk,−pRλ(k, p)e
−2ipy

))
,(67)

where we neglected the terms of order O(1/W ). Con-
tribution of the first term in the outer round brackets
in the second line to the integral is equal to zero as
fλk,p = θ(εF − ελ(k, p)) vanishes at the values of k far
enough from the bottom of the valley. Therefore we are
left with

Qs(y) = 4e2E
∑

λ

∫

p>0

dp

2π

∫

S(k)=1

dk

2π

(
∂kf

λ
k,p

)

×Re
(
[vλk,p]

†vλk,−pRλ(k, p)e
−2ipy

)
.(68)

By Riemann–Lebesgue lemma, Qs(y) → 0 (up to terms
of order O(1/W ) that we discarded) as y → ∞. Because
integration in Eq. (68) is restricted to the Fermi surface,
it is clear that Qs(y) oscillates in space at a wavelength
corresponding to double the Fermi momentum. We can
now introduce an “effective current” feeding valley num-
ber accumulation at the edge

Ibs =

0∫

−∞

dy Qs(y)

= −2e2E
∑

λ

∫

S(k)=1

dk

2π

∫

p>0

dp

2π

(
∂kf

λ
k,p

)

× Im

[
1

p+ i0
[vλk,p]

†vλk,−pRλ(k, p)

]
.(69)

XI. GRAPHENE NANORIBBON.
DESCRIPTION OF THE STATIONARY STATES

In this section and the next we prove analytically that
in the completely gapped state the valley Hall current
for a graphene nanoribbon with zig-zag edges is non-zero
and quantized. The treatment here closely follows that
of Ref. [4]. Because the spin-orbit coupling in graphene

is small, we will neglect it completely. In this case spin
polarization is a good quantum number and its only effect
is the introduction of a degeneracy factor of 2 in all linear
response formulae. We will avoid that by considering a
spinless electron from now on. For a spinful electron the
results given here will have to be multiplied by a factor
of 2.
As promised in Section I, the pair of coordinates (x, y)

will be replaced by unit cell number l and combined index
(m,σ), where m = 1 . . . N and σ = A,B. Integrals over
x′ and y′ within the unit cell will be replaced as follows

∫ 1

0

dx′
∫ y

0

dy′ → −
m∑

m′=1

∑

σ=A,B

. (70)

Furthermore, in these expressions, the current that flows
between rows m and m+1 is denoted as jyv (m+1/2, ω).
The tight binding Hamiltonian for graphene nanorib-

bon with zig-zag edges in second quantized form reads

Ĥ = −t
∑

l

[ N∑

m=1

â†l (m)b̂l(m) +
N−1∑

m=1

â†l (m+ 1)b̂l(m)

+
∑

m∈even

â†l (m)b̂l−1(m)

+
∑

m∈odd

â†l (m)b̂l+1(m) + h.c.

]

+∆
∑

l

N∑

m=1

[
â†l (m)âl(m)− b̂†l (m)b̂l(m)

]
, (71)

where t is the nearest neighbour hopping parameter and

âl(m) and b̂l(m) destroy an electron on sublattice A or
B, respectively, in a two-atom row m of unit cell l. They
satisfy the usual anticommutation relations

{âl(m), â†l′(m
′)} = {b̂l(m), b̂†l′(m

′)} = δll′δmm′ . (72)

We introduce the Fourier-transformed operators α̂k(m)

and β̂k(m) from the relations

âl(m) =

∫
dk√
2π
α̂k(m)eikxl,m,A , (73)

b̂l(m) =

∫
dk√
2π
β̂k(m)eikxl,m,B , (74)

where xl,m,A and xl,m,B are the positions of the atoms of
the A and B sublattices in the direction along the ribbon
and k takes values in the interval (−π, π]. The Fourier-
transformed creation and annihilation operators satisfy
the anticommutation relations

{α̂k(m), α̂†
k′(m

′)} = {β̂k(m), β̂†
k′(m

′)}
= δ(k − k′)δmm′ . (75)

In terms of Fourier transformed creation and annihilation
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operators, the Hamiltonian reads

Ĥ =

∫
dk

[
− t

N∑

m=1

α̂†
k(m)β̂k(m)gk + h.c.

−t
N−1∑

m=1

α̂†
k(m+ 1)β̂k(m) + h.c.

+ ∆

N∑

m=1

(
α̂†
k(m)α̂k(m)− β̂†

k(m)β̂k(m)
)]
,(76)

where gk = 2 cos(k/2). From now on, we will set t = 1.
The one-particle eigenstates of the Hamiltonian are Bloch
states ψk,n(l,m, σ) = uk,n(m,σ) exp (ikxl,m,σ)/

√
2π. As

is customary, we will combine the amplitudes uk,n(m,σ)
for σ = A,B into a sublattice pseudospinor uk,n(m) =
(uk,n(m,A), uk,n(m,B))t. For bulk states, this takes the
form

ukps(m) = Nkps

(
(εkps +∆) sin

[
p(N + 1−m)

]

(−1)j
√
ε2kps −∆2 sin(pm)

)
,

(77)

where εkps = s
√
∆2 + g2k + 2gk cos(p) + 1 and the role of

the band index n is played by the combination ps, with
s = ± and p ∈ (0, π) the solution of the equation

pN + arccos

(
1 + gk cos p√

g2k + 2gk cos p+ 1

)
= πj. (78)

In Eqs. (77)–(78), j = 1, 2, . . . , N for gk > N/(N + 1)
and j = 1, 2, . . . , N − 1 for gk < N/(N + 1).

In Eq. (77) the normalization constant equals

Nkps =

[
(εkps +∆)εkps

×
(
N − sin(pN) cos

[
p(N + 1)

]

sin(p)

)]−1/2

.

(79)

We note that, for gk < N/(N +1), apart from the states
described by Eqs. (77)–(78), there is also an edge state

ukes

= Nkes(−1)m
(
(εkes +∆) sinh

[
(N + 1−m)ηk

]

−
√
ε2kes −∆2 sinh(ηkm)

)
,

(80)

where εkes = s
√

∆2 + g2k − 2gk cosh(ηk) + 1, with s = ±,
and ηk > 0 is the solution of the equation

e2ηk(N+1) =
gk − eηk

gk − e−ηk
. (81)

The role of the band index n here is played by the com-
bination es, where e stands for ‘edge’ and s is described

above. The normalization factor equals

Nkes =

[
εkes(εkes +∆)

×
(
cosh

[
(N + 1)ηk

]
sinh(Nηk)

sinh(ηk)
−N

)]−1/2

.

(82)

XII. CURRENT IS QUANTIZED FOR THE
TOTALLY GAPPED GRAPHENE NANORIBBON

Let us calculate the valley Hall current for the totally
gapped graphene nanoribbon with zig-zag edges in the
limit of vanishing frequency. Using Eq. (59) (and ne-
glecting spin) we obtain

jyv (m+ 1/2, 0) = e2E
∑

n

∫
dk

2π
fk,n S(k)

×
m∑

m′=1

∂k(u
†
k,n(m

′)uk,n(m
′)), (83)

where n stands for either ps or es, as explained in
Sect. XI. Note that explicit summation over σ here is
replaced by matrix multiplication of the hermitian conju-
gate of a pseudospinor with itself. When the chemical po-
tential is in the gap, fkps = fkes and equals 1 for s = −1
and 0 for s = +1. For the evaluation of the integral with
respect to k note that for any n holds uk,n = u−k,n and
we can take S(k) equal to 1 for 0 < k < π and −1 for
−π < k < 0. Thus keeping only the occupied states in
the sum over n and evaluating the integral with respect
to k, we obtain

jyv (m+ 1/2, 0) =
e2E

π

m∑

m′=1

(∑

p

u†kp−(m
′)ukp−(m

′)

+ u†ke−(m
′)uke−(m

′)

)∣∣∣∣
k=π

k=0

. (84)

The states uk,n form a complete set, therefore

∑

p

(
ukp+(m

′)u†kp+(m
′) + ukp−(m

′)u†kp−(m
′)

)

+ uke+(m
′)u†ke+(m

′) + uke−(m
′)u†ke−(m

′) = 12,

(85)

where 12 is the 2 × 2 identity matrix in the sublattice
space. Using the explicit form of the wavefunctions [see
Eq. (77)] one can find that

u†kp−(m
′)ukp−(m

′)− u†kp+(m
′)ukp+(m

′)

=
2∆

εkp−
· sin

[
p(N + 1− 2m′)

]
sin
[
p(N + 1)

]

N − sin(pN) cos
[
p(N + 1)

]
/ sin(p)

.

(86)

Using Eqs. (85) and (86) one can rewrite the sum in the
round brackets in Eq. (84) in the form
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∑

p

u†kp−(m
′)ukp−(m

′) + u†ke−(m
′)uke−(m

′) = 1 +
1

2

(
u†ke−(m

′)uke−(m
′)− u†ke+(m

′)uke+(m
′)
)

+
∑

p

∆

εkp−
· sin

[
p(N + 1− 2m′)

]
sin
[
p(N + 1)

]

N − sin(pN) cos
[
p(N + 1)

]
/ sin(p)

. (87)

Plugging this into Eq. (84) and taking into account the fact that there are no edge states at k = 0 we obtain

jyv (m+ 1/2, 0) =

m∑

m′=1

e2E

2π

(
u†πe−(m

′)uπe−(m
′)− u†πe+(m

′)uπe+(m
′)
)

+
e2E

π

∑

p

∆

εkp−
· sin(pm) sin

[
p(N −m)

]
sin
[
p(N + 1)

]
/ sin(p)

N − sin(pN) cos
[
p(N + 1)

]
/ sin(p)

∣∣∣∣
k=π

k=0

. (88)

Let us estimate the sum over p in Eq. (88). Since by
Eq. (78), the factors

sin
[
p(N + 1)

]

sin(p)
=

(−1)j√
g2k + 2gk cos(p) + 1

, (89)

sin(pN)

sin(p)
=

(−1)j−1gk√
g2k + 2gk cos(p) + 1

, (90)

remain of order O(N0) at k = 0 or k = π, one can see
that each term in the sum in the second line of Eq. (88) is
of order ∆/N . In making this estimate we also took into
account that εkp− is of order one [in units of t] at k = 0
and k = π. Therefore the whole sum over p in Eq. (88)
is of order ∆. Hence the current density response equals
(restoring the hopping parameter t)

jyv (m+ 1/2, 0) =
m∑

m′=1

e2E

2π

(
u†πe−(m

′)uπe−(m
′)

− u†πe+(m
′)uπe+(m

′)

)
+O(∆/t). (91)

For edge states, as k approaches π, gk → 0 while ηk
approaches positive infinity as ηk ∝ − ln(gk). In this
limit εkes → s|∆| and the probability distribution for
the edge states has the form

u†πes(m
′)uπes(m

′) =
1

2

([
1 + s · sign(∆)

]
δm′,1

+
[
1− s · sign(∆)

]
δm′,N

)
. (92)

Plugging this into Eq. (91), for 1 ≤ m ≤ N −1 we obtain

jyv (m+ 1/2, 0) = −e
2E

2π
sign(∆) +O(∆/t). (93)

Let us also, for future reference, quote here the result
for the divergence of the current, div jyv (m, 0) = jyv (m −
1/2, 0)− jyv (m+1/2, 0), which follows from this equation

div jyv (m, 0) =
e2E

2π
sign(∆)(δm,1 − δm,N ) +O(∆/t).

(94)

XIII. QUALITATIVE EXPLANATION OF THE
VALLEY HALL CURRENT PROFILE FOR
DIFFERENT BOUNDARY CONDITIONS

Throughout this section we assume that the Fermi level
lies in the conduction band and takes a value in the in-
terval |∆| < εF < t. Let us first consider the zig-zag
nanoribbon. Expression for the current, Eq. (83), can
be written in an alternative form as jyv (m + 1/2, 0) =
Ee2(2π)−1

[
T (m + 1/2) + G(m + 1/2)

]
, where for 1 ≤

m ≤ N − 1

T (m+ 1/2)

=
∑

n

m∑

m′=1

∫
dkS(k)∂k

(
fk,nu

†
k,n(m

′)uk,n(m
′)
)

(95)

and

G(m+ 1/2)

= −
∑

n

m∑

m′=1

∫
dkS(k)(∂kfk,n)u

†
k,n(m

′)uk,n(m
′)

(96)

and we set T (1/2) = G(1/2) = T (N + 1/2) = G(N +
1/2) = 0. Let us consider T first. Consider div T (m) =
T (m−1/2)−T (m+1/2), which is given by the equation

div T (m) = −
∑

n

∫
dkS(k)∂k

(
fk,nu

†
k,n(m)uk,n(m)

)
.

(97)

The integral with respect to k can be easily calculated to
produce

div T (m) = −2
∑

n

fk,nu
†
k,n(m)uk,n(m)

∣∣∣
k=π

k=0
, (98)

where a factor of 2 appeared because the contribution of
the left valley to the integral equals the contribution of
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the right valley, so we left only the latter and multiplied it
by two. Plugging in the occupation numbers, we obtain

div T (m) = − 2u†πe+(m)uπe+(m)

− 2

(∑

p

u†kp−(m)ukp−(m)

+ u†ke−(m)uke−(m)

)∣∣∣∣
k=π

k=0

. (99)

The sum in the second and third lines on the right hand
side of this equation (including the factor of −2) has al-
ready been calculated in the previous section, compare
Eq. (84). It is given by whatever multiplies e2E/(2π) in
Eq. (94). The term in the first line is the contribution of
the upper band of edge states, which has appeared be-
cause we raised the Fermi energy and this band became
occupied. So, using Eq. (92) and Eq. (94), we obtain
(ignoring terms of order O(∆/t))

div T (m) = −δm,1 − δm,N . (100)

Note that div T changes extremely fast on the boundaries
(it goes from −1 to zero on the scale of one inter-atomic
distance) and does not change at all inside the ribbon.
This can be traced back to the fact that ultimately the
spatial behavior of T (m) is governed by the localized edge
states (see Eq. (91) and Eq. (99)).

Consider now divG(m), which is given by the equation

divG(m) =
∑

n

∫
dkS(k)(∂kfk,n)u

†
k,n(m)uk,n(m).

(101)

Let us point out that divG(m), as opposed to div T (m),
changes slowly in space, because its behavior is gov-
erned by the states on the Fermi surface. Therefore it
varies significantly on the length scale defined by the
inverse Fermi momentum (

√
ε2F −∆2)−1 ≫ 1 for εF

close enough to the bottom of the conduction band.
Therefore the roughest (but only the roughest) estimate
of divG(m) can be given by just the spatial average
⟨divG(m)⟩sp = (1/N)

∑
m divG(m). This is not zero.

Indeed, using
∑

m u†k,n(m)uk,n(m) = 1 we obtain

⟨divG(m)⟩sp =
1

N

∑

n

∫
dkS(k)(∂kfk,n), (102)

which is non-zero because of the left-mover–right-mover
imbalance in each valley. Indeed, using fk,n = θ(εF −
εk,n) we obtain

∑

n

∂kfk,n = −
∑

i

δ(k − ki)sign(vi), (103)

where the sum runs over all values of k at which the
Fermi level crosses an energy band and vi is the group
velocity of the band crossed at a point ki. Because there

is one more right-mover than there are left-movers in the
left valley and one more left-mover than there are right-
movers in the right valley, see Fig. 1(b) (the upper blue
line) in the main text, we obtain

⟨divG(m)⟩sp =
2

N
. (104)

To get jyv (m + 1/2, 0) we need to integrate (i.e., sum
over m) Eq. (100) and Eq. (104) with the boundary
conditions that the current vanishes outside the ribbon.
It is not difficult to observe that Eq. (100) determines the
one-sided limiting values of the current on the boundaries
as approached from within the ribbon and Eq. (104) its
overall slope as a function of position. It then follows
that the current jyv (m+1/2, 0) is approximately equal to
Ee2/(2π) at m = 1, to −Ee2/(2π) at m = N − 1 and
those two values are connected roughly by a straight line
with the slope −[e2E/(2π)](2/N).
Now let us briefly discuss the case of the nanoribbon

with a bearded edge. Because there is only one band of
edge states whose occupation number does not change as
we raise εF, we see that div T does not change compared
to the undoped case. This means that the values of the
current on the boundaries will stay roughly the same as in
the undoped case. Next, because there is no left-mover–
right-mover imbalance in the valleys, the overall average
slope will be zero. This very rough analysis is confirmed
by the numerical results, see Fig. 2 (a), (b) in the main
text.

XIV. VALLEY HALL CURRENT AS
FUNCTION OF THE FERMI ENERGY

In this section we provide numerical results for the
valley Hall current as a function of the Fermi energy in
graphene nanoribbon with one edge zigzag and the other

FIG. 1. Valley Hall current as a function of the Fermi energy
in graphene nanoribbon with one edge zig-zag and the other
bearded. The value is taken in the middle of the ribbon, the
width N = 100, ∆ = 0.1t.
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bearded, see Fig. 1. In an infinite system this is predicted
to be fixed and quantized when the chemical potential is
in the band gap and to go down to zero as −∆/|εF| (in
units of e2E/(2π)) for |εF| > |∆|. For the nanoribbon
the behavior of the curve is a bit different, see Fig. 1. It
is indeed fixed and quantized (up to corrections of order
O(∆/t)) when the Fermi energy is in the gap but outside

the gap it does not conform to the ∆/|εF| law and set-
tles on a value of around ±1/2 for high enough hole or
electron doping.
At εF = −|∆| the valley Hall current has a disconti-

nuity due to all the edge states suddenly changing their
occupation numbers. The oscillations below εF = −|∆|
are a finite size effect due to small values of the Fermi
momentum.
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We present a linear response theory for stationary density accumulations in anomalous transport phenomena,
such as the orbital Hall effect, where the transported density is odd under time reversal and the underlying charge
is not conserved. Our framework applies to both metals and insulators, topologically trivial or nontrivial, and
distinguishes between contributions from bulk and edge states, as well as undergap and dissipative currents.
In time-reversal invariant systems, we prove a microscopic reciprocity theorem showing that only dissipative
currents at the Fermi level contribute to density accumulation, while undergap currents do not. In contrast, in non-
time-reversal invariant systems, non-dissipative density accumulations, such as magnetoelectric polarization, can
appear in both the bulk and edges. Importantly, we find that the net density accumulation does not always vanish,
pointing to a global non-conservation that implies the existence of a non-vanishing integrated “net torque” in
addition to a “distributed torque”, which has zero spatial average. We show that the distributed torque can be
absorbed in the divergence of a redefined current that satisfies Onsager reciprocity, while the net torque must be
explicitly accounted for. Finally, we apply our theory to two-dimensional models with edge terminations.

I. INTRODUCTION

Recent years have witnessed a revolution in the theory of
electronic transport in crystalline materials [1–5]. Traditional
classifications of “metals” and “insulators” have given way to a
more nuanced classification, recognizing that some materials
can behave as insulators in the bulk while exhibiting metal-
lic properties on their surfaces or edges. At the same time,
quantum geometric features of the band structure have been
shown to profoundly influence transport phenomena [6–8]. In
particular, “Berry curvature” has emerged as a crucial actor,
serving as a momentum space analogue of the magnetic field.
Following this, many conducting materials have been found
to support transverse currents (perpendicular to the electric
field), which are termed “anomalous” because they arise in the
absence of an external magnetic field [6, 7, 9–13].

While the anomalous Hall effect is the best-known exam-
ple in this class of phenomena, our focus in this paper is on
effects that entail the generation of transverse currents of non-
conserved quantities, such as spin, valley, and orbital magnetic
moment (OMM), all of which are electrically neutral and odd
under time reversal [14–17]. Although these currents are dif-
ficult to observe directly, they generally lead to accumulations
of the corresponding densities on the surfaces or edges of the
systems in which they flow. The practical importance of these
“density accumulations” cannot be overstated since they are
a direct and observable manifestation of bulk currents, and
provide a natural way to connect these currents to external
devices [18–22]. However, the process by which density ac-
cumulations are established is surprisingly complex and not
completely understood, even in the well-studied case of the
electric anomalous Hall effect (AHE), where the accumula-

∗ sun.hao@nus.edu.sg
† vgnl.g@nus.edu.sg

tion involves the conserved electric charge (this deceptively
simpler case will be discussed in the concluding section).

Our primary aim in this paper is to establish a versatile lin-
ear response formalism for calculating not just the currents (as
it is customary) but also the density accumulations in systems
with edges or surfaces. Interest in this problem is stimulated
by a flurry of experimental papers reporting observations of
orbital and valley density accumulations in transition metals
and 2D layered materials [22–24]. In particular, the orbital
Hall effect (OHE) is known to be stronger than the spin Hall
effect (SHE) in principle, as it does not require spin-orbit
coupling. While extensive theoretical work has been done
on calculating orbital and spin Hall conductivities using lin-
ear response theory [25, 26], our work distinguishes itself by
focusing on observable OMM density accumulations and on
the complications arising from the fact that the underlying
“charge” (OMM in this case) is not conserved. In this context,
the linear response theory is free of certain ambiguities that
plague the “modern theory” of semiclassical transport [27–
30]. For example, modern theory views the Hall effect as the
manifestation of an “anomalous velocity”, inviting the ques-
tion whether this anomalous velocity should also be included
in the calculation of the orbital magnetic moments and torques.
But in linear response theory, there is no “anomalous velocity”
and the definition of the key observables is unambiguous (see
Section II).

The model system we focus on in this paper is illustrated
in Fig. 1(a). A periodic system with edge or surface termina-
tions that cut across one or two directions (𝑦, 𝑧) is subjected
to an electric field parallel to the open direction (𝑥) so that
an electric charge current may or may not flow depending on
whether the system is a metal, a trivial insulator, or a topo-
logical insulator [31]. Typical band structures of our model
system (practically realized, for instance, in nanoribbons of
honeycomb lattices) are shown in Fig. 1(b)-(d).

An important topological distinction emerges according to
whether the edge states connect states on the same side of
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FIG. 1. (a) Nanoribbon model for the OMM density accumulation.
(b) Band structure for graphene nanoribbon with staggered sublattice
potentials. (c) Band structure for the topologically trivial phase of the
Haldane model nanoribbon with staggered sublattice potentials. (d)
Band structure for the topologically nontrivial phase of the Haldane
model nanoribbon with staggered sublattice potentials. In these fig-
ures, the wave vector 𝑘 is parallel to the edges and expressed in units
of inverse lattice constant 𝑎−1.

the gap or run across the gap between the bands. In the
first case, illustrated in Fig. 1(b)-(c), the system is said to
be topologically trivial and will be considered (i) an insulator,
(ii) an “edge metal”, or (iii) a metal, depending on whether the
Fermi level lies (i) within the gap without crossing any edge
states, (ii) crosses only edge states, or (iii) crosses bulk states.
In the topologically nontrivial case, illustrated in Fig. 1(d),
the system will be considered a topological insulator (Chern
insulator) if the Fermi level crosses only edge states, or a metal,
if the Fermi level lies in the continuum of bulk states.

A key feature of our linear response theory is that Fermi
surface contributions to the density accumulations are clearly
separated from “undergap” contributions which arise from oc-
cupied states below the Fermi energy. This separation allows
us to answer the longstanding question of whether undergap
currents contribute to edge density accumulations. In TR
invariant systems, we find that undergap currents do not con-
tribute to density accumulations. The latter can only occur
in metallic or edge-metallic states and are inevitably accom-
panied by dissipation. We refer to this result, first derived in
Ref.[32], as the “no-dissipation no-accumulation theorem”.

Notice that the case of quantum spin Hall insulators requires
a more careful discussion. These systems are TR invariant, yet
they support spin-density accumulations and persistent edge
spin currents due to spin-momentum locking. Both effects
arise from the presence of edge states crossing the Fermi level
in agreement with the thesis of our theorem. However, our the-
orem also implies that such edge currents must be dissipative:
indeed, while they are protected against elastic scattering from
non-magnetic impurities, they are not protected against more
general scattering processes and therefore are qualitatively dif-
ferent from undergap currents such as the ones that flow in the

anomalous Hall effect (see further discussion in Sec. V).
In systems with broken TR symmetry, non-dissipative edge

density accumulations can occur even in topologically trivial
states, i.e., in the absence of edge states crossing the Fermi
level. An example of this is the bulk magnetoelectric effect,
which will be discussed in the concluding section [33–35].

Our theoretical analysis does not explicitly cover some ex-
trinsic effects, such as skew-scattering and side jump, in which
impurity scattering acts as a source of current rather than a lim-
iting factor. These effects, however, are implicitly contained
in the exact eigenstates formulation of Sections II and III, and
the only technical problem is to perform disorder averages,
which is usually done with the help of diagrammatic tech-
niques [36–39]. It should also be noted that these extrinsic
effects occur in metals and are necessarily dissipative, so their
inclusion will not change qualitative conclusions such as the
no-dissipation-no-accumulation theorem for insulators.

The remainder of this paper is structured as follows. Sec-
tion II introduces the framework for studying generalized den-
sities and current densities. We focus on electrically driven
nonconserved density accumulations. The response of the
generalized density and current is derived in Sec. III, and
the no-dissipation no-accumulation theorem is proved making
use of the microscopic reciprocity theorem of Appendix I. In
Sec. IV we present the generalized continuity equation with
a torque density term and discuss the potential advantages of
introducing a “proper” current density that satisfies the macro-
scopic Onsager reciprocity relations [40, 41]. Using a torque
dipole density, the conventional continuity equation is recov-
ered in Sec. V. In Sec. VI we present the calculation of the
OMM density response in model nanoribbon systems with TR
symmetry (Sec. VI A) and without TR symmetry (Sec. VI B) –
the latter case including both trivial and nontrivial topological
phases of the Haldane model. We end with a summary and a
brief discussion of the anomalous Hall effect in Sect. VII.

II. BASIC DEFINITIONS

A. Generalized densities, currents and torques

Consider an extensive physical quantity (the “charge”) rep-
resented by an operator of the form

Ô =
∑︁
𝑖

Ô𝑖 , (1)

where the index 𝑖 runs over the particles and Ô𝑖 =

Ô (r̂𝑖 , p̂𝑖 , �̂�𝑖 · · · ) is a function of the position, momentum,
spin... of the 𝑖-th particle. This can also be written in the
second-quantized form:

Ô =
∑︁
𝛼𝛽

⟨𝛼 |Ô |𝛽⟩ 𝑐†𝛼𝑐𝛽 , (2)

where |𝛼⟩ and |𝛽⟩ represent exact one-electron eigenstates.
Notice that these are not necessarily Bloch states. Typical
examples are the electric charge operator (Ô𝑖 = −𝑒1̂𝑖), the
spin operator (Ô𝑖 = ℏσ̂𝑖/2) and, our focus in this paper, the
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OMM operator [42–44] Ô𝑖 = (−𝑒/4) (r̂𝑖 × v̂𝑖 − v̂𝑖 × r̂𝑖) where
r̂𝑖 and v̂𝑖 are the position and velocity operators respectively.
Here, the velocity operator is defined as the time derivative of
the position operator: v̂𝑖 = 𝜕𝑡 r̂𝑖 = 𝑖ℏ−1 [�̂�𝐸 , r̂𝑖], where �̂�𝐸 is
the Hamiltonian of the system in the presence of the external
field1:

�̂�𝐸 = �̂�0 + 𝑒
∑︁
𝑖

E · r̂𝑖 . (3)

Only the unperturbed Hamiltonian, �̂�0, contributes to the com-
mutator, so we can simply write

v̂𝑖 = 𝑖ℏ−1 [�̂�0, r̂𝑖] . (4)

To the operators Ô𝑖 , we associate a one-body density oper-
ator �̂�O (r) defined as follows

�̂�O (r) =
∑︁
𝑖

Ô𝑖 ★ 𝛿(r − r̂𝑖), (5)

where the ★ is the symmetrized (Hermitian) product �̂� ★ �̂� =

( �̂��̂�+�̂� �̂�)/2 = { �̂�, �̂�}/2. This is the observable whose expec-
tation value determines the “density accumulation”. Another
important observable is the “density accumulation rate”, i.e.,
the operator associated with the time derivative of the density,
which is obtained by taking the commutator of the density with
the Hamiltonian �̂�𝐸 :

𝜕𝑡 �̂�O (r) =
∑︁
𝑖

(𝜕𝑡 Ô𝑖) ★ 𝛿(r − r̂𝑖) − ∇r ·
∑︁
𝑖

Ô𝑖 ★ v̂𝑖 ★ 𝛿(r − r̂𝑖) ,

(6)
where 𝜕𝑡 Ô𝑖 = 𝑖ℏ−1 [�̂�𝐸 , Ô𝑖]. In writing this equation, we have
used the fact that the single-particle density operator obeys the
equation of motion

𝜕𝑡𝛿(r − r̂𝑖) = −∇r · v̂𝑖 ★ 𝛿(r − r̂𝑖) . (7)

This suggests that we define the current density operator

ĴO (r) =
∑︁
𝑖

Ô𝑖 ★ v̂𝑖 ★ 𝛿(r − r̂𝑖) (8)

and the torque density operator

𝑇O (r) =
∑︁
𝑖

𝑇O,𝑖 ★ 𝛿(r − r̂𝑖) , (9)

where

𝑇O,𝑖 ≡ 𝑖ℏ−1 [�̂�𝐸 , Ô𝑖] (10)

is the torque acting on the moment of the 𝑖-th particle. Then,
the expression for the density accumulation rate can be recast
as a generalized continuity equation

𝜕𝑡 �̂�O (r) + ∇r · ĴO (r) = 𝑇O (r) . (11)

1 Notice that the time derivative of an operator is constructed within the
Heisenberg picture of time evolution. After doing this, we return to the
Schrödinger picture.

The divergence of the current on the left-hand side of this
equation describes the flow of “charge” that is physically
transported in or out of an infinitesimal volume centered at
r, while the torque on the right-hand side describes the non-
conservation of the “charge” within that volume. The latter
vanishes when the “charge” is conserved: this is, of course,
the case for the electric charge. But even in the familiar case of
the spin density, the presence of spin-orbit interactions gives
a non-zero contribution to the right-hand side of Eq. (11). In
the case of the orbital moment, the situation is much more
complex, since the electric field itself breaks the conservation
of the orbital moment. In general, the total torque is the sum
of two contributions: one, 𝑖ℏ−1 [�̂�0, Ô], arising from the non-
conservation of the charge density, due to internal interactions
with lattice and impurities and one, 𝑖ℏ−1 [𝑒E · r̂, Ô], arising
from the action of the externally applied electric field.

B. Proper current and macroscopic Onsager reciprocity

It is natural at this point to ask whether the torque term on
the right-hand side of Eq. (11) can be absorbed in a redefinition
of the current density so that the standard continuity equation
(with zero on the right-hand side) holds. This is the approach
that was taken in Ref. [41] and recently in Ref. [45] to arrive
at a “proper” definition of the spin current. The idea was
to express the torque that appears on the right-hand side of
Eq. (11) as the negative of the divergence of a torque dipole
density

𝑇O (r) = −∇r ·
∑︁
𝑖

r̂𝑖 ★𝑇O,𝑖 ★ 𝛿(r − r̂𝑖) . (12)

Moving this to the left-hand side of Eq. (11) and combining it
with the divergence of the current led to a continuity equation
of the standard form, i.e,

𝜕𝑡 �̂�O + ∇r · ĴO = 0 (13)

with a “proper” current density

ĴO =
∑︁
𝑖

𝜕𝑡 (Ô𝑖 ★ r̂𝑖) ★ 𝛿(r − r̂𝑖) . (14)

An appealing feature of this definition is that the coupling
of the proper current to a spatially uniform but time-dependent
vector potential A(𝑡) takes the form

−
∑︁
𝑖

𝜕𝑡 (Ô𝑖 ★ r̂𝑖) · A(𝑡) , (15)

as can be seen starting from a coupling of the form −P̂O ·E(𝑡),
where P̂O ≡ ∑

𝑖 Ô𝑖★ r̂𝑖 is the macroscopic polarization associ-
ated with the charge Ô and E(𝑡) = −𝜕𝑡A(𝑡) is the electric field.
The expression (15) is obtained by performing a gauge transfor-
mation of the form exp

[
𝑖P̂O · A(𝑡)

]
. Crucially, this allows one

to establish a macroscopic (Onsager) reciprocity relation be-
tween the response of ĴO to an electric field that couples to the
electric polarization P̂ and the response of the standard electric
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current to an electric field that couples to the generalized polar-
ization P̂O . We call this reciprocity “macroscopic” because it
applies to the response of currents to spatially uniform electric
field, whereas the microscopic reciprocity relation described
in Section III and in Appendix I applies to all linear response
functions.

The problem with this approach is that the representation
of the torque density as the divergence of a torque dipole
density is possible only when the net torque density, integrated
over space, is zero. This is not generally the case [45, 46].
Under the action of an electric field, a net spin density or a
net orbital moment may be generated. In particular, density
accumulations on opposite boundaries of the finite system may
have the same sign [47]. When this happens, thinking of the
orbital moment as a quantity that is simply transported from
one edge to another is no longer possible. Furthermore, even
when the spatial average of the torque is zero, Eq. (12) is valid
only in the limit of slowly varying density, as will be shown in
detail in Appendix V.

Nevertheless we will see in Section IV that it is still possible
and useful (at least in the limit of slow spatial variation of
the density) to absorb the torque dipole density in a “proper”
definition of the current, along the lines of Ref. [41], while still
keeping the net torque on the right-hand side of the continuity
equation. We will see that the proper current (unlike the
conventional current) vanishes identically in a fully gapped
time-reversal invariant insulator.

III. LINEAR RESPONSE THEORY FOR GENERALIZED
DENSITIES

We start from the well-known formula [48] for the linear
response of the expectation value of a single particle Hermitian
operator �̂� to a periodic external field 𝐹 of frequency𝜔, which
couples linearly to a single-particle Hermitian operator �̂�:

𝛿𝐴(𝜔) = 𝜒𝐴,𝐵 (𝜔)𝐹 (𝜔) , (16)

where the response function 𝜒𝐴,𝐵 (𝜔) is given by

𝜒𝐴,𝐵 (𝜔) =
∑︁
𝛼𝛽

L𝜂

𝛼𝛽
(𝜔) [ �̂�]𝛼𝛽 [�̂�]𝛽𝛼 , (17)

and

L𝜂

𝛼𝛽
(𝜔) ≡

𝑓𝛼 − 𝑓𝛽

𝜖𝛼 − 𝜖𝛽 + 𝜔 + 𝑖𝜂
(18)

is the Lindhard factor, 𝑓𝛼 = 1
𝑒𝛽 (𝜖𝛼−𝜇)+1 is the Fermi-Dirac

average occupation of state-𝛼 at temperature 𝑇 . We have
introduced a compact notation for the matrix elements of any
Hermitian operator �̂�:

[ �̂�]𝛼𝛽 ≡ ⟨𝛼 | �̂�|𝛽⟩ = [ �̂�]∗𝛽𝛼 . (19)

Equations (17) and (18) are valid for non-interacting systems,
but our analysis is general and remains valid in fully interacting
systems, as shown in Appendix I.

The density response is obtained by setting �̂� = �̂�O (r),
�̂� = r̂, and 𝐹 (𝑡) = 𝑒E(𝑡). Thus we have

𝛿𝑛O (r, 𝜔) = 𝑒𝜒𝑛O ,r (r, 𝜔) · E(𝜔), (20)

where

𝜒𝑛O ,r (r, 𝜔) =
∑︁
𝛼𝛽

L𝜂

𝛼𝛽
(𝜔) [�̂�O (r)]𝛼𝛽 [r̂]𝛽𝛼 . (21)

A. Time reversal invariant systems: the
no-accumulation-no-dissipation theorem

Let us assume that the system is TR invariant. This means
that for each eigenstate |𝛼⟩ there is a time-reversed partner |�̃�⟩
with the same energy, so that the sum over 𝛼 and 𝛽 in Eq. (21)
can be replaced by a sum over �̃� and 𝛽. It is shown in Ap-
pendix I that TR invariance implies the microscopic Onsager
reciprocity relation

𝜒𝐴,𝐵 (𝜔) = 𝜒�̃�, �̃�(𝜔) , (22)

where �̃� = Θ�̂�†Θ−1 is the transformation of �̂� under TR. We
consider Hermitian operators of definite parity under TR, i.e.,
such that �̃� = 𝜆𝐴 �̂� and �̃� = 𝜆𝐵 �̂� where 𝜆 = +1 for a TR-even
operator such as r̂, and 𝜆 = −1 for a TR-odd operator such as
the orbital moment density or the valley density. Then Eq. (22)
tells us that

𝜒𝐴,𝐵 (𝜔) = 𝜆𝐴𝜆𝐵𝜒𝐵,𝐴(𝜔)

=
1
2
[
𝜒𝐴,𝐵 (𝜔) + 𝜆𝐴𝜆𝐵𝜒𝐵,𝐴(𝜔)

]
. (23)

Making use of Eq. (17) we readily find (see Appendix I)

𝜒𝐴𝐵 (𝜔) =
1 + 𝜆𝐴𝜆𝐵

2
L𝜂

𝛼𝛽
(𝜔) Re[𝐴𝛼𝛽𝐵𝛽𝛼]

+ 𝑖
1 − 𝜆𝐴𝜆𝐵

2
L𝜂

𝛼𝛽
(𝜔) Im[𝐴𝛼𝛽𝐵𝛽𝛼] . (24)

If the operators �̂� and �̂� have opposite parities under time
reversal, as is the case when �̂�O (r) is the orbital moment
density or the valley density or the spin density, then 𝜆𝐴𝜆𝐵 =

−1 and the formula (21) for the linear response simplifies to

𝜒𝑛O ,r (r, 𝜔) =
∑︁
𝛼𝛽

𝑖L𝜂

𝛼𝛽
(𝜔) Im{[�̂�O (r)]𝛼𝛽 [r̂]𝛽𝛼} . (25)

We separate the real and the imaginary parts of L𝜂

𝛼𝛽
(𝜔) as

follows

L𝜂

𝛼𝛽
(𝜔) = 𝑃

𝑓𝛼 − 𝑓𝛽

𝜖𝛼 − 𝜖𝛽 + 𝜔
− 𝑖𝜋( 𝑓𝛼 − 𝑓𝛽)𝛿(𝜖𝛼 − 𝜖𝛽 + 𝜔) ,

(26)
where 𝑃 denotes the principal part: 𝑃 𝑎

𝑥
≡ lim𝜂→0

𝑎𝑥

𝑥2+𝜂2 . In
the limit of zero frequency (𝜔 → 0) the first term reduces to
𝑃( 𝑓𝛼 − 𝑓𝛽)/(𝜖𝛼 − 𝜖𝛽), which is symmetric under the inter-
change of 𝛼 and 𝛽. At the same time, Im{[�̂�O]𝛼𝛽 (r) [r̂]𝛽𝛼}
is antisymmetric under the interchange of 𝛼 and 𝛽 – a fact
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that follows immediately from the hermiticity relations (19).
Therefore, the first term of Eq. (26) gives a vanishing contri-
bution when summed over 𝛼 and 𝛽. This leaves us with the
simple result

𝜒𝑛O ,r (r, 0) = lim
𝜔→0

𝜋
∑︁
𝛼𝛽

Im{[�̂�O (r)]𝛼𝛽 [r̂]𝛽𝛼}( 𝑓𝛼 − 𝑓𝛽)𝛿(𝜖𝛼 − 𝜖𝛽 + 𝜔) .

(27)

It is evident that the response vanishes at zero temperature,
unless there are pairs of states on opposite sides of the Fermi
level ( 𝑓𝛼 − 𝑓𝛽 ≠ 0), separated by arbitrarily small excitation
energy (𝜖𝛽 − 𝜖𝛼 = 𝜔 → 0). The existence of these pairs of
states is also a requirement for the occurrence of dissipation in a
static electric field because these are the only pairs of states that
can absorb energy from such a field. We conclude that in a TR-
invariant system the accumulation of a TR-odd density must
necessarily vanish if there are no states at the Fermi level that
can absorb energy from the electric field. We have previously
referred to this result as the “no dissipation-no accumulation
theorem” [32]. For a more mathematical discussion of this
result, we refer the reader to Appendix II. There we show that
in the case of a disordered metal in the diffusive regime, under
the relaxation time approximation, Eq. (27) can be cast in the
form

𝜒𝑛O ,r (r, 0) =
∑︁
𝑖

𝑁𝑖 (𝜖𝐹)𝜏𝑖
〈
Re{[�̂�O (r)]k,k [v̂]k,k}

〉
𝐹𝑆,𝑖

,

(28)
where the sum runs over the sheets of the Fermi surface (de-
noted by subscripts 𝐹𝑆, 𝑖), the angular brackets denote an av-
erage over the 𝑖-th sheet of the Fermi surface, 𝑁𝑖 (𝜖𝐹) and
𝜏𝑖 are, respectively, the partial density of states and the mo-
mentum relaxation time on the 𝑖-th sheet of the Fermi sur-
face. As an illustration of this formula, the calculation of
the current-induced spin polarization [49–52] in a disordered
Rashba metal is presented in Appendix II.

By contrast, consider the response of the generalized current
JO (r) to the electric field. The current associated with a TR-
odd density is TR-even. Making use of Eq. (24) we then find
(in the zero-frequency limit)

𝜒𝐽O ,r (r, 0) = 2𝑃
∑︁
𝛼𝛽

𝑓𝛼
Re{[ĴO (r)]𝛼𝛽 [r̂]𝛽𝛼}

𝜖𝛼 − 𝜖𝛽
, (29)

where

[ĴO (r)]𝛼𝛽 =
∑︁
𝑖

⟨𝛼 |Ô𝑖 ★ (𝜕𝑡 r̂𝑖) ★ 𝛿(r − r̂𝑖) |𝛽⟩ (30)

denotes the matrix element of the generalized current, The cur-
rent response involves contributions from all occupied states,
so it can differ from zero even in an insulator: this is known
as an “undergap current”. In Appendix III we show that
Eq. (29) is equivalent to the familiar Berry curvature formulas
for anomalous conductivities such as the orbital Hall conduc-
tivity.

B. Broken time-reversal invariance

Let us now discuss what happens in systems that are not TR
invariant. Let us go back to the original expression (17) of the
response function of a generalized density at zero frequency,
which reads:

𝜒𝑛O ,r (r, 0) =
∑︁
𝛼𝛽

L𝜂

𝛼𝛽
(0) [�̂�O (r)]𝛼𝛽 [r̂]𝛽𝛼

=
∑︁
𝛼𝛽

𝑃
𝑓𝛼 − 𝑓𝛽

𝜖𝛼 − 𝜖𝛽
[�̂�O (r)]𝛼𝛽 [r̂]𝛽𝛼

−𝑖𝜋
∑︁
𝛼𝛽

( 𝑓𝛼 − 𝑓𝛽)𝛿(𝜖𝛼 − 𝜖𝛽) [�̂�O (r)]𝛼𝛽 [r̂]𝛽𝛼 .

(31)
Broken TR symmetry allows the first term on the right-hand
side to be nonzero even when the second term vanishes. As-
suming that this is the case, we arrive at the expression

𝜒𝑛O ,r (r, 0) = 2𝑃
∑︁
𝛼𝛽

𝑓𝛼
Re

{
[�̂�O (r)]𝛼𝛽 [r̂]𝛽𝛼

}
𝜖𝛼 − 𝜖𝛽

. (32)

Notice the formal similarity with Eq. (29). A fully gapped
insulator with broken TR symmetry can support the accumu-
lation of a TR-odd density, just as a TR-invariant insulator can
support the current associated with a TR-odd density. We will
see concrete examples of this in the following sections.

IV. GENERALIZED CONTINUITY EQUATION AND
TORQUE

We now consider the generalized continuity equation (11)
from the point of view of linear response theory. We start from
the well-known identity[48]

−𝑖𝜔𝜒𝐴,𝐵 (𝜔) = −𝑖⟨[ �̂�, �̂�]⟩ + 𝜒 ¤𝐴,𝐵 (𝜔) (33)

where the angular bracket denotes the average in the unper-
turbed ground state and ¤𝐴 = 𝜕𝑡 �̂� = 𝑖ℏ−1 [�̂�0, �̂�]. Applying
this to our density response function, we get

−𝑖𝜔𝜒𝑛O ,r (r, 𝜔) = −𝑖⟨[�̂�O (r), r̂]⟩ + 𝜒 ¤𝑛O ,r (r, 𝜔) . (34)

After multiplication of this equation by 𝑒E, on the left-hand
side, we have the Fourier transform of the time derivative of the
generalized density. Similarly, the first term on the right-hand
side is easily recognized to be the density of “torque” exerted
by the electric field, i.e., what we have called “extrinsic torque
density” after Eq. (11). Because this torque is of the first order
in E, the average is taken over the equilibrium state (i.e., the
state at zeroth order in E).

The second term on the right-hand side can further be de-
composed into two parts according to Eq. (6):

𝜒 ¤𝑛O ,r (r, 𝜔) = −∇r · 𝜒 𝑗O ,r (r, 𝜔) + 𝜒𝑇𝑖𝑛𝑡
O ,r (r, 𝜔), (35)

where 𝜒𝑇𝑖𝑛𝑡
O ,r (r, 𝜔) is the response function of the “intrinsic”

torque density operator

𝑇 𝑖𝑛𝑡
O (r) =

∑︁
𝑖

[𝜕𝑡 Ô𝑖] ★ 𝛿(r − r̂𝑖) (36)
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to the external field. Here 𝜕𝑡 Ô𝑖 = 𝑖ℏ−1 [�̂�0, Ô𝑖]. We have thus
recovered the structure of the generalized continuity equation
announced in Sec. II, Eq. (11).

But now we can go further and obtain an expression for the
torque by computing the linear response function 𝜒𝑇𝑖𝑛𝑡

O ,r. The
total torque term is given by

𝑇O (r, 𝜔) = 𝑒

[
−𝑖⟨[�̂�O (r), r̂]⟩ + 𝜒𝑇𝑖𝑛𝑡

O ,r (r, 𝜔)
]
· E. (37)

Let us focus on the net torque 𝑇O ≡ lim𝜔→0
∫
𝑇O (r, 𝜔)𝑑r.

A non-zero value of this quantity implies that the total “charge”
Ô ≡ ∑

𝑖 Ô𝑖 =
∫
�̂�O (r)𝑑r is not conserved. The net torque

associated to a TR-odd charge is even under time reversal:
therefore utilizing once again Eq. (24) we find that its linear
response is given by

lim
𝜔→0

�̄�𝑇𝑖𝑛𝑡
O ,r (𝜔) = 𝑃

∑︁
𝛼𝛽

𝑓𝛼 − 𝑓𝛽

𝜖𝛼 − 𝜖𝛽
[𝜕𝑡 Ô]𝛼𝛽 [r̂]𝛽𝛼 . (38)

Making use of the identity [𝜕𝑡 Ô]𝛼𝛽 = 𝑖ℏ−1 (𝜖𝛼 − 𝜖𝛽) [Ô]𝛼𝛽
and the definition of the principal part this can be rewritten as

lim
𝜔→0

�̄�𝑇𝑖𝑛𝑡
O ,r (𝜔) = − 1

𝑖ℏ

∑︁
𝛼𝛽

(𝜖𝛼 − 𝜖𝛽)2 ( 𝑓𝛼 − 𝑓𝛽)
(𝜖𝛼 − 𝜖𝛽)2 + 𝜂2 [Ô]𝛼𝛽 [r̂]𝛽𝛼 .

(39)
Eq. (39) is “almost” the negative of the first term in the

square bracket of Eq. (37), which, after spatial integration, can
be expressed as

1
𝑖ℏ
⟨[Ô, r̂]⟩ = 1

𝑖ℏ

∑︁
𝛼𝛽

( 𝑓𝛼 − 𝑓𝛽) [Ô]𝛼𝛽 [r̂]𝛽𝛼 . (40)

The difference between Eq. (39) and Eq. (40) arises from the
seemingly innocent factor principal part factor, (𝜖𝛼−𝜖𝛽 )2

(𝜖𝛼−𝜖𝛽 )2+𝜂2 ,
which excludes from the summation terms with 𝜖𝛼 ≃ 𝜖𝛽 . Com-
bining Eqs. (39) and (40) and using the identity 𝜂

(𝜖𝛼−𝜖𝛽 )2+𝜂2 =

𝜋𝛿(𝜖𝛼 − 𝜖𝛽) (valid in the 𝜂 → 0 limit) we obtain

𝑇O =
𝑒𝜋𝜂

ℏ

∑︁
𝛼𝛽

( 𝑓𝛼 − 𝑓𝛽)𝛿(𝜖𝛼 − 𝜖𝛽)Im
{
[Ô]𝛼𝛽 [r̂]𝛽𝛼

}
· E

(41)

Observe that this expression coincides, apart from the factor
𝜂, with the expression for the spatially integrated density ac-
cumulation, which is given by Eq. (27). We can immediately
conclude that the net torque is a Fermi surface property,just as
the density accumulation. We process Eq. (41) following the
same steps that led us to Eq. (28) for the density accumulation.
In other words, replace 𝑓𝛼 − 𝑓𝛽 by 𝑓 ′ (𝜖𝛼)𝛿(𝜖𝛼 − 𝜖𝛽) and use
𝑖(𝜖𝛽 − 𝜖𝛼) [r̂]𝛽𝛼 = [v̂]𝛽𝛼. Then we replace the 𝛿(𝜖𝛼 − 𝜖𝛽)
by (𝜋𝜏 )−1

(𝜖𝛼−𝜖𝛽 )2+𝜏−2 , where 𝜏−1 is the spectral width of disorder-
broadened Bloch states (this is the relaxation time approxima-
tion). The result is

𝑇O = 𝜂

(
𝑒𝑁 (𝜖𝐹)𝜏

〈
Re{[Ô]k,k [v̂]k,k}

〉
𝐹𝑆

· E
)
, (42)

where we have assumed, for simplicity, that the Fermi surface
is a single sheet with a single relaxation time. Thus, under the
stated assumptions (i.e, in the relaxation time approximation)
the net volume torque 𝑇O in the zero-frequency limit is the
integrated density accumulation Eq. (28) multiplied by 𝜂, or,
equivalently, divided by the adiabatic switching-on time 𝜂−1.

It is perhaps not surprising that Eq. (42) goes to zero in the
limit 𝜂 → 0. The reason is that the integrated “torque” is the
time derivative of the total “charge” and therefore is expected
to vanish in the steady state, provided that (i) a steady state
exists, and (ii) the total “charge" is described by a bounded
operator. Both conditions are satisfied here, and Eq. (42) is
consistent with the findings of Ref. [45].

However, the most interesting result here is not the steady-
state torque (which vanishes), but the external torque, which,
as discussed in Ref. ([32]) is the source of the density accu-
mulation, acting for a time of order 𝜏 before the steady state
is reached. The external torque, which we call 𝑇𝑒𝑥𝑡

O , can be
extracted from Eq. (42) as

𝑇𝑒𝑥𝑡
O =

𝑇O
𝜂𝜏

= 𝑒𝑁 (𝜖𝐹)
〈
Re{[Ô]k,k [v̂]k,k}

〉
𝐹𝑆

· E (43)

i.e., it is the torque that we would compute from Eq. (37) if
we chose the relaxation time 𝜏 to go to infinity while 𝜂 goes to
zero in such a way that 𝜂𝜏 = 1. In phenomenological theories
of the density accumulation 𝑇O,𝑒𝑥𝑡 can be used as the torque
that is generated by the external electric field acting on Bloch
states before impurities have had a chance to act. Notice that
Eq. (43) does not depend on the phenomenological parameter
𝜏 and can be evaluated from a purely microscopic theory. The
additional torque exerted by impurities or other mechanisms
can then be included phenomenologically, for example in the
relaxation time approximation.

In Appendix IV we show that 𝑇O can be formally expressed
as a Fermi-surface average of the commutator between pro-
jected operators Ô𝐹𝑆 and r̂𝐹𝑆 , these being defined as the re-
strictions of Ô and r̂ respectively to the subspace of degenerate
states at the Fermi level:

𝑇O =
𝑖𝑒

ℏ
⟨DÔ⟩𝐹𝑆 · E , (44)

where DÔ is a short-hand for the commutator 𝑖[Ô𝐹𝑆 , r̂𝐹𝑆].
The notation D is, of course, suggestive of the covariant
derivative with respect to k to which the commutator between
projected operators reduces when the eigenstates of the Hamil-
tonian are Bloch waves (see Appendix IV).

V. RECOVERING A CONVENTIONAL CONTINUITY
EQUATION

We have so far considered only the net torque, i.e., the
spatial average of the torque density. The difference between
the actual torque density and its average will be referred to as
“distributed torque”. The distributed torque integrates to zero
and, therefore, can be expressed as the spatial divergence of a
vector field. In the limit of slow spatial variation, this vector
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field is the negative of the torque dipole density

𝐷O,𝑎 (r) =
∑︁
𝑖

⟨𝑟𝑖,𝑎 ★𝑇O,𝑖 ★ 𝛿(r − r̂𝑖)⟩ , (45)

where 𝑎 is a cartesian index (for a proof of this see Ap-
pendix V). Thus we have

𝑇O (r) −
1
𝑉
𝑇O = −

∑︁
𝑎

∇𝑎𝐷O,𝑎 (r), (46)

where𝑉 is the volume (or the area) of the system. As described
in Sec. II B the distributed torque can be absorbed in a “proper”
current density

Ĵ O,𝑎 (r) = 𝑗O,𝑎 (r) + �̂�O,𝑎 (r) , (47)

and the generalized continuity equation takes the form

𝜕𝑡𝑛O (r, 𝑡) + ∇r · JO (r) =
1
𝑉
𝑇O . (48)

Notice the appearance of the spatially integrated (net) torque
on the right-hand side. In practical applications 𝑇O would
have to be approximated, for example by combining the mi-
croscopic expression (43) for the external contribution with
a phenomenological expression for the internally generated
relaxation.

Unlike the conventional current, the “proper current” is a
Fermi surface property. To see this, consider its response to an
external electric field. Just as we did previously in Eqs. (38)
and (40) we can write the linear response of the proper current
as the sum of two terms: an intrinsic one

lim
𝜔→0

�̄�J𝑖𝑛𝑡
O,𝑎

,r (𝜔) = 𝑃
∑︁
𝛼𝛽

𝑓𝛼 − 𝑓𝛽

𝜖𝛼 − 𝜖𝛽
[𝜕𝑡 (𝑟𝑎★Ô)]𝛼𝛽 [r̂]𝛽𝛼 , (49)

where 𝑟𝑎 ★ Ô is a short-hand for
∑

𝑖 𝑟𝑖,𝑎 ★ Ô𝑖 , and an extrinsic
one

1
𝑖ℏ
⟨[𝑟𝑎 ★ Ô, r]⟩ = 1

𝑖ℏ

∑︁
𝛼𝛽

( 𝑓𝛼 − 𝑓𝛽) [𝑟𝑎 ★ Ô]𝛼𝛽 [r̂]𝛽𝛼 . (50)

Crucially Eq. (49) involves the matrix elements of a time
derivative (with dynamics controlled by𝐻0) so it can be treated
exactly in the same way as we treated the net torque in the early
part of this section and we arrive at the Fermi surface formula

J̄O,𝑎 =
𝑖𝑒

ℏ

〈
D

(
𝑟𝑎 ★ Ô

)〉
𝐹𝑆

· E , (51)

where D

(
𝑟𝑎 ★ Ô

)
is a short-hand for the commutator

𝑖[
(
𝑟𝑎 ★ Ô

)
𝐹𝑆

, r̂𝐹𝑆]. The torque and the current calculated
in this section are valid in the limit of slowly varying density.
Formally exact, but necessarily more complicated formulas for
the torque density are reported in the Appendix IV.

VI. CALCULATIONS OF OMM DENSITY RESPONSE

After presenting the general theory of density accumula-
tions, we now turn to its practical application in the context of
orbital magnetic responses [53–55]. Specifically, we focus on
the accumulation of orbital magnetic moments in Dirac ma-
terials (graphene, hBN, TMDCs, etc.), both with and without
TR symmetry [8, 56]. The OMM density operator is defined
as

n̂𝑚 (r) =
∑︁
𝑖

m̂𝑖 ★ 𝛿(r − r̂𝑖) (52)

where m̂𝑖 =
𝑒
4 (r̂𝑖 × v̂𝑖 − v̂𝑖 × r̂𝑖) is the OMM operator.2

As a concrete example, we consider the OMM response of
the Haldane model with a staggered sublattice potential Δ [1].
The Hamiltonian for this system is given by (see Appendix VI):

𝐻 = −𝑡0
∑︁
⟨𝑖 𝑗 ⟩

�̂�
†
𝑖
�̂� 𝑗 + 𝑡2𝑒

𝑖𝜙
∑︁
⟨⟨𝑖 𝑗 ⟩⟩

�̂�
†
𝑖
�̂� 𝑗 + 𝑡2𝑒

−𝑖𝜙
∑︁
⟨⟨𝑖 𝑗 ⟩⟩

�̂�
†
𝑖
�̂� 𝑗 + ℎ.𝑐.

+ Δ
∑︁
𝑖

(�̂�†
𝑖
�̂�𝑖 − �̂�

†
𝑖
�̂�𝑖),

(53)
where �̂� and �̂� (�̂�† and �̂�†) are the electron annihilation (cre-
ation) operators for the 𝐴 and 𝐵 sublattices of the honeycomb
lattice. The parameter 𝑡0 denotes the nearest-neighbor hopping
amplitude between the A and B sublattices, while 𝑡2 represents
the next-nearest-neighbor hopping amplitude within the A (or
B) sublattice. The phase parameter 𝜙 is a measure of the
staggered magnetic flux, breaking the TR symmetry.

For simplicity, we set 𝜙 = 𝜋/2. The model can be solved
analytically, yielding two symmetrically placed bands with
energies:

𝜖1,2 (k) = ±
√︃
𝑡20 |𝛾k |2 + (Δ − 2𝑡2𝛽k)2, (54)

where 𝛾k =
∑

𝑛 𝑒
𝑖k·δ𝑛 , 𝛽k =

∑
𝑛 sin (k · l𝑛), and 2𝑡2𝛽k is

known as the Haldane mass. Here, δ𝑛 represents the nearest
neighbor bonds and l𝑛 are the next nearest neighbor bonds [57].
The nonzero value of 𝑡2 paired with a non-vanishing magnetic
flux 𝜙 (modulo 2𝜋) breaks the TR symmetry, while Δ breaks
the inversion symmetry. Thus, the model has sufficient flexi-
bility to illustrate both the TR-invariant case (𝑡2 = 0) and the
case of broken TR symmetry (𝑡2 ≠ 0 and 𝜙 ≠ 2𝑛𝜋).

In the next two sections, we will consider the Haldane model
in a ribbon geometry with terminations (edges) parallel to the
𝑥-axis, and we will use the formalism developed in the previous
sections to calculate the OMM density accumulations.

2 It should be borne in mind that the OMM density is not equivalent to
the thermodynamic magnetization density [44]. While thermodynamic
magnetization includes terms arising from the change of the quasiparticle
density of states in response to a magnetic field, the OMM density arises
solely from the kinetic angular momentum of the electrons. In studies of
the orbital Hall effect and related transport phenomena, the experimentally
measured quantity is the induced OMM density, not the thermodynamic
magnetization [22].
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First, in Section VI A we will consider the TR-invariant
case (𝑡2 = 0) where the Haldane model reduces to “gapped
graphene” – the gap arising from the broken inversion sym-
metry. The band structure of the ribbon is shown in Fig. 1(b),
where the energy levels are plotted vs 𝑘 parallel to the edge. In
this case an OMM density is generated only when the Fermi
level crosses the conduction or valence bands and arises en-
tirely from dissipative intraband processes, in agreement with
the “non-dissipation no-accumulation theorem”.

Next, in Section VI B we consider the Haldane model with
𝑡2 > 0, 𝜙 = 𝜋/2, which breaks TR symmetry. This model
supports two distinct topological phases, determined by the
competition between Δ and 2𝑡2𝛽k.

WhenΔ−2𝑡2𝛽k > 0, the model is in the topologically trivial
phase with a Chern number of zero for each band [1] and no
edge states crossing the gap. The band structure of the ribbon
in the topologically trivial phase is shown in Fig. 1(c). The
essential difference between this and the TR invariant case is
that an OMM density accumulation is generated even when
the Fermi level lies in the gap: this nondissipative response
arises from interband mixing and can be described as a mag-
netoelectric effect allowed by broken TR symmetry.

When Δ − 2𝑡2𝛽k < 0, the Haldane model enters a topologi-
cally nontrivial phase characterized by the quantum anomalous
Hall effect [58]. The band structure of the ribbon is shown in
Fig. 1(d). Because of the edge states crossing the gap, we now
have both intraband and interband contribution to the OMM
density accumulation. As a result, the system behaves as an
orbital Chern insulator [59], where anomalous nondissipative
transport leads to simultaneous accumulations of both charge
and OMM densities.

A. The OMM density accumulation with TR symmetry

In this subsection, we perform calculations for finite ribbon
structures based on Haldane’s model. These ribbon structures
maintain translational symmetry along the longitudinal direc-
tion (𝑥-axis), while open boundary conditions are applied in
the transverse direction (𝑦-axis). The band structures of the
ribbons are shown in Figs. 1(b)-(d) for various cases of interest.

The general form of the OMM density response along the
transverse direction is given by (see Appendix VII for details):

𝛿𝑛𝑧𝑚 (𝑦) = 𝑒𝜏𝐸𝑥

∫
𝑑𝑥

∑︁
𝑛,𝑘

𝜕 𝑓𝑛𝑘

𝜕𝑘
𝑛𝑚𝑛𝑛 (𝑥, 𝑦, 𝑘)

+ 𝑒𝐸𝑥

∫
𝑑𝑥

∑︁
𝑛𝑛′𝑘

𝑓𝑛𝑘 − 𝑓𝑛′𝑘

𝜖𝑛𝑘 − 𝜖𝑛′𝑘
𝑛𝑚𝑛𝑛′ (𝑥, 𝑦, 𝑘)𝐴𝑛′𝑛 (𝑘).

(55)
The right-hand side consists of two terms: the first is an in-
traband contribution, which is associated with dissipative pro-
cesses at the Fermi surface [60, 61] and involves the momen-
tum relaxation time 𝜏. The second term comes from interband
contributions, which are intrinsic to the system and do not
involve 𝜏. Both contributions are strongly influenced by the
presence or absence of TR and inversion symmetry. For the
intraband term, the breaking of inversion symmetry is essen-
tial, while the intrinsic contribution requires the breaking of

both inversion and TR symmetries. Notably, in TR symmetric
systems only the intraband term survives, consistent with the
no-dissipation, no-accumulation theorem.

Let us go back to Eq. (55), where the diagonal matrix ele-
ments of OMM density are

𝑛𝑚𝑛𝑛 (𝑥, 𝑦, 𝑘) =
∑︁
𝑙

Re
{
𝑚𝑛𝑙 (𝑘)𝜓†

𝑙𝑘
(𝑥, 𝑦)𝜓𝑛𝑘 (𝑥, 𝑦)

}
. (56)

and the matrix element of the OMM operator is given by (see
Appendix VIII):

𝑚𝑛𝑙 (𝑘) = − 𝑒

2ℏ
𝜕𝑘 [𝜖𝑛𝑘 + 𝜖𝑙𝑘]𝑟 𝑦𝑛𝑙 (𝑘)+

𝑒

4𝑖ℏ

∑︁
𝑛′

(𝜖𝑙𝑘 + 𝜖𝑛𝑘 − 2𝜖𝑛′𝑘)
[
𝐴𝑛𝑛′ (𝑘)𝑟 𝑦𝑛′𝑙 (𝑘) − 𝑟

𝑦

𝑛𝑛′ (𝑘)𝐴𝑛′𝑙 (𝑘)
]
,

(57)
where 𝑟

𝑦

𝑛𝑙
(𝑘) is the matrix element of the 𝑦-component of

the position operator. The diagonal term 𝑟
𝑦
𝑛𝑛 (𝑘) indicates the

average position of a state |𝑛𝑘⟩ along the 𝑦 axis and provides a
useful illustration of the positions of the edge states. Eq. (57)
exhibits a hybrid feature, combining the Berry connection in
k-space with position matrix elements in real space. This
distinguishes it from the conventional expression of the OMM
in infinite systems [42, 62].

The OMMs, the average positions of the states along the 𝑦

axis, and the accumulations of the OMM density, as computed
for the ribbon band structure of Fig. 1(b) (gapped graphene
ribbon) are presented in Fig. 2. In Fig. 2(a) we show the
distribution of 𝑚𝑛𝑛 (𝑘) exhibiting an antisymmetric pattern in
𝑘-space, a direct consequence of TR symmetry. The calcula-
tions were done for a staggered onsite potential of Δ = 0.5𝑡0
and 𝑡2 = 0.06𝑡0. In Fig. 2(b), we plot the centers of the ribbon
states along the 𝑦 axis, 𝑟 𝑦𝑛𝑛 (𝑘), which are used in calculation of
the OMM density in Eq. (57). With these inputs, we calculate
and plot the OMM density accumulation in Fig. 2(c), where we
separate, for clarity, the intraband contribution (blue) and the
interband contribution (orange). With a Fermi level crossing
the bulk states at 𝐸 𝑓 = 1.5𝑡0 the interband contribution is zero,
as predicted by the no-dissipation no-accumulation theorem.
The accumulation arises entirely from the dissipative intraband
term and its value depends on 𝜏. Further analysis, presented
in Fig. 2(d), shows that the induced OMM density can be de-
composed into symmetric (orange squares) and antisymmetric
(green triangles) components, with respect to the center of
the ribbon. The symmetric component can be described as
a dissipative magnetoelectric response induced by the differ-
ence between the two terminations (see Fig. Fig.1(a)) – while
the antisymmetric component originates from the orbital Hall
effect [47].

B. The OMM density accumulation with broken TR symmetry

When TR symmetry is broken, the OMM density response
exhibits a new feature, which is especially evident when the
Fermi level lies within the bulk band gap. We focus, therefore,
on this case, and set 𝐸 𝑓 = 0. Because there is no proper Fermi
surface (except for the edge states that may cross the Fermi
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FIG. 2. Plots of calculated properties of TR-invariant “gapped
graphene” nanoribbon with onsite staggered potential Δ = 0.5𝑡0 and
Fermi energy 𝐸 𝑓 = 1.5𝑡0 [see also Fig.1(b)]. (a) 𝑘 dependence of
the diagonal matrix element of the orbital magnetic moment 𝑚𝑛𝑛 (𝑘).
Notice that 𝑚𝑛𝑛 (𝑘) = −𝑚𝑛𝑛 (−𝑘), as required by TR symmetry. (b)
Plots of the centers of the ribbon states along the finite 𝑦 direction
(𝑟𝑦𝑛𝑛 (𝑘)). The ribbon, schematically shown in Fig.1(a)], has a width
of 20 unit cells and the lattice constant is 1.42 Å. (c) The OMM
density accumulation is resolved into an intraband contribution (blue
dots) and an interband contribution (orange triangles). The interband
contribution vanishes due to TR symmetry. (d) The intraband con-
tribution to the OMM density accumulation is further resolved into
components that are symmetric (orange squares) and antisymmetric
(green triangles) with respect to the center of the ribbon (𝑦 = 0). The
existence of the symmetric component is allowed by the fact that the
edge terminations break mirror symmetry in a (𝑧, 𝑥) plane passing
through the center of the ribbon. (see Fig.1(a)).

level as will be discussed momentarily) the accumulation is
dominated by the interband contribution:

𝛿𝑛𝑧𝑚 (𝑦) = 𝑒𝐸𝑥

∫
𝑑𝑥

∑︁
𝑛𝑛′𝑘

𝑓𝑛𝑘 − 𝑓𝑛′𝑘

𝜖𝑛𝑘 − 𝜖𝑛′𝑘
𝑛𝑚𝑛𝑛′ (𝑥, 𝑦, 𝑘)𝐴𝑛′𝑛 (𝑘).

(58)
Importantly, this contribution is nondissipative and intrinsic,
in sharp contrast with the Fermi surface contributions that we
found in gapped graphene.

We begin with the topologically trivial phase of the Haldane
model, whose ribbon band structure is shown in Fig. 1(c). In
this phase, there are no edge states connecting the conduction
and the valence bands. Therefore, when the Fermi level is set
at midgap (zero energy) there is strictly no Fermi surface, and
the intraband contribution to the OMM density accumulation
vanishes as shown by the blue dots in Fig. 3(b). However, the
interband contribution is quite large and spatially asymmetric
(due to the breaking of inversion symmetry), as shown by the
orange triangles in Fig. 3(b). Crucially, the breaking of TR
symmetry is essential for an orbital magnetization to appear.
This can be understood by looking at the asymmetric distri-
bution of the OMM in momentum space, which is illustrated
in Fig. 3(a). The two valleys have OOMs of opposite signs
but different magnitudes. In a TR invariant system, the mag-
nitudes would be equal so that the OMM density generated

in one valley (by virtual transitions between the conduction
and valence bands) would be exactly canceled by an opposite
contribution from the other valley. In the present system the
cancellation fails, making non-dissipative orbital magnetiza-
tion accumulation possible.

Further exploration of the OMM density accumulations in
the topologically nontrivial phase of the Haldane model is
illustrated in Fig. 3(c) and (d). The ribbon band structure is
shown in Fig. 1(d). Two topologically protected edge states
cross the Fermi level at midgap allowing a non-dissipative
anomalous Hall current to flow in the bulk of the system.
The precise mechanism is as follows: both electric charge
and orbital magnetic moment (the latter shown by the blue
dots in Fig. 3(d)) accumulate in the edge states. Notice that
the accumulation is antisymmetric with respect to the center
of the ribbon. The electric field generated by the charges
accumulated on the edge drives the undergap Hall current.
In addition, we observe an interband response of the OMM,
shown by the orange triangles in Fig. 3(d), which is similar
to the one observed in Fig. 3(b) but significantly larger. We
attribute the larger size to the fact that the orbital moments,
depicted in Fig. 3(c), have the same sign in the two valleys,
leading to a much larger accumulation. This difference is
evident when comparing Fig. 3(c) to Fig. 3(a) and is reflected
in the larger magneto-electric response of the topologically
nontrivial phase.

VII. CONCLUSION

We have systematically explored the nonconserved density
accumulations arising from a steady electric field in several
types of conducting and nonconducting materials. The for-
mal work has been applied to a specific phenomenon–OMM
density accumulations in the orbital Hall effect.

Firstly, we have found that in the presence of TR symmetry,
the undergap contribution to density accumulation is absent.
Consequently, density accumulations can only occur if there
is a Fermi surface. This fact, first pointed out in Ref. [32] and
aligning closely with recent experimental observations [22],
can be seen more directly from the fact that the “proper cur-
rent” defined in Section IV, absorbing the generalized torque
dipole density, is a Fermi surface property. Examining gapped
graphene ribbons with TR symmetry reveals the predominant
influence of intraband contributions on the accumulation of
OMM density. This contribution can be further dissected
into a spatially uniform component (attributed to an orbital
analogue of the Edelstein effect) and an antisymmetric com-
ponent, which is linked to the orbital Hall effect.

When TR symmetry is disrupted, the no-dissipation no-
accumulation is no longer valid. Nondissipative accumula-
tions can arise, for example, from interband transitions in the
Haldane model. We have illustrated the generation of a net
OMM response by an electric field in a simplified Haldane
model in which TR symmetry is broken. This phenomenon
arises from states residing below the energy gap. It would be
prohibited by the no-dissipation no-accumulation theorem in
the TR symmetric scenario.
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FIG. 3. OMM density response in Haldane model nanoribbons
with flux 𝜙 = 𝜋

2 , and Fermi energy 𝐸 𝑓 = 0 at the center of the
gap (a) Momentum space distribution of the orbital moment in the
topologically trivial phase at on-site potential Δ = 0.5𝑡0. Notice that
𝑚𝑛𝑛 (𝑘) ≠ −𝑚𝑛𝑛 (−𝑘) due to TR symmetry breaking. (b) The OMM
density response of the trivial phase. The intraband contribution (blue
dots) is zero, while the interband contribution (orange triangles) is
large and asymmetric. (c) Momentum space distribution of valence
band orbital moment in the topologically nontrivial phase of the
Haldane model at Δ = 0.0. Notice that 𝑚𝑛𝑛 (𝑘) = 𝑚𝑛𝑛 (−𝑘) due to
inversion symmetry at Δ = 0. (d) The OMM density response of the
nontrivial phase. OMM density is contributed by both intraband (blue
dots) and interband (orange triangles) terms. In this scenario, the
intraband contribution is antisymmetric with respect to 𝑦 = 0, which
leads to opposite density accumulations at the two edges and zero net
orbital magnetic response. However, the interband contribution gives
rise to a large total OMM density response.

In summary, we have provided a fresh perspective on how
TR-odd nonconserved densities respond to an electric field
in various types of materials. Remarkably, this helps us to
understand the fundamental difference that exists between the
quantum spin Hall effect and the quantum Hall effect. In the
quantum spin Hall effect TR symmetry requires the edge spin
accumulations to go hand-in-hand with edge spin currents, the
two being related by spin-momentum locking: undergap states
play no role in the process. While the spin transport at the
Fermi level is almost ballistic, being protected against elastic
scattering by non-magnetic impurities – it is not truly non-
dissipative, because it is not protected against other scattering
mechanisms, e.g., inelastic scattering, operating at the Fermi
level. In the quantum Hall effect, edge states still play a role as
hosts for the electric charge accumulation, which produces an
electric field perpendicular to the edges. However, the exactly
quantized Hall current, which is perpendicular to the electric
field and hence truly non-dissipative, is carried by undergap
states in the incompressible bulk [63, 64].
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Supplemental Materials

I. MICROSCOPIC RECIPROCITY RELATION IN TIME-REVERSAL INVARIANT SYSTEMS

In this section we provide a general poof of Eq. (22), which we refer to as microscopic reciprocity relation for any time-reversal
invariant many-body system. Because we don’t want to be limited to non-interacting systems we start from the general exact
eigenstates (Lehmann) representation of the linear response function [48]

𝜒𝐴𝐵 (𝜔) =
∑︁
𝑛𝑚

𝑃𝑚 − 𝑃𝑛

𝜔 − 𝜔𝑛𝑚 + 𝑖𝜂
𝐴𝑚𝑛𝐵𝑛𝑚. (S1)

which describes the linear response of the Hermitian observable �̂� to an external force that couples linearly to the Hermitian
observable �̂� (we have set ℏ = 1). 𝐴𝑚𝑛 = ⟨𝑚 | �̂�|𝑛⟩ is the matrix element of �̂� between exact many-body eigenstates |𝑛⟩ and |𝑚⟩
with energies 𝐸𝑛 and 𝐸𝑚 respectively, and 𝜔𝑛𝑚 = 𝐸𝑛 − 𝐸𝑚. 𝑃𝑛 and 𝑃𝑚 are the occupation probabilities of states |𝑛⟩ and |𝑚⟩ in
the canonical equilibrium ensemble at temperature 𝑇 . We start from the basic identity (see [65], pp. 277)

⟨𝛼 | �̂�|𝛽⟩ = ⟨𝛽 |𝑇 �̂�†𝑇−1 |�̃�⟩ (S2)

where |�̃�⟩ = 𝑇 |𝛼⟩, |𝛽⟩ = 𝑇 |𝛽⟩ and 𝑇 is the anti-unitary time-reversal operator.
In a time-reversal invariant system for each |𝑛⟩ there is a time-reversed partner |�̃�⟩ with the same energy and the same

occupation probability. The sum over all 𝑛 is equivalent to the sum over all �̃�. Therefore we can write

𝜒𝐴𝐵 (𝜔) =
∑︁
𝑛𝑚

𝑃𝑚 − 𝑃𝑛

𝜔 − 𝜔𝑛𝑚 + 𝑖𝜂
�̃�𝑚𝑛 �̃�𝑛𝑚 = 𝜒�̃��̃�(𝜔) (S3)

where

�̃� ≡ 𝑇 �̂�†𝑇−1 , �̃� ≡ 𝑇 �̂�†𝑇−1 . (S4)

When dealing with operators of definite symmetry under time reversal we can further assume �̃� = ±�̂� = 𝜆𝐴 �̂�, where 𝜆𝐴 = ±1 is
the signature of the operator under time reversal. Then we have

𝜒𝐴𝐵 (𝜔) = 𝜆𝐴𝜆𝐵𝜒𝐵†𝐴† (𝜔) . (S5)

Finally, if the operators are Hermitian, we have

𝜒𝐴𝐵 (𝜔) = 𝜆𝐴𝜆𝐵𝜒𝐵𝐴(𝜔) . (S6)

Now let us specialize in the case of a non-interacting system with �̂� and �̂� sums of one-particle-operators and |𝛼⟩, |𝛽⟩
one-particle eigenstates. Making use of Eqs. (23), (17),(18) and (19) we obtain (with summation over repeated indices implied)

Re[𝜒𝐴𝐵 (𝜔)] =
1
2

Re [𝜒𝐴𝐵 (𝜔) + 𝜆𝐴𝜆𝐵𝜒𝐵𝐴(𝜔)]

=
1
2

Re
[
L𝜂

𝛼𝛽
(𝜔)

]
Re[𝐴𝛼𝛽𝐵𝛽𝛼] −

1
2

Im
[
L𝜂

𝛼𝛽
(𝜔)

]
Im[𝐴𝛼𝛽𝐵𝛽𝛼]+

1
2
𝜆𝐴𝜆𝐵 Re

[
L𝜂

𝛼𝛽
(𝜔)

]
Re[𝐵𝛼𝛽𝐴𝛽𝛼] −

1
2
𝜆𝐴𝜆𝐵 Im

[
L𝜂

𝛼𝛽
(𝜔)

]
Im[𝐵𝛼𝛽𝐴𝛽𝛼]

=
1
2
(1 + 𝜆𝐴𝜆𝐵) Re

[
L𝜂

𝛼𝛽
(𝜔)

]
Re[𝐴𝛼𝛽𝐵𝛽𝛼] −

1
2
(1 − 𝜆𝐴𝜆𝐵) Im

[
L𝜂

𝛼𝛽
(𝜔)

]
Im[𝐴𝛼𝛽𝐵𝛽𝛼] . (S7)

where L𝜂

𝛼𝛽
(𝜔) = 𝑓𝛼− 𝑓𝛽

𝜖𝛼−𝜖𝛽+𝜔+𝑖𝜂 is the Lindhard factor and

Re[L𝜂

𝛼𝛽
(𝜔)] = ( 𝑓𝛼 − 𝑓𝛽)

𝜖𝛼 − 𝜖𝛽 + 𝜔

(𝜖𝛼 − 𝜖𝛽 + 𝜔)2 + 𝜂2 , Im[L𝜂

𝛼𝛽
(𝜔)] = ( 𝑓𝛼 − 𝑓𝛽)

−𝜂
(𝜖𝛼 − 𝜖𝛽 + 𝜔)2 + 𝜂2 . (S8)

For the imaginary part of the response function, similarly, we have:

Im[𝜒𝐴𝐵 (𝜔)] =
1
2

Re
[
L𝜂

𝛼𝛽
(𝜔)

]
Im[𝐴𝛼𝛽𝐵𝛽𝛼] +

1
2

Im
[
L𝜂

𝛼𝛽
(𝜔)

]
Re[𝐴𝛼𝛽𝐵𝛽𝛼]+

1
2
𝜆𝐴𝜆𝐵 Re

[
L𝜂

𝛼𝛽
(𝜔)

]
Im[𝐵𝛼𝛽𝐴𝛽𝛼] +

1
2
𝜆𝐴𝜆𝐵 Im

[
L𝜂

𝛼𝛽
(𝜔)

]
Re[𝐵𝛼𝛽𝐴𝛽𝛼]

=
1
2
(1 + 𝜆𝐴𝜆𝐵) Im

[
L𝜂

𝛼𝛽
(𝜔)

]
Re[𝐴𝛼𝛽𝐵𝛽𝛼] +

1
2
(1 − 𝜆𝐴𝜆𝐵) Re

[
L𝜂

𝛼𝛽
(𝜔)

]
Im[𝐴𝛼𝛽𝐵𝛽𝛼] . (S9)
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Eqs. (S7) and (S9) combined yield Eq. (24) of the main text:

𝜒𝐴𝐵 (𝜔) =
1 + 𝜆𝐴𝜆𝐵

2
L𝜂

𝛼𝛽
(𝜔) Re[𝐴𝛼𝛽𝐵𝛽𝛼] + 𝑖

1 − 𝜆𝐴𝜆𝐵

2
L𝜂

𝛼𝛽
(𝜔) Im[𝐴𝛼𝛽𝐵𝛽𝛼] . (S10)

II. GENERALIZED DENSITY ACCUMULATION IN A DIFFUSIVE METAL

In this Appendix we make use of Eq. (27) to calculate the static density accumulation. Making use of the identities
( 𝑓𝛼 − 𝑓𝛽)𝛿(𝜖𝛼 − 𝜖𝛽 + 𝜔) ≃ (𝜖𝛼 − 𝜖𝛽) 𝑓 ′ (𝜖𝛼)𝛿(𝜖𝛼 − 𝜖𝛽 + 𝜔) (valid in the limit 𝜔 → 0), where 𝑓 ′ (𝜖𝛼) is the derivative of the
Fermi-Dirac distribution with respect to its own argument and (𝜖𝛼 − 𝜖𝛽) [r̂]𝛽𝛼 = 𝑖ℏ[v̂]𝛽𝛼 we can write

𝜒𝑛O ,r (r, 0) = 𝜋ℏ
∑︁
𝛼𝛽

𝑓 ′ (𝜖𝛼) Re{[�̂�O (r)]𝛼𝛽 [v̂]𝛽𝛼}𝛿(𝜖𝛼 − 𝜖𝛽), (S11)

where the derivative of the Fermi-Dirac distribution, 𝑓 ′ (𝜖𝛼) ≃ −𝛿(𝜖𝛼 − 𝜖𝐹) (with 𝜖𝐹 the Fermi energy) forces 𝜖𝛼 (and therefore
also 𝜖𝛽) to be at the Fermi level. To make further progress, we need to make some assumptions about the nature of the single-
particle eigenstates |𝛼⟩ and |𝛽⟩. We work in the framework of the relaxation time approximation, namely, we assume that the
eigenstates are scattering states characterized by a dominant Bloch wave vector k with a lifetime 𝜏 due to impurity scattering.
Furthermore, we can assume that only states with the same k are connected by the operators r̂, v̂, etc... This implies that only
energy eigenstates separated by energies of the order of ℏ/𝜏 are connected. While this approach is often qualitatively correct,
we caution the reader that it may occasionally be spectacularly wrong, as it neglects what in diagrammatic language is termed
“vertex corrections”. When vertex corrections are important, qualitative discussion is not sufficient, and a more careful treatment
of the disorder is required.

Under the assumptions of the relaxation time approximation, the sum∑︁
𝛽

Re{[�̂�O (r)]𝛼𝛽 [v̂]𝛽𝛼}𝛿(𝜖𝐹 − 𝜖𝛽) (S12)

can be approximated by a Lorentzian of width 1/𝜏 centered at 𝜖𝐹 :

1
𝜋

𝜏−1

(𝜖𝛼 − 𝜖𝐹)2 + 𝜏−2

〈
Re{�̂�O (r)]k,k [v̂]k,k}

〉
𝐹𝑆

, (S13)

where the angular bracket denotes the average of the product of matrix elements between states at the Fermi level. Then Eq. (S11)
works out to be

𝜒𝑛O ,r (r, 0) = 𝑁 (𝜖𝐹)𝜏
〈
Re{[�̂�O (r)]k,k [v̂]k,k}

〉
𝐹𝑆

, (S14)

where 𝑁 (𝜖𝐹) =
∑

𝛼 𝛿(𝜖𝐹 − 𝜖𝛼) is the density of states at the Fermi level. This result is for a single sheet of the Fermi surface.
If there are multiple sheets with partial densities of states 𝑁𝑖 (𝜖𝐹) and relaxation times 𝜏𝑖 we simply sum over them and recover
Eq. (??) of the main text. This result diverges in the limit 𝜏 → ∞, consistent with the fact that in the absence of momentum
relaxation, the electric field would drive an infinite parallel current. Indeed 𝑁 (𝜖𝐹)𝜏 (times 𝑒2𝑣2

𝐹
) is essentially the Drude

conductivity of a disordered metal in the diffusive regime. It is a measure of the shift of the Fermi surface under the action of an
electric field. The fact that the induced density is proportional to this shift clearly shows that the density response is inseparable
from dissipation.

As a simple illustration of this formula, consider the two-dimensional Rashba electron gas with one-particle Hamiltonian

𝐻 =
ℏ2𝑘2

2𝑚
+ ℏ𝛼(ẑ × k) · 𝝈 (S15)

where 𝛼 is the Rashba constant (a velocity), ẑ is a unit vector perpendicular to the plane, and 𝝈 is the spin. The Fermi “surface”
(at sufficiently high electron density) consists of two concentric circles, one at 𝑘 = 𝑘𝐹 + 𝑚𝛼/ℏ (denoted by +) and the other at
𝑘 = 𝑘𝐹 − 𝑚𝛼/ℏ, (denoted by −), where 𝑘𝐹 is related to the two-dimensional electronic density 𝑛 by 𝑛 =

ℏ2𝑘2
𝐹
+𝑚2𝛼2

2𝜋ℏ2 .
We want to calculate the spin density in the 𝑦 direction induced by an electric field 𝐸 in the 𝑥 direction. Because the

Hamiltonian (S15) is invariant under time-reversal we can use Eq. (27), which gives

𝑆𝑦 =
ℏ

2
{
𝑁+ (𝜖𝐹)𝜏⟨[�̂�𝑦]k,k [v̂𝑥]k,k⟩+ + 𝑁− (𝜖𝐹)𝜏⟨[�̂�𝑦]k,k [v̂𝑥]k,k⟩−

}
𝑒𝐸 , (S16)
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where [v̂𝑥]k,k = 1
ℏ
𝜕𝐻
𝜕𝑘𝑥

= ℏ𝑘𝑥/𝑚 − 𝛼[�̂�𝑦]k,k. We have assumed that the relaxation time has the same value on both sheets of
the Fermi surface. On both Fermi circles the velocity points radially outward with a common value 𝑣𝐹+ = 𝑣𝐹,− = 𝑣𝐹 = ℏ𝑘𝐹/𝑚.
The spin [�̂�]k,k is tangential to the circles pointing clockwise for the + sheet and counterclockwise for the − sheet. Finally, the
density of states on the two sheets is given by

𝑁± (𝜖𝐹) =
𝑚

2𝜋ℏ2

(
1 ± 𝛼

𝑣𝐹

)
. (S17)

Making use of this information, it is a simple exercise to recover the well-known result for the current induced spin polarization
(also known as Edelstein effect) [66]

𝑆𝑦 =
ℏ

2
𝑚

𝜋ℏ2 𝛼𝜏𝑒𝐸 . (S18)

III. DERIVATION OF BERRY CURVATURE FORMULAS FOR GENERALIZED HALL CONDUCTIVITIES

Here we check that the well-known formulas connecting the Hall conductivity to the Berry curvature are recovered in our
formalism. In Eq. (S1) we set �̂� = ĴO (r) =

∑
𝑖 Ô𝑖 ★ v̂𝑖 ★ 𝛿(r − r̂𝑖) (the generalized current density operator) and �̂� = 𝑒r̂ (the

dipole operator). The response function in the DC limit (𝜔 → 0) is given by

𝜒 𝑗O ,r (r, 0) = 2𝑃
∑︁
𝛼𝛽

𝑓𝛼
Re{[ĴO]𝛼𝛽 (r) [r̂]𝛽𝛼}

𝜖𝛼 − 𝜖𝛽
, (S19)

and the current response has the form

𝛿𝐽𝑎O (r, 0) = 𝑒
∑︁
𝑐

𝜒𝑎

𝐽𝑏
O ,𝑟𝑐

(r, 0)𝐸𝑐 . (S20)

The conductivity is given by

𝜎𝑎
𝑏𝑐 (r) = 𝑒𝜒𝑎

𝐽𝑏
O ,𝑟𝑐

(r, 0). (S21)

In a periodic system, the state 𝛼 = (𝑛, k) is labeled by the band index 𝑛 and the reciprocal wave vector k. Thus,

𝜎𝑎
𝑏𝑐 (r) =2𝑃

∑︁
𝑛,𝑛′ ,k

𝑒 𝑓𝑛k
𝜖𝑛k − 𝜖𝑛′k

Re{[𝐽𝑏O𝑎 ]𝑛k,𝑛′k (r)𝐴𝑐
𝑛′𝑛}

=
1
2

∑︁
𝑛≠𝑛′ ,k

𝑒 𝑓𝑛k
𝜖𝑛k − 𝜖𝑛′k

Re

[∑︁
𝑙

[
{Ô𝑎, �̂�𝑏}𝑛,𝑙 (k)𝜓†

𝑙k𝜓𝑛′k (r) + {Ô𝑎, �̂�𝑏}𝑙,𝑛′ (k)𝜓†
𝑛k𝜓𝑙k (r)

]
𝐴𝑐
𝑛′𝑛

]
. (S22)

Here, we have employed the expression r𝑚k,𝑛k′ = 𝛿𝑚𝑛𝑖
𝜕
𝜕k𝛿 (k − k′) + 𝛿 (k − k′) A𝑚𝑛 (k) with A𝑚𝑛 (k) = ⟨𝑢𝑚k |𝑖𝜕k𝑢𝑛k⟩. Thus,

the global conductivity 𝜎𝑎
𝑏𝑐

=
∫
𝜎𝑎
𝑏𝑐
(r)𝑑r is given by

𝜎𝑎
𝑏𝑐 =2

∑︁
𝑛≠𝑛′ ,k

𝑒 𝑓𝑛k
𝜖𝑛k − 𝜖𝑛′k

Re
{
[Ô𝑎 ★ �̂�𝑏]𝑛,𝑛′ (k)𝐴𝑐

𝑛′𝑛 (k)
}

=
𝑒

ℏ

∑︁
𝑛,k

𝑓𝑛k
∑︁
𝑛′≠𝑛

−2ℏ2 Im
{
[Ô𝑎 ★ �̂�𝑏]𝑛,𝑛′ (k)𝑣𝑐𝑛′𝑛 (k)

}
(𝜖𝑛k − 𝜖𝑛′k)2

=
𝑒

ℏ

∑︁
𝑛,k

𝑓𝑛kΩ
𝑎
𝑛,𝑏𝑐 (k), (S23)

where 𝐴𝑐
𝑛′𝑛 (k) =

𝑖ℏ𝑣𝑐
𝑛′𝑛 (k)

𝜖𝑛k−𝜖𝑛′k
, and Ω𝑎

𝑛,𝑏𝑐
(k) is the generalized Berry curvature associated with the operator Ô. Its explicit form is

Ω𝑎
𝑛,𝑏𝑐 (k) =

∑︁
𝑛′≠𝑛

−2ℏ2 Im
{
[Ô𝑎 ★ �̂�𝑏]𝑛,𝑛′ (k)𝑣𝑐𝑛′𝑛 (k)

}
(𝜖𝑛k − 𝜖𝑛′k)2 . (S24)
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IV. THE TORQUE DENSITY

In this section, we provide a brief derivation of Eq. (44) from the main text. We start from Eq. (37), which we restate here for
convenience:

𝑇O (r, 𝜔) = 𝑒

[
𝜒𝑇O ,r (𝜔, r) +

1
𝑖ℏ

∑︁
𝑖

⟨[�̂�O , r̂𝑖]⟩0

]
· E, (S25)

The net torque we consider in the main text is given by

𝑇O = lim
𝜔→0

∫
𝑇O (r, 𝜔)𝑑r = 𝑒E · lim

𝜔→0
�̄�𝑇O ,r (𝜔) +

𝑒

𝑖ℏ

∫ ∑︁
𝑖

⟨[�̂�O , r̂𝑖]⟩0 · E𝑑r (S26)

where the first term on the right-hand side is given as

lim
𝜔→0

�̄�𝑇O ,r (𝜔) = 𝑃
∑︁
𝛼𝛽

𝑓𝛼 − 𝑓𝛽

𝜖𝛼 − 𝜖𝛽
[r̂]𝛽𝛼

∫
𝑇 O
𝛼𝛽 (r)𝑑r . (S27)

The matrix element of the torque density operator is given by

𝑇 O
𝛼𝛽 (r) = ⟨𝛼 |𝑇O (r) |𝛽⟩ =

1
𝑖ℏ

∑︁
𝑖

⟨𝛼 | [Ô𝑖 , 𝐻0] ★ 𝛿(r − r̂𝑖) |𝛽⟩ . (S28)

Making use of the identity ∫
𝑇 O
𝛼𝛽 (r)𝑑r =

1
𝑖ℏ

∑︁
𝑖

⟨𝛼 | [Ô𝑖 , 𝐻0] |𝛽⟩ =
1
𝑖ℏ
(𝜖𝛽 − 𝜖𝛼)O𝛼𝛽 , (S29)

we obtain

lim
𝜔→0

�̄�𝑇O ,r (𝜔) = − 1
𝑖ℏ

∑︁
𝛼𝛽

𝑃
(
𝑓𝛼 − 𝑓𝛽

)
[Ô]𝛼𝛽 [r̂]𝛽𝛼, (S30)

where [Ô]𝛼𝛽 [r̂]𝛽𝛼 is shorthand for
∑

𝑖 [Ô𝑖]𝛼𝛽 [r̂𝑖]𝛽𝛼. This is Eq. (39) of the main text.
Now let us calculate the integrated commutator term in Eq. (S26), we have

1
𝑖ℏ

∫ ∑︁
𝑖

⟨[�̂�O , r̂𝑖]⟩0𝑑r =
1
𝑖ℏ

∑︁
𝑖

∑︁
𝛼

[Ô𝑖 , r̂𝑖]𝛼𝛼 𝑓𝛼 =
1
𝑖ℏ

∑︁
𝛼𝛽

(
𝑓𝛼 − 𝑓𝛽

)
[Ô]𝛼𝛽 [r̂]𝛽𝛼 . (S31)

We thus recover Eq. (40) in the main text.
The combination of Eqs. (S30) and (S31) leads to massive cancelation, after which only the terms only with 𝜖𝛼 ≃ 𝜖𝛽 , as given

by Eq. (V) in the main text. In order to express the result more compactly, we separate the position operator r̂ into two parts,
intraband R̂ and interband X̂. After employing the commutators

[Ô, R̂]𝛼,𝛽 = −𝑖
𝜕O𝛼𝛽

𝜕k
− O𝛼𝛽 (A𝛼𝛼 − A𝛽𝛽),

[Ô, X̂]𝛼,𝛽 =
∑︁
𝛾

(1 − 𝛿𝛾𝛽)O𝛼𝛾A𝛾𝛽 −
∑︁
𝛾

(1 − 𝛿𝛾𝛼)A𝛼𝛾O𝛾𝛽 , (S32)

we finally obtain

𝑇O =𝑒E ·
∑︁
𝛼

{
−1
ℏ

𝜕O𝛼𝛼

𝜕k
− 𝑖

ℏ
[Ô, Â]𝛼𝛼 + 𝑖

ℏ

∑︁
𝛽≠𝛼

[
O𝛼𝛽𝐴𝛽𝛼 − O𝛽𝛼𝐴𝛼𝛽

]}
𝑓𝛼

= − 𝑒

ℏ

∑︁
𝛼

E · 𝜕O𝛼𝛼

𝜕k
𝑓𝛼

=
𝑖𝑒

ℏ
⟨DÔ⟩𝐹𝑆 · E, (S33)
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where we have introduced the notation

⟨DÔ⟩𝐹𝑆 = 𝑖
∑︁
𝛼

𝜕O𝛼𝛼

𝜕k
𝑓𝛼 = −𝑖

∑︁
𝛼

O𝛼𝛼

𝜕 𝑓𝛼

𝜕k
, (S34)

which is the explicit form of the commutator 𝑖[Ô𝐹𝑆 , r̂𝐹𝑆] in Bloch system. Using integration by parts, we can see this is the
Fermi surface contribution of the net torque.

We now turn our attention to deriving the proper current formula, as presented in Eq. (51) of Sec. IV. Compared to Eq. (9),
the proper current density operator shares a similar structure, expressed as

ĴO =
∑︁
𝑖

𝜕𝑡 (Ô𝑖 ★ r̂𝑖) ★ 𝛿(r − r̂𝑖), (S35)

Thus, deriving the proper current response becomes as straightforward as replacing Ô with Ô ★ r̂ in Eq. (S33). This yields

J̄O =
𝑒

ℏ

∑︁
𝛼

E · 𝜕 𝑓𝛼
𝜕k

[Ô ★ r̂]𝛼𝛼 =
𝑖𝑒

ℏ
⟨D(Ô ★ r̂)⟩𝐹𝑆 · E, (S36)

thus, we recover the Eq. (51), which clearly shows a Fermi surface contribution.

V. EXPRESSION OF TORQUE DENSITY IN THE LIMIT OF SLOW SPATIAL VARIATION

In this section, we show how the non-uniform component of the torque density can be expressed, in the limit of slow spatial
variation, as the divergence of the torque dipole density. We know that 𝑇O (r) =

∑
𝑖 (𝜕𝑡 Ô𝑖) ★ 𝛿(r − r̂𝑖), which in 𝑞−space, with

Fourier transformation 𝑇O (q) =
∫
𝑑r𝑒−𝑖q·r𝑇O (r), is given by

𝑇O (q) =
∑︁
𝑖

(𝜕𝑡 Ô𝑖) ★ 𝑒−𝑖q·r̂𝑖 . (S37)

For q = 0, 𝑇O (0) gives the uniform component of the torque, ˆ̄𝑇O . For q ≠ 0 and for slow spatial variation (𝑞𝑎 ≪ 1) we expand

𝑇O (q) ≈ q ·
∑︁
𝑖

𝜕q

[
(𝜕𝑡 Ô𝑖) ★ 𝑒−𝑖q·r̂𝑖

]
= −𝑖q ·

∑︁
𝑖

r̂𝑖 ★ (𝜕𝑡 Ô𝑖) ★ 𝑒−𝑖q·r̂𝑖 = −𝑖q · D̂O (q). (S38)

where D̂O (q) =
∑

𝑖 r̂𝑖 ★ (𝜕𝑡 Ô𝑖) ★ 𝑒−𝑖q·r̂𝑖 is the torque dipole density operator. By transforming this expression to real space, we
have

D̂O (r) =
∫

𝑑q
∑︁
𝑖

r̂𝑖 ★ (𝜕𝑡 Ô𝑖) ★ 𝑒𝑖q· (r−r̂𝑖 ) =
∑︁
𝑖

r̂𝑖 ★ (𝜕𝑡 Ô𝑖) ★ 𝛿(r − r̂𝑖). (S39)

This is the right operator form of Eq. (45) in the main text. And the torque density operator now is rewritten as

𝑇O (r) ≈
1
𝑉

ˆ̄𝑇O − ∇r · D̂O (r). (S40)

where 𝑉 is the volume of the system.

VI. SOLUTION OF THE HALDANE MODEL WITH STAGGERED ONSITE POTENTIALS

In this section, we discuss several solutions of the Haldane model. First we introduce the model in real space:

𝐻 = −𝑡0
∑︁
⟨𝑖 𝑗 ⟩

�̂�
†
𝑖
�̂� 𝑗 + 𝑡2𝑒

𝑖𝜙
∑︁
⟨⟨𝑖 𝑗 ⟩⟩

�̂�
†
𝑖
�̂� 𝑗 + 𝑡2𝑒

−𝑖𝜙
∑︁
⟨⟨𝑖 𝑗 ⟩⟩

�̂�
†
𝑖
�̂� 𝑗 + ℎ.𝑐. + Δ

∑︁
𝑖

(�̂�†
𝑖
�̂� 𝑗 − �̂�

†
𝑖
�̂� 𝑗 ). (S41)

Here, 𝑡0 represents the nearest-neighbor hopping amplitude between the A and B sublattices, which are connected via three bond
vectors, δ𝑛, defined as δ1 =

(
1
2 ,

1
2
√

3

)
, δ2 =

(
−1
2 , 1

2
√

3

)
, and δ3 =

(
0, −1√

3

)
. The parameter 𝑡2 corresponds to the next-nearest-

neighbor hopping amplitude within the A (or B) sublattices, connected by the vectors l𝑛, where l1 = (1, 0), l2 =

(
−1
2 ,

√
3

2

)
, and
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l3 =

(
−1
2 , −

√
3

2

)
. The phase 𝜙 is the staggered magnetic flux, which breaks time-reversal symmetry, while Δ refers to the onsite

potential that breaks inversion symmetry.
After Fourier transformation, we have the Hamiltonian in 𝑘-space,

𝐻 =
∑︁

k
(𝑎†k, 𝑏

†
k)

(
Δ + 2𝑡2𝛽𝑎k −𝑡0𝛾k
−𝑡0𝛾∗k −Δ + 2𝑡2𝛽𝑏k

) (
𝑎k
𝑏k

)
, (S42)

where 𝛾k =
∑

𝑛 𝑒
𝑖k·𝛿𝑛 , 𝛽𝑎k =

∑
𝑛 Re

[
𝑒𝑖 (k·l𝑛+𝜙)

]
=
∑

𝑛 cos(k · l𝑛 + 𝜙), and 𝛽𝑏k =
∑

𝑛 Re
[
𝑒𝑖 (k·l𝑛−𝜙) ] = ∑

𝑛 cos(k · l𝑛 − 𝜙). In the
main text, we set 𝜙 = 𝜋

2 for the convenience. The eigenvalues are given by the equation
(
Δ + 2𝑡2𝛽𝑎k − 𝐸

) (
Δ − 2𝑡2𝛽𝑏k + 𝐸

)
+

𝑡20 |𝛾k |2 = 0, which has solutions

𝜖1,2 (k) = −𝑡2 (𝛽𝑎k + 𝛽𝑏k ) ±
√︃
𝑡20 |𝛾k |2 + 𝑡22 (𝛽

𝑎
k + 𝛽𝑏k )2 +

(
Δ + 2𝑡2𝛽𝑎k

) (
Δ − 2𝑡2𝛽𝑏k

)
, (S43)

The corresponding eigenfunctions are

|𝑢1k⟩ =
©«

|𝛾k |𝑢(k)
𝛾∗

k

√︃
4𝑡2

0 |𝛾k |2+𝑢2 (k)
2𝑡0 |𝛾k |√︃

4𝑡2
0 |𝛾k |2+𝑢2 (k)

ª®®¬ , |𝑢2k⟩ =
©«

|𝛾k |𝑣 (k)
𝛾∗

k

√︃
4𝑡2

0 |𝛾k |2+𝑣2 (k)
2𝑡0 |𝛾k |√︃

4𝑡2
0 |𝛾k |2+𝑣2 (k)

ª®®¬ . (S44)

where −2Δ − 2𝑡2𝛽𝑎k + 2𝑡2𝛽𝑏k + 𝜖2k − 𝜖1k = 𝑢(k), and −2Δ − 2𝑡2𝛽𝑎k + 2𝑡2𝛽𝑏k − 𝜖2k + 𝜖1k = 𝑣(k).
When 𝑡2 = 0 and Δ ≠ 0 the model reduces to TR symmetric “gapped graphene”, whose band dispersion is

𝜖1,2 (k) = ±
√︃
𝑡20 |𝛾k |2 + Δ2. (S45)

The above formulas are for the bulk periodic system. For the nanoribbon geometry the bands are calculated numerically, for
TR invariant and TR non-invariant systems, both in the trivial and nontrivial topological phases. The results sre shown in
Fig. 1(b)-(d) of the main text.

VII. THE OMM DENSITY RESPONSE IN THE RIBBON GEOMETRY

This section focuses on the OMM response in the ribbon geometry. In the ribbon structure, we set 𝑥 as the periodic (longitudinal)
direction along which the electric field is applied and 𝑦 as the transverse direction (with open boundary condition) along which
the OMM density accumulation is computed. The OMM density induced by the electric field is given by

𝛿𝑛𝑧𝑚 (𝑦, 𝜔) =
𝑖𝑒𝐸𝑥

𝑖𝜂 + 𝜔

∫
𝑑𝑥

∑︁
𝑛,𝑘

𝜕 𝑓𝑛𝑘

𝜕𝑘
𝑛𝑚𝑛𝑛 (𝑥, 𝑦, 𝑘) + 𝑒𝐸𝑥

∫
𝑑𝑥

∑︁
𝑛𝑛′𝑘

𝑓𝑛𝑘 − 𝑓𝑛′𝑘

𝜖𝑛𝑘 − 𝜖𝑛′𝑘 + 𝑖𝜂 + 𝜔
𝑛𝑚𝑛𝑛′ (𝑥, 𝑦, 𝑘)𝐴𝑛′𝑛 (𝑘). (S46)

The matrix elements of the OMM density operator are given by

𝑛𝑚𝑛𝑛′ (𝑥, 𝑦, 𝑘) =
1
2

∑︁
𝑙

[𝑚𝑛𝑙 (𝑘)𝜓†
𝑙𝑘
(𝑥, 𝑦)𝜓𝑛′𝑘 (𝑥, 𝑦) + 𝑚𝑙𝑛′ (𝑘)𝜓†

𝑛𝑘
(𝑥, 𝑦)𝜓𝑙𝑘 (𝑥, 𝑦)] . (S47)

where 𝜓𝑛𝑘 (𝑥, 𝑦) (note that 𝜓𝑛𝑘 (𝑥, 𝑦) is not Bloch function) represents the wave function at real-space coordinates (𝑥, 𝑦) for band
𝑛 with wavevector 𝑘 . In the tight-binding basis, 𝜓𝑛𝑘 (𝑥, 𝑦) is expressed as

𝜓𝑛𝑘 (𝑥, 𝑦) =
1
√
𝑁

∑︁
𝑅

∑︁
𝜇

𝐶𝑛𝑘
𝜇 𝑒𝑖𝑘 (𝑅+𝑟

𝑥
𝜇 )𝜙𝑅,𝜇 (𝑥, 𝑦), (S48)

where 𝑅 labels the periodic cells along the 𝑥-direction, 𝜇 denotes the sublattice within each periodic cell, and 𝜙𝑅,𝜇 (𝑥, 𝑦) is the
tight-binding basis function. We assume that the latter is a 𝛿-function centered at the lattice site:

𝜙𝑅,𝜇 (𝑥, 𝑦) = 𝛿(𝑥 − 𝑅 − 𝑟 𝑥𝜇)𝛿(𝑦 − 𝑟
𝑦
𝜇), (S49)

where (𝑟 𝑥𝜇, 𝑟
𝑦
𝜇) are the position coordinates of sublattice 𝜇 in the unit cell at 𝑅 = 0. Thus, the 𝑥 and the 𝑦-coordinates are

replaced by discrete lattice-site coordinates. The coefficient 𝐶𝑛𝑘
𝜇 in Eq. (S48) can be obtained by diagonalizing the tight-binding

Hamiltonian.
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The integration of 𝑥 in function 𝜓
†
𝑛𝑘
(𝑥, 𝑦)𝜓𝑙𝑘 (𝑥, 𝑦) gives∫

𝜓
†
𝑛𝑘
(𝑥, 𝑦)𝜓𝑙𝑘 (𝑥, 𝑦)𝑑𝑥 =

1
𝑁

∑︁
𝑅𝑅′

∑︁
𝜇𝜇′

𝐶𝑛𝑘∗
𝜇 𝐶𝑙𝑘

𝜇′𝑒
𝑖𝑘 (𝑅+𝑟 𝑥𝜇 −𝑅′−𝑟 𝑥

𝜇′ )𝛿(𝑅 + 𝑟 𝑥𝜇 − 𝑅′ − 𝑟 𝑥𝜇′ )𝛿(𝑦 − 𝑟
𝑦

𝜇′ )𝛿(𝑦 − 𝑟
𝑦
𝜇)

=
1
𝑁

∑︁
𝑅𝑅′

∑︁
𝜇𝜇′

𝐶𝑛𝑘∗
𝜇 𝐶𝑙𝑘

𝜇′𝛿𝑅,𝑅′𝛿𝑟 𝑥𝜇 ,𝑟 𝑥𝜇′
𝛿𝑟 𝑦𝜇 ,𝑟

𝑦

𝜇′
𝛿(𝑦 − 𝑟

𝑦
𝜇)

=
∑︁
𝜇

𝐶𝑛𝑘∗
𝜇 𝐶𝑙𝑘

𝜇 𝛿(𝑦 − 𝑟
𝑦
𝜇). (S50)

After integrating over 𝑥, we obtain the matrix elements:

𝑛𝑚𝑛𝑛′ (𝑦, 𝑘) =
∫

𝑛𝑚𝑛𝑛′ (𝑥, 𝑦, 𝑘)𝑑𝑥 =
1
2

∑︁
𝑙𝜇

[𝑚𝑛𝑙 (𝑘)𝐶𝑙𝑘∗
𝜇 𝐶𝑛′𝑘

𝜇 + 𝑚𝑙𝑛′ (𝑘)𝐶𝑛𝑘∗
𝜇 𝐶𝑙𝑘

𝜇 ]𝛿(𝑦 − 𝑟
𝑦
𝜇). (S51)

VIII. THE MATRIX ELEMENTS OF THE OMM OPERATOR

In this section, we calculate the matrix elements of the OMM operator in the ribbon geometry

𝑚𝑛𝑙 (𝑘) =
𝑒

4𝑖ℏ
⟨𝑛𝑘 |{𝑟 𝑥𝑟 𝑦 − 𝑟 𝑦𝑟 𝑥 , 𝐻} − 2𝑟 𝑥𝐻𝑟 𝑦 + 2𝑟 𝑦𝐻𝑟 𝑥 |𝑙𝑘⟩

=
𝑒

4𝑖ℏ
(𝜖𝑙𝑘 + 𝜖𝑛𝑘)

∑︁
𝑛′𝑘′

𝑟 𝑥𝑛𝑛′ (𝑘, 𝑘 ′)𝑟
𝑦

𝑛′𝑙 (𝑘
′, 𝑘) − 𝑟

𝑦

𝑛𝑛′ (𝑘, 𝑘
′)𝑟 𝑥𝑛′𝑙 (𝑘

′, 𝑘) − 𝑒

4𝑖ℏ
⟨𝑛𝑘 |2𝑟 𝑥𝐻𝑟 𝑦 − 2𝑟 𝑦𝐻𝑟 𝑥 |𝑙𝑘⟩

=
𝑒

4𝑖ℏ

∑︁
𝑛′𝑘′

(𝜖𝑙𝑘 + 𝜖𝑛𝑘 − 2𝜖𝑛′𝑘′ )
[
𝑟 𝑥𝑛𝑛′ (𝑘, 𝑘 ′)𝑟

𝑦

𝑛′𝑙 (𝑘
′, 𝑘) − 𝑟

𝑦

𝑛𝑛′ (𝑘, 𝑘
′)𝑟 𝑥𝑛′𝑙 (𝑘

′, 𝑘)
]
. (S52)

Employing v̂ = 1
𝑖ℏ
[r̂, 𝐻], and 𝑟 𝑥

𝑛𝑛′ (𝑘, 𝑘 ′) = 𝑖𝛿𝑛𝑛′𝜕𝑘𝛿(𝑘 − 𝑘 ′) + 𝛿(𝑘 − 𝑘 ′)𝐴𝑛𝑛′ (𝑘) with 𝐴𝑛𝑛′ (𝑘) = 𝑖 ⟨𝑢𝑛𝑘 |𝜕𝑘𝑢𝑛′𝑘⟩, we obtain∑︁
𝑛′𝑘′

(𝜖𝑙𝑘 + 𝜖𝑛𝑘 − 2𝜖𝑛′𝑘′ ) 𝑟 𝑥𝑛𝑛′ (𝑘, 𝑘 ′)𝑟
𝑦

𝑛′𝑙 (𝑘
′, 𝑘) =

∑︁
𝑛′𝑘′

[𝑖𝛿𝑛𝑛′𝜕𝑘𝛿(𝑘 − 𝑘 ′) + 𝛿(𝑘 − 𝑘 ′)𝐴𝑛𝑛′ (𝑘)] (𝜖𝑙𝑘 + 𝜖𝑛𝑘 − 2𝜖𝑛′𝑘′ ) 𝑟 𝑦𝑛′𝑙 (𝑘
′, 𝑘)

= 𝑖
∑︁
𝑘′

𝜕𝑘𝛿(𝑘 − 𝑘 ′) (𝜖𝑙𝑘 + 𝜖𝑛𝑘 − 2𝜖𝑛𝑘′ ) 𝑟 𝑦𝑛𝑙 (𝑘
′, 𝑘) +

∑︁
𝑛′

𝐴𝑛𝑛′ (𝑘)𝑟 𝑦𝑛′𝑙 (𝑘) (𝜖𝑙𝑘 + 𝜖𝑛𝑘 − 2𝜖𝑛′𝑘)

= −2𝑖𝜕𝑘 [𝜖𝑛𝑘]𝑟 𝑦𝑛𝑙 (𝑘) +
∑︁
𝑛′

𝐴𝑛𝑛′ (𝑘)𝑟 𝑦𝑛′𝑙 (𝑘) (𝜖𝑙𝑘 + 𝜖𝑛𝑘 − 2𝜖𝑛′𝑘)

(S53)
Similarly, we have the∑︁

𝑛′𝑘′
(𝜖𝑙𝑘 + 𝜖𝑛𝑘 − 2𝜖𝑛′𝑘′ ) 𝑟 𝑦𝑛𝑛′ (𝑘, 𝑘

′)𝑟 𝑥𝑛′𝑙 (𝑘
′, 𝑘) =

∑︁
𝑛′𝑘′

(𝜖𝑙𝑘 + 𝜖𝑛𝑘 − 2𝜖𝑛′𝑘′ ) 𝑟 𝑦𝑛𝑛′ (𝑘, 𝑘
′) [−𝑖𝛿𝑛′𝑙𝜕𝑘𝛿(𝑘 − 𝑘 ′) + 𝛿(𝑘 − 𝑘 ′)𝐴𝑛′𝑙 (𝑘)]

= 𝑖2𝜕𝑘 [𝜖𝑙𝑘]𝑟 𝑦𝑛𝑙 (𝑘) +
∑︁
𝑛′

(𝜖𝑙𝑘 + 𝜖𝑛𝑘 − 2𝜖𝑛′𝑘) 𝑟 𝑦𝑛𝑛′ (𝑘)𝐴𝑛′𝑙 (𝑘).

(S54)
Finally, we have

𝑚𝑛𝑙 (𝑘) =
−𝑒
2ℏ

𝜕𝑘 [𝜖𝑛𝑘 + 𝜖𝑙𝑘]𝑟 𝑦𝑛𝑙 (𝑘) +
𝑒

4𝑖ℏ

∑︁
𝑛′

(𝜖𝑙𝑘 + 𝜖𝑛𝑘 − 2𝜖𝑛′𝑘)
[
𝐴𝑛𝑛′ (𝑘)𝑟 𝑦𝑛′𝑙 (𝑘) − 𝑟

𝑦

𝑛𝑛′ (𝑘)𝐴𝑛′𝑙 (𝑘)
]
. (S55)
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3ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology,
Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
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Strong correlations occur in magic-angle twisted bilayer graphene (MATBG) when the octet of flat moiré
minibands centered on charge neutrality (CN) is partially occupied. The octet consists of a single valence band and
a single conduction band for each of four degenerate spin-valley flavors. Motivated by the importance of Hartree
electrostatic interactions in determining the filling-factor dependent band structure, we use a time-dependent
Hartree approximation to gain insight into electronic correlations. We find that the electronic compressibility is
dominated by Hartree interactions, that paramagnetic states are stable over a range of density near CN, and that
the dependence of energy on flavor polarization is strongly overestimated by mean-field theory.

Introduction— The energy bands of twisted bilayer
graphene (TBG) have a four-fold spin-valley flavor degener-
acy. As a magic twist angle near 𝜃 = 1◦ is approached, the two
sets of four-fold degenerate bands closest to the neutral system
Fermi energy approach each other and narrow [1], converting
graphene from a weakly-correlated Fermi liquid to a strongly
correlated system [2–5] with a rich variety of competing states,
including superconductors, insulating flavor ferromagnets, and
metallic flavor ferromagnets. The ferromagnetism is reminis-
cent of but distinct from that exhibited by Bernal-stacked bi-
layer graphene in the quantum Hall regime [6–13] and is now
clearly established [3, 5, 14–32] as a prominent part of the
physics of MATBG. In contrast to the quantum Hall case, in
which eight Landau bands are filled sequentially to minimize
the exchange energy, MATBG ground states appear [33] not to
have any broken symmetries for a range of filling factors near
CN, and in broken symmetry states to keep the filling factors
of partially occupied flavors 𝜈 𝑓 inside an interval (−𝜈∗

ℎ
, 𝜈∗𝑒),

where 𝜈∗
ℎ

and 𝜈∗𝑒 are maximum hole and electron filling fac-
tors. (𝜈 𝑓 ≡ (𝑁 𝑓 −𝑀)/𝑀 where 𝑁 𝑓 is the number of flat band
electrons with flavor 𝑓 and 𝑀 is the number of moiré cells in
the system; 𝜈 =

∑
𝑓 𝜈 𝑓 .)

In this Letter, we address some unusual aspects of the cor-
relation physics of MATBG from the weak-coupling point of
view (one shot GW approximation). We find that the average
compressibility is dominated by Hartree interactions, that un-
broken symmetry states are stable over a range of density near
CN, and that the dependence of energy on flavor polarization
is strongly overestimated by mean-field theory. Below we first
explain the technical details of our calculations and then dis-
cuss the relationship of our findings to those obtained using
other approaches to MATBG interaction physics.

Moiré-Band Weak-coupling Theory— The one shot GW
approximation, also known as the random phase approxima-
tion (RPA), is a perturbative method that accounts for dynamic
screening of long-range Coulomb interactions. It is commonly
used [34, 35] in ab initio electronic structure theory to under-

stand collective electronic behaviors, especially as probed by
optical or photoemission spectroscopy. Although rigorously
justified [36] only in weakly interacting systems, it has recently
attracted interest [37] as a universal and accurate method for
total energy calculations in many real materials, including [38]
strongly correlated Mott insulators.

In this Letter we employ RPA theory to approximate the de-
pendence of energy on the total band filling factor and on the
partitioning of electrons between the four spin-valley flavors
of MATBG. Because the number of electrons for each flavor
is a good quantum number, we can approximate the mag-
netic energy landscape by adding exchange-correlation (xc)
corrections 𝐸xc to the self-consistent Hartree (SCH) energies
of flavor polarized states. The RPA theory is motivated by the
unusual property of MATBG, illustrated in Fig. 2 by plotting
SCH bands at a series of band filling factors, that the band
filling dependence of its total energy is dominated [39–43] by
a Hartree mean-field contribution. The SCH energy increases
rapidly as the flat bands are filled as shown in Fig. 1(c), and
dominates the experimentally measured compressibilty. The
RPA accounts both for this energy, and for dynamic fluctuation
corrections to it.

The xc correction to the SCH energy can be expressed [44],
in terms of a coupling-constant integral of the pair correlation
function. This quantity can in turn be related to the density
response function by

𝐸xc =
1
2

′∑︁
q,g
𝑉q+g

[
− 1
𝜋

∫ 1

0
𝑑𝜆

∫ ∞

0
𝑑𝜔 𝜒gg (q, 𝑖𝜔;𝜆) − 1

]
,

(1)

where 𝑉q = 2𝜋𝑒2/𝑞𝜖BN is the two-dimensional (2D) Coulomb
interaction accounting for hexagonal boron nitride (hBN) di-
electric screening with the dielectric constant chosen to be
𝜖BN = 5.1 throughout the paper, q is a wavevector in the moiré
Brillouin zone (MBZ), g is a moiré reciprocal lattice vector,
and the prime on the sum excludes the q = g = 0 term which
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FIG. 1. Energies of paramagnetic states as a function of 𝜈 ∈ [−4, 4] for (a) a decoupled-bilayer and (b-d) 1.1◦-TBG. (a-b) Exchange (𝐸𝑥) and
RPA correlation (𝐸𝑐) energies as defined in Eqs. (4-5). The insets show the corresponding single-particle band structures. The black dashed
lines in the inset of (a) mark the Fermi level for 𝜈 = ±4. The blue dashed line in (a) is the exchange energy calculated using the approximate
analytical expression Eq. (6). (c) The SCH energy 𝐸0 [44] and the RPA total energy 𝐸tot. (d) The calculated chemical potential 𝜇 = 𝑑𝐸tot/𝑑𝜈
with its zero shifted to the chemical potential at 𝜈 = 0. The grey dots (0.98◦) and the grey line (1.13◦) plot measured chemical potentials from
Ref.[19]. All energies are given relative to CN with the zero of energy at the neutral system Fermi level.

contributes only a gate-geometry-dependent constant [44]. In
Eq. (1) 𝜒gg is a diagonal matrix element of the density re-
sponse function, which is a matrix in reciprocal lattice vectors
because of system’s discrete translational symmetry, and the
frequency integration used to obtain equal time correlations
has been rotated to the imaginary axis.

Equation (1) is formally exact. In RPA (time-dependent
Hartree) we replace 𝜒 in Eq. (1) by

𝜒(𝜆) = �̃�H (1 − 𝜆𝑉 �̃�H )−1

= �̃�H + 𝜆�̃�H𝑉 �̃�H (1 − 𝜆𝑉 �̃�H )−1,
(2)

where �̃�H is the single-particle density response function cal-
culated from the SCH bands [45], summing over independent

contributions from all four flavors:

�̃�H =

4∑︁
𝑓 =1

�̃� 𝑓
H . (3)

Possible improvements to this approximation are discussed
later.

When inserted in Eq. (1), the second form for the right-
hand-side of Eq. (2) separates the exchange energy 𝐸x, the
contribution that is first order in 𝑉 , from the full fluctuation
correction 𝐸xc ≡ 𝐸x + 𝐸c, allowing us to carefully account
for its subtly convergent frequency integral. After integrating
over 𝜆, the exchange energy can be rewritten in the standard
Slater determinant form [44]:

𝐸x = − 1
2𝐴

′∑︁
q,g
𝑉q+g

∑︁
𝑓 ,k,𝛼
𝛽,g1 ,g2

[
𝛿�̄� 𝑓 (k) + 2�̄�0 𝑓 (k)

]
𝛼,g1;𝛽,g2

𝛿𝜌
𝑓

𝛼,g1+g;𝛽,g2+g (k + q), (4)

where 𝛿𝜌 𝑓 (k) =
∑
𝑛

(
𝑧𝑛 (k)𝑧†𝑛 (k)Θ𝑛k − 𝑧0

𝑛 (k)𝑧0†
𝑛 (k)Θ0

𝑛k

)
is

the density matrix projected to flavor 𝑓 relative to that of a
charge neutral decoupled bilayer, 𝛿�̄� is the complex conjugate
of the corresponding matrix element of 𝛿𝜌, 𝑧𝑛 (k) and 𝑧0

𝑛 (k)
are plane-wave representation SCH and neutral-decoupled-
bilayer quasiparticle eigenvectors, and Θ𝑛k and Θ0

𝑛k are the
corresponding occupation numbers. In Eq. (4) g, g1, g2 are
moiré reciprocal lattice vectors, k and q are momenta in MBZ,
𝛼 and 𝛽 are layer and sublattice indices and 𝐴 is the area of the
2D system. Because of their negative energy seas, continuum
models of graphene multilayers are able to determine total
energies only up to a reference energy (per area) that is a linear
functions of electron density, 𝜀ref = 𝜀0 + 𝜇0𝑛; Eq. (4) chooses
the zero of energy 𝜀0 to be the energy per area of neutral
decoupled bilayers and the zero of chemical potential 𝜇0 to be
the energy of states at the top of the decoupled bilayer valence

band. The integration over the coupling-constant 𝜆 in Eq. (1)
can be performed analytically to yield the correlation energy
[44]

𝐸c =
1

2𝜋

′∑︁
q

∫ ∞

0
𝑑𝜔Tr

[√
V �̃�

H

√
V + ln(1 −

√
V �̃�

H

√
V)

]
,

(5)

where V and �̃�
H

are matrices in reciprocal lattice vector with
implicit q and 𝜔 dependences. The correlation energy must
be regularized by subtracting its value in unbroken symmetry
states at CN; its contribution to the chemical potential at CN is
close to zero because the models we study have approximate
particle-hole symmetry.

Paramagnetic State Energy — We interpret our numerical
results for the band filling 𝜈 dependence of the MATBG para-
magnetic ground state energy (Fig. 1(b,c)) by comparing them
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FIG. 2. The SCH paramagnetic state bands (colored lines) and the corresponding Fermi surfaces (shaded areas) at a series of 𝜈 values on
hole-doped (blue) and electron-doped (red) sides. The black dashed line in each spectrum is the single-particle band structure and the colored
dashed horizontal lines mark Fermi levels. At 𝜈 = −3, the flat valence band is 1/4 full and the occupied states are those whose charge density
is most peaked near minima of the external potential produced by remote band charges. At 𝜈 = −1, the flat valence band is at 3/4 filling. Holes
in the valence band remain near 𝛾, which would be the valence band bottom if Hartree corrections were not included. Holes near 𝛾 are finally
filled only around 𝜈 = −0.3 (see Fig. 5 in SM III) as 𝜈 approaches zero and Hartree energies finally become small compared to band energies.
The Fermi surfaces at filling factors +𝜈 and −𝜈 (for example 𝜈 = 2 and 𝜈 = −2) would be identical for any 𝜈 if the model had exact particle-hole
symmetry. At filling factors away from 𝜈 = 0, the SCH band width is dominated by the Hartree mean-field contribution.

with results for the decoupled bilayer [46] (Fig. 1(a)) calcu-
lated in exactly the same way. In both cases the exchange
energy is positive at small |𝜈 | because of [46] rapid changes
in Bloch state spinors near the Dirac point. The blue dashed
line in Fig. 1(a) is the exchange energy of an eight-Dirac-cone
model [46]:

𝐸D
x =

𝛼ℏ𝑐

24𝜋
𝑔

𝜖BN

𝑘3
F ln

( 𝑘c
𝑘F

)
+ regular terms, (6)

where 𝑔 = 8 and 𝑘F = (4𝜋𝑛/𝑔)1/2. The exchange energy of
MATBG is smaller than that of decoupled bilayers because of
the dominant role of the Hartree potential in shaping occupied
band states wavefunctions. In contrast to the decoupled bilayer
case, MATBG correlation energies are low near CN, because
that is where the phase space for low-energy particle-hole exci-
tations within the flat band octet is the largest. The correlation
energy is highest near |𝜈 | = 4 because the gaps between flat
and remote bands suppress fluctuations. In our calculations
there is a small particle-hole asymmetry in all properties, in-
cluding the exchange and correlation energies, because we
include non-local interlayer tunneling corrections [47] to the
Bistritzer-MacDonald (BM) MATBG model [1, 44].

Because of the partial cancellation between exchange and
correlation effects, discussed again below in connection with
flavor ferromagnetism, the difference between MATBG and
decoupled bilayers is dominated by the SCH energy [44] plot-
ted in Fig. 1(c). The SCH energy is calculated relative to its
value at CN, and its slope at CN is finite because the bare
flat bands are centered around 𝜀fb ≈ 12 meV (see Fig. 2) in
the non-local BM model we employ. The chemical poten-
tial 𝜇, the energy to add a single-electron increases steadily

as the flat bands are filled mainly because of Hartree effects.
We find that the chemical potential difference between full
and empty flat bands is ∼ 50 meV. When the bands are nearly
empty, added electrons occupy regions in the moiré unit cell in
which the mean-field potential from remote band electrons is
most attractive. When the bands are nearly filled, on the other
hand, it follows from approximate particle-hole symmetry that
electrons occupy the same region but the Hartree mean-field
potential is now repulsive.

In Fig. 1(d) we compare our results for the filling factor de-
pendence of the chemical potential across the full range of flat
band filling with experimental results published in Ref. [19].
The total shift in chemical potential is somewhat larger in
experiment than in theory. Since the states near the full and
empty flat band limit are not expected to be strongly correlated,
we attribute this small discrepancy to weak mixing between
flat and remote bands and small inaccuracies in the continuum
model we employ. The most striking feature of these results is
shared between theory and experiment, namely that the chemi-
cal potential increases approximately linearly with band filling
factor [19, 20, 48, 49]. In MATBG experiments, structures do
emerge at some filling factors that are thought to be due to first
order flavor-symmetry breaking phase transitions at low tem-
peratures, which we now address, and at higher temperatures
to surviving local moment fluctuations [50].

Flat Band Flavor Ferromagnetism — The RPA energy cal-
culation can be carried out for any set of flavor-dependent
filling factors. Typical numerical results [51] are summarized
in Fig. 3. The 𝜈 = 0 polarized states in Fig. 3(c) have filling
factor 𝑝 for two flavors and filling factor −𝑝 for the other two
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FIG. 3. SCH energy 𝐸0 (yellow dotted lines), exchange energy 𝐸x (blue dashed lines), exchange-correlation energy 𝐸xc (red dash-dotted lines)
and RPA total energy 𝐸tot (black solid lines) as a function of polarization 𝑝 at (a) 𝜈 = −2, (b) 𝜈 = −1, (c) 𝜈 = 0 and (d) 𝜈 = 1. 𝑝 characterizes
the degree of flavor polarization as explained in the main text. 𝑝 = 0 corresponds to the paramagnetic state and 𝑝 = 1 corresponds to full flavor
polarization.

flavors. Increasing 𝑝 shifts states from the valence bands of
two flavors to the conduction bands of the other two flavors.
Because of MATBG’s approximate particle-hole symmetry,
this polarization path does not strongly influence the charge
density, which remains approximately uniform at this filling
factor for all values of 𝑝, as illustrated in Figs. 13,14. The
main point to notice is that fully polarized states are strongly
favored by exchange energies, but this energy gain is almost
perfectly cancelled by the correlation energy which strongly
favors states in which each flavor is half filled. Similar results
are obtained at other filling factors. The family of polarized
states at 𝜈 = −2 in Fig. 3(a) have filling factor −(1 + 𝑝)/2
for two flavors and filling factor −(1 − 𝑝)/2 for the other two
flavors; increasing 𝑝 shifts electrons between valence bands
with different flavors and the charge density is non-uniform
at all values of 𝑝. For 𝜈 = ±1, the flavor polarization path
illustrated in Fig. 3(b,d) is 𝜈 = ±(1 + 3𝑝)/4 for one flavor and
𝜈 = ±(1 − 𝑝)/4 for the remaining three flavors. The exchange
energy gain upon polarization is again almost exactly cancelled
by correlation, underscoring the dominance of the SCH energy.
Once correlations are included the dependence of the SCH en-
ergy on 𝑝, which was judged to be insignificant in previous
self-consistent Hartree-Fock [52] calculations, retains a role in
the energy competition among different polarized states.

Within the RPA theory the cancellation between exchange
and correlation for the polarization 𝑝 dependence of the energy
can be understood in terms of Eqs. (1-2). The 𝑝 dependence of
energy follows from that of �̃�H , and this lies mainly in the range
of low-frequency fluctuations within the flat band where the
important matrix elements of 𝑉 �̃�H are much larger than 1 so
that 𝜒(𝜆) → 𝑉−1 (perfect screening), and the dependence of
𝐸xc on polarization is lost. Physically, correlations are already
strong even in the paramagnetic state and there is little left to
gain by flavor ordering. Generally speaking, we find that the
tendency toward flavor symmetry breaking is stronger at larger
|𝜈 | and stronger at positive 𝜈 than at negative 𝜈, as summarized
in Fig. 10, in agreement with most experiments [16, 19, 48,
53]. In addition we find that the difference in energy between
polarized and paramagnetic states is drastically reduced by
correlations from ∼ 40 meV per moiré period to less than ∼ 3

meV (Fig. 3(c)).
In MATBG broken 𝐶2𝑇 symmetry opens up a gap between

the conduction and valence bands. This type of broken sym-
metry within flavors is therefore common in mean-field cal-
culations. In our RPA calculations we find, as summarized
in Table II, that when 𝐶2𝑇 symmetry is broken by adding a
sublattice-dependent potential of the type produced by aligned
hBN substrates, flavor ferromagnetism is favored at almost
all filling factors including those proximate to CN. This find-
ing aligns well with experimental evidence suggesting that
hBN alignment tends to favor states with broken symmetries
[14, 15, 54], including quantum anomalous Hall states at frac-
tional flat band fillings [14].

The Magic-Angle Correlation Problem— In this Letter we
have reported on the first RPA calculation for MATBG. The
RPA weak-coupling approach has the advantage that it ac-
counts for dynamic screening of long-range Coulomb interac-
tions, but is less reliable than some other methods in account-
ing for short-distance correlations. Competing methods often
require tight-binding models, which in the case of MATBG
have the disadvantage that they require the introduction of
additional bands [55] to compensate for fragile topology in-
herited from the isolated layer Dirac cones. Our theory es-
tablishes the crucial influence of correlations in compressible
metallic states in expanding unbroken symmetry regions in the
MATBG phase diagram. The RPA weak-coupling approach
is also relevant for other moiré materials that exhibit strong
correlations.

Our calculations include 146 remote valence and conduction
bands per spin and flavor. Our calclations are consistent with
experimental indications that flavor ferromagnetism is com-
mon in both insulating and metallic states when the MATBG
flat bands are partially filled, less likely close to CN, and more
likely at positive filling factors than at negative filling factors.
The exchange energy gains that favor broken symmetry in-
sulating ground states at integer 𝜈, are comparable in size to
correlation energy gains in closely competing metallic states
with fewer or no broken symmetries. The resulting weak de-
pendence of energy on magnetic state is consistent with small
collective excitation energies of insulating states [56, 57] and
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with strong coupling approaches [22, 58] that can be applied
close to integer band fillings. Our calculations demonstrate
that [44] fluctuations in remote bands do not generally play a
central role in MATBG properties except in the cases of nearly
empty and nearly full bands. This finding justifies the flat-band
projection that is required to make non-perturbative finite-size
numerical calculations [59–62] feasible. Perturbative calcula-
tions are approximate, but have the advantage that finite-size
effects can be eliminated by taking dense momentum space
grids; our calculations employ 432 𝑘-points in the MBZ.

Our calculation results can be compared directly to exper-
imental results for the chemical potential 𝜇, which increases
by ∼ 50 meV as the flat bands are filled. This compares to a
dependence of energy on flavor polarization that is typically
∼ 3 meV per moiré cell. The positive compressibility we find,
in agreement with experiment, for MATBG electrons contrasts
with the well-known negative compressibility of strongly in-
teracting two-dimensional electron gas systems [63, 64], and is
associated with unusual properties of the projected flat-band
Hilbert space. In MATBG models with exact particle-hole
symmetry, the flat conduction and valence bands at the Fermi
energy spatial structure within the moiré unit cell that precisely
complements the total density of remote occupied bands, so
that the total density is uniform. The increase in chemical
potential with filling factor is associated with the property that
the non-uniform density of the remote bands is first elimi-
nated and then restored with the opposite sign as the flat bands
are filled. We emphasize that unlike most calculations in the
literature, which overstate dielectric screening to suppress in-
teraction scales, all our results are obtained using a physically
realistic hBN dielectric constant 𝜖BN = 5.1 [44].

The MATBG correlation problem is extraordinarily chal-
lenging and the RPA theory, like other approaches, has lim-
itations. Even though the flat band eigenstates have weak
dispersion, their wavefunctions vary in a complex way across
the MBZ. For this reason there is no simple Hubbard-like lat-
tice model representation of the correlation problem. Aside
from the fascinating low-temperature superconducting insta-
bility, two key higher energy issues still do not have definitive
answers. i) What is the ground state at CN? Is it the 𝑝 = 0
state of Fig. 3, which has no broken symmetries and strong
correlations, or the 𝑝 = 1 state, which is a single Slater deter-
minant with analytically calculable excitations when remote
band fluctuations are neglected? ii) What is the Fermi surface
in the range of filling factors surrounding 𝜈 = 0? Is it the 𝛾
centered Fermi surface of the 𝑝 = 1 state or the 𝜅, 𝜅′ centered
Fermi surface of the 𝑝 = 0 state? In either case how does the
Fermi surface, at least as indicated by weak-field Hall measure-
ments [47], manage to avoid Liftshitz transitions over such a
broad range of filling factors −1.8 ≲ 𝜈 ≲ 0.9 surrounding
𝜈 = 0? For the first question we do not consider the weak-
coupling answer (that 𝑝 = 0 is favored) to be definitive, but it
certainly demonstrates that the two states are competitive. The
second question is especially troublesome if one imagines that
the ground state near 𝜈 = 0 is a doped 𝑝 = 1 state in which
the band degeneracies have been reduced from four to two and

Fermi surface areas must be correspondingly larger. The more
likely option, in our view, is that the ground state near CN is an
unpolarized state as predicted by RPA. Part of the motivation
for this view is the absence of finite-temperature anomalies in
experiment, which would signal a phase transitions to a para-
magnetic state — expected to be at least weakly first order
in MATBG as in other itinerant electron magnets [65]. If so,
there is no hint experimentally of the emergence between 𝜈 = 0
and |𝜈 | = 1 of the self-consistent Hartree multi-pocket Fermi
surface topology illustrated in Fig. 2. Future work should
explain why this pocket does not appear (or alternately why
its appearance does not influence transport), perhaps due to
a refinement of the single-particle model which changes flat
band wavefunctions [66–69], exchange interactions within the
doped flat bands that stabilize 𝜅, 𝜅′ centered surfaces, broken
𝐶2𝑇 symmetry related to chiral model physics [22, 56, 70, 71]
and intervalley exchange interactions that we have neglected
[71–73]. Systematic studies of the evolution of MATBG prop-
erties with gate induced interlayer displacement fields could
play a role in sorting this confusing landscape.
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Supplemental Material:
Weak Coupling Theory of Competing Phases in Magic-Angle Twisted Bilayer Graphene

I. BISTRITZER-MACDONALD MODEL WITH NON-LOCAL INTERLAYER TUNNELING

In the original Bistritzer-MacDonald (BM) model, Eq. (5) in Ref. [1], the interlayer tunneling matrix element is

𝑇
𝛼𝛽

kk′ =
1
𝐴𝑢𝑐

3∑︁
𝑗=1
𝑡k+G 𝑗

𝑒
𝑖 [G 𝑗 · (𝝉𝛼−𝝉𝛽+𝝉0 )−G′

𝑗
·d]
𝛿k+G 𝑗 ,k′+G′

𝑗

=
1
𝐴𝑢𝑐

3∑︁
𝑗=1
𝑡k+G 𝑗

𝑇
𝛼𝛽

𝑗
𝛿k+G 𝑗 ,k′+G′

𝑗
,

(7)

where G and G′ are reciprocal lattice vectors of the top (layer 1) and bottom (layer 2) graphene layers respectively, momenta k
and k′ are measured relative to the Γ point of the original monolayer graphene and are both near the Dirac point K. Greek indices
label sublattices. The interlayer tunneling 𝑡 and matrices 𝑇𝑗 are defined later. The top layer (layer 1) is anticlockwise rotated by
𝜃/2 and characterized by vectors without ′ in the notation, bottom layer (layer 2) is clockwise rotated by 𝜃/2 and characterized
by vector with ′. The reciprocal lattice vectors are related by the rotation operator G′

𝑖
= R−𝜃G𝑖 , with

R𝜃 =

(
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)
. (8)

Three G’s that are most relevant to the interlayer hopping in the two-center approximation are, as shown in Fig. 4(a),

G1 =

(
0
0

)
, G2 = R𝜃/2 ·

4𝜋
√

3𝑎

(
−

√
3

2
1
2

)
, G3 = R𝜃/2 ·

4𝜋
√

3𝑎

(
−

√
3

2
− 1

2

)
. (9)

𝑎 = 0.246 nm is graphene’s lattice constant. Starting from AB-stacked bilayer graphene, we choose

𝜏𝐴 =

(
0
0

)
, 𝜏𝐵 = 𝜏0 = R𝜃/2 ·

𝑎
√

3

(
0
1

)
. (10)

Three largest interlayer hopping terms, corresponding to three G’s in Eq. (9), are

𝑇1 =

(
𝑢 1
1 𝑢

)
, 𝑇2 = 𝑒−𝑖G

′
2 ·d

(
𝑢𝑒𝑖𝜙 1
𝑒−𝑖𝜙 𝑢𝑒𝑖𝜙

)
, 𝑇3 = 𝑒−𝑖G

′
3 ·d

(
𝑢𝑒−𝑖𝜙 1
𝑒𝑖𝜙 𝑢𝑒−𝑖𝜙

)
, (11)

where 𝜙 = 2𝜋/3, 𝑢 = 𝑤𝐴𝐴/𝑤𝐴𝐵 is the ratio of interlayer tunneling between the same sublattice and between different sublattices.
The phase factor dependent on d can be eliminated by a unitary transformation of the plane-wave expanded basis.

The Fourier transform of interlayer tunneling strength 𝑡 (r) in Eq. (7) is

𝑡q =

∫
𝑑2r𝑒𝑖q·r𝑡 (r). (12)

Because 𝑡 (r) is a smooth and slowly varying function of the projected 2D coordinate r, 𝑡q rapidly decays with respect to 𝑞 and
we only keep three terms in the interlayer tunneling Eq. (7). Because of the symmetry of carbon 𝑝𝑧 orbitals, 𝑡 (r) and therefore
𝑡q are orientation-independent, i.e. 𝑡q = 𝑡𝑞 .

As shown in Fig. 4(b), the three allowed momentum boosts, defined by the difference between the momenta in the top and
bottom layers g̃ 𝑗 = k − k′ = G′

𝑗
− G 𝑗 , are

g̃1 =

(
0
0

)
, g̃2 =

4𝜋
√

3𝑎𝑀

(
1
2√
3

2

)
, g̃3 =

4𝜋
√

3𝑎𝑀

(
− 1

2√
3

2

)
, (13)

where 𝑎𝑀 = 𝑎/(2 sin(𝜃/2) ≈ 𝑎/𝜃 is the moiré lattice constant.
Momenta k + G 𝑗 in Eq. (7) are near Brillouin zone corners. To zeroth order,

𝑡k+G 𝑗
≈ 𝑡k𝐷, 𝑗

= 𝑡𝑘𝐷 = 𝑤0𝐴𝑢𝑐, (14)
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where k𝐷, 𝑗 are Dirac points of the unrotated graphene

k𝐷, 𝑗 = 𝑒
𝑖2𝜋 ( 𝑗−1)/3 (1, 0) 4𝜋

3𝑎
. (15)

The interlayer tunneling is local and therefore momentum independent

𝑇kk′ = 𝑤0

3∑︁
𝑗=1
𝑇𝑗𝛿k−k′ ,g̃ 𝑗

. (16)

The approximate particle-hole symmetry is broken by taking into account non-local interlayer tunneling effects[47]. Keeping
the expansion in 𝑡k+G 𝑗

till the first order,

𝑡k ≈ 𝑡𝑘𝐷 + 𝑡′ (𝑘 − 𝑘𝐷), (17)

where

𝑡′ =
𝑑𝑡

𝑑𝑘

���
𝑘=𝑘𝐷

< 0 (18)

is the tunable non-local tunneling parameter. The momentum-dependent interlayer tunneling becomes

𝑇kk′ =
1
𝐴𝑢𝑐

3∑︁
𝑗=1
𝑡k+G 𝑗

𝑇𝑗𝛿k−k′ ,g̃ 𝑗

=

3∑︁
𝑗=1

[
𝑤0 +

𝑤𝑛𝑙

𝑔𝑀
( |k + G 𝑗 | − 𝑘𝐷)

]
𝑇𝑗𝛿k−k′ ,g̃ 𝑗

.

(19)

The non-local tunneling parameter 𝑤𝑛𝑙 is defined as

𝑤𝑛𝑙 =
𝑔𝑀

𝐴𝑢𝑐
𝑡′, (20)

where 𝑔𝑀 = 4𝜋/
√

3𝑎𝑀 is the length of moiré primitive reciprocal lattice vector.
In the numerical calculations in this Letter, we take 𝑣

𝐹
= 0.866×106 m/s, 𝑢 = 𝑤𝐴𝐴/𝑤𝐴𝐵 = 0.6, 𝑤0 = 110 meV and 𝑤𝑛𝑙 = −20

meV for MATBG of twist angle 1.1◦. For other efforts to improve the accuracy of the single-particle Hamiltonian of twisted
bilayer graphene see Refs. [66–69].

Γ
K1

K2

γθ/2
kD

K+

(a)

G2

G3

γ

K1

K2

(b)

g̃2g̃3

FIG. 4. (a) Rotated Brillouin zones of top (red) and bottom (blue) graphene layers. The top layer is rotated anticlockwise with respect to
the bottom layer by 𝜃. The black dashed hexagonal is the Brillouin zone of unrotated graphene. 𝐾+, 𝐾1 and 𝐾2 are Dirac points of unrotated
graphene, the top graphene layer and the bottom graphene layer respectively. 𝑘𝐷 is the length of Γ − 𝐾+. The smaller black hexagon on the
right is the moiré Brillouin zone. (b) The moiré Brillouin zone. Three momentum boosts g̃ 𝑗 in Eq. (13) are shown.
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II. TBG HAMILTONIAN

The Hamiltonian of a periodic crystal is

�̂� = 𝑇𝑒 + �̂�𝑒−𝑒 + �̂�𝑒−𝑏 + �̂�𝑏−𝑏, (21)

where 𝑇𝑒 is the kinetic energy operator. Instead of the uniform background charge in the Jellium model, a periodic background
of the positive charge

𝑛𝑏 (r) =
1
𝐴

∑︁
G
𝑛𝑏,G𝑒

𝑖G·r (22)

is assumed. At CN, the background charge cancels with excess electron charge

𝑛𝑏,0 =

∫
𝑛𝑏 (r)𝑑r = 𝑁. (23)

Written in electron number density operators �̂�(q) and the total number operator �̂�

�̂�(q) =
∑︁
k,G

𝑐
†
k+G−q𝑐k+G,

�̂� = �̂�(q = 0) =
∑︁
k,G

𝑐
†
k+G𝑐k+G,

(24)

the interacting Hamiltonians are

�̂�𝑒−𝑏 = −𝑒2
∫

𝑑r𝑑r′
�̂�(r)𝑛𝑏 (r′)
|r − r′ | = − 1

𝐴

∑︁
G
𝑉 (G)𝑛𝑏,G�̂�−G,

�̂�𝑏−𝑏 =
𝑒2

2

∫
𝑑r𝑑r′

𝑛𝑏 (r)𝑛𝑏 (r′)
|r − r′ | =

1
2𝐴

∑︁
G
𝑉 (G)𝑛𝑏,G𝑛𝑏,−G,

�̂�𝑒−𝑒 =
𝑒2

2

∑︁
𝑖≠ 𝑗

1
|r𝑖 − r 𝑗 |

=
1

2𝐴

∑︁
q,G

𝑉 (q + G)
[
�̂�(q + G)�̂�(−q − G) − �̂�

]
.

(25)

Similar to the Jellium model, the G = 0 terms of �̂�𝑒−𝑏 and �̂�𝑏−𝑏, and the q = G = 0 term of �̂�𝑒−𝑒 cancel in the thermodynamic
limit 𝐴, 𝑁 → ∞. The full Hamiltonian in Eq. (21) can be written as

�̂� = 𝑇𝑒 + �̂�𝑒−𝑒 + �̂�𝑏

= 𝑇𝑒 +
1

2𝐴

′∑︁
q,G

𝑉 (q + G)
[
�̂�(q + G)�̂�(−q − G) − �̂�

]
+ 1

2𝐴

∑︁
G≠0

𝑉 (G)
[
− 2𝑛𝑏,G�̂�−G + 𝑛𝑏,G𝑛𝑏,−G

]
,

(26)

where ′ on the summation symbol means q = G = 0 term is excluded in the momentum summation.
It is straightforward to generalize the electron-electron interacting Hamiltonian in Eq. (26) to the TBG case, where two layers

and two sublattices degrees of freedom are explicitly included,

�̂�𝑒−𝑒 =
1

2𝐴

′∑︁
q,g,𝛼,𝛽

k1 ,k2 ,g1 ,g2

𝑉𝛼𝛽 (q + g)𝑐†
𝛼,k1+g1−q−g𝑐

†
𝛽,k2+g2+q+g𝑐𝛽,k2+g2𝑐𝛼,k1+g1 , (27)

where g, g1, g2 are moiré reciprocal lattice vectors and k1, k2, q are momenta in the first moiré Brillouin zone. 𝛼, 𝛽 label layers
and sublattices. The ′ on top of the summation means the q = g = 0 term is excluded, which is cancelled by the periodic
background of positive charge in the thermodynamic limit.

Alternatively, �̂�𝑒−𝑒 can be expressed in electron number density operators

�̂�𝑒−𝑒 = − 1
2𝐴

′∑︁
q,g
𝑉𝑆 (q + g)�̂� + 1

2𝐴

′∑︁
q,g
𝛼,𝛽

𝑉𝛼𝛽 (q + g)
∑︁
g1 ,g2

�̂�
g1
𝛼 (q + g)�̂�g2

𝛽
(−q − g), (28)
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where

�̂� =
∑︁

k,g,𝛼
𝑐
†
𝛼,k+g𝑐𝛼,k+g,

�̂�(q) =
∑︁
𝛼,g

�̂�
g
𝛼 (q) =

∑︁
𝛼,g

∑︁
k
𝑐
†
𝛼,k+g−q𝑐𝛼,k+g.

(29)

For isotropic dielectric media, the Coulomb interaction within the same 2D layer (𝑉𝑆) and between different 2D layers (𝑉𝐷) are
respectively

𝑉𝑆 (q) =
2𝜋𝑒2

𝜖𝑞
,

𝑉𝐷 (q) = 2𝜋𝑒2

𝜖𝑞
𝑒−𝑞𝑑 ,

(30)

where 𝜖 is the relative dielectric constant of the surrounding environment and 𝑑 is the distance between adjacent layers.
For anisotropic dielectric media, for example hBN, 𝜖BN =

√
𝜖𝑧𝑧𝜖⊥ ≈ 4.5 with 𝜖⊥ = 6.9[75], 𝜖𝑧𝑧 = 3.

𝑉𝑆 (q) =
2𝜋𝑒2

𝑞
√
𝜖⊥𝜖𝑧𝑧

,

𝑉𝐷 (q) = 2𝜋𝑒2

𝑞
√
𝜖⊥𝜖𝑧𝑧

𝑒−𝑞𝑑
√

𝜖⊥/𝜖𝑧𝑧 .

(31)

With dual metallic gates that is equidistant from the target 2D system, with distance 𝑑𝑚, the screened Coulomb potential energy
is

𝑉𝑠𝑐 (q) =
2𝜋𝑒2

𝑞
√
𝜖⊥𝜖𝑧𝑧

tanh
(
𝑞𝑑𝑚

√︂
𝜖⊥
𝜖𝑧𝑧

)
. (32)

In calculations throughout this paper, the 𝑑-dependence of the Coulomb potential in Eq. (31) is ignored, i.e.,

𝑉 (q) = 𝑉𝑆 (q) = 𝑉𝐷 (q) = 2𝜋𝑒2

𝑞𝜖BN

, (33)

and the hBN dielectric constant is chosen to be 𝜖BN = 5.1. Then Eq. (28) simplifies to

�̂�𝑒−𝑒 =
1

2𝐴

′∑︁
q,g
𝑉 (q + g)

[
�̂�(q + g)�̂�(−q − g) − �̂�

]
. (34)

III. SELF-CONSISTENT HARTREE APPROXIMATION IN TBG

With approximate SU(4) symmetry, the exchange interaction is only between electrons within the same flavor. The inter-
flavor interaction is only through the Hartree potential. The matrix element of the flavor- and momentum-independent Hartree
self-energy is

Σ𝐻
𝛼,g1;𝛽,g2

=
𝛿𝛼𝛽

𝐴

∑︁
𝛼′ ,g′1 ,g

′
2

𝑉𝛼𝛼′ (g2 − g1)𝛿𝜌𝛼′ ,g′1;𝛼′ ,g′2𝛿g′2−g′1 ,g2−g1 , (35)

where 𝛿𝝆 is the relative density matrix defined by subtracting the density matrix of the decoupled graphene bilayer at CN

𝛿𝝆 = 𝝆 − 𝝆0. (36)

The flavor-polarization-dependence of the self-energy is implicitly incorporated in the density matrix through the Fermi-Dirac
distribution Θ(𝜇 𝑓 − 𝜀 𝑓

𝑛k):

𝜌𝛼,g1;𝛽,g2 =
∑︁
𝑓 ,𝑛,k

𝑧
𝑛 𝑓
𝛼,g1 (k)𝑧

𝑛 𝑓

𝛽,g2
(k)Θ(𝜇 𝑓 − 𝜀 𝑓

𝑛k). (37)
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𝑓 = 1, 2, 3, 4 represent four flavors. If the inversion symmetry is retained, the diagonal elements of Σ𝐻 are constant and can be
set to zero.

For any specific flavor polarization (𝜈1, 𝜈2, 𝜈3, 𝜈4), the Hamiltonian is solved self-consistently for each flavor

𝐻 𝑓 (k, 𝜈1, 𝜈2, 𝜈3, 𝜈4) = 𝐻 𝑓

0 (k) + Σ𝐻 (𝜈1, 𝜈2, 𝜈3, 𝜈4), (38)

where 𝐻 𝑓

0 (k) is the single-particle Hamiltonian of flavor 𝑓 .
Self-consistent Hartree band structures and corresponding Fermi surfaces of flavor-symmetry unbroken states at filling factors

𝜈 ∈ (−1, 1) are shown in Fig. 5.
The electrostatic Hartree energy is

𝐸𝐻 =
1
2

∑︁
𝑓 ,𝑛,k

⟨Ψ 𝑓 𝑛k |Σ𝐻 |Ψ 𝑓 𝑛k⟩Θ(𝜇 𝑓 − 𝜀 𝑓

𝑛k)

=
1

2𝐴

∑︁
g1 ,g2
g′1 ,g

′
2

∑︁
𝛼,𝛼′

𝑉𝛼𝛼′ (g2 − g1) �̄�𝛼,g1;𝛼,g2𝛿𝜌𝛼′ ,g′1;𝛼′ ,g′2𝛿g′2−g′1 ,g2−g1 ,
(39)

and is further regularized by subtracting the negative Fermi sea contribution

𝐸𝐻 =
1

2𝐴

∑︁
g1 ,g2
g′1 ,g

′
2

∑︁
𝛼,𝛼′

𝑉𝛼𝛼′ (g2 − g1)𝛿�̄�𝛼,g1;𝛼,g2𝛿𝜌𝛼′ ,g′1;𝛼′ ,g′2𝛿g′2−g′1 ,g2−g1 . (40)

The SCH energy 𝐸0 in the main text is defined to include both the SCH band dispersion and the electrostatic Hartree energy:

𝐸0 = 𝐸band − 𝐸𝐻

=
∑︁
𝑓 ,𝑛,k

𝜀
𝑓

𝑛kΘ(𝜇 𝑓 − 𝜀 𝑓

𝑛k) − 𝐸𝐻 ,
(41)

where 𝜀 𝑓

𝑛k are eigenvalues of SCH Hamiltonian Eq. (38) and 𝐸𝐻 is subtracted to avoid double-counting of the Coulomb energy.

IV. SELF-CONSISTENT HARTREE-FOCK FERMI SURFACES

To compare with the self-consistent Hartree approximation, we present in Fig. 6 the Fermi surfaces of self-consistent Hartree-
Fock calculations with momentum- and flavor-dependent Fock self-energy

Σ
𝐹, 𝑓

𝛼,g1;𝛽,g2
(k) = − 1

𝐴

∑︁
k′ ,g′1 ,g

′
2

𝑉𝛼𝛽 (k′ − k + g′1 − g1)𝛿𝜌 𝑓

𝛼,g′1;𝛽,g′2
(k′)𝛿g′2−g′1 ,g2−g1 . (42)

V. THE DENSITY RESPONSE FUNCTION OF TBG

At zero temperature, the matrix elements of the flavor-specified density response function �̃� 𝑓 of MATBG can be derived
following the Lindhard formula

[ �̃� 𝑓 ]gg′ (q, 𝜔) = 1
𝐴

∑︁
𝑛,𝑚,k

Θ
𝑓

𝑛k − Θ
𝑓

𝑚k+q

𝜔 + 𝜀 𝑓

𝑛k − 𝜀 𝑓

𝑚k+q + 𝑖𝜂

[ ∑︁
𝛼,g1

𝑧
𝑛 𝑓
𝛼,g1 (k)𝑧

𝑚 𝑓
𝛼,g1+g (k + q)

]∗ ∑︁
𝛽,g2

𝑧
𝑛 𝑓

𝛽,g2
(k)𝑧𝑚 𝑓

𝛽,g2+g′ (k + q). (43)

where 𝜀 and 𝑧 are quasiparticle eigen-energy and eigenvector of the self-consistent Hartree approximation. It can be easily proved
that Eq. (43) satisfies the symmetry

[ �̃� 𝑓 ]gg′ (q, 𝜔) =
[
[ �̃� 𝑓 ]−g−g′ (−q,−𝜔)

]∗
. (44)

It obeys the general property of the response function

�̃�𝐴𝐵 (𝜔) = [ �̃�𝐴†𝐵† (−𝜔)]∗. (45)
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FIG. 5. Self-consistent Hartree band structures (colored lines) and corresponding Fermi surfaces (colored shaded areas) of flavor paramagnetic
states at filling factors 𝜈 ∈ (−1, 1). Red (blue) represents electron (hole) doping. The black dashed line in each spectrum is the single-particle
band structure. Note that the energy bands and the Fermi levels are shifted such that the non-interacting band energy at 𝜅 is zero.
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FIG. 6. Self-consistent Hartree-Fock band structures (colored lines) and corresponding Fermi surfaces (colored shaded areas) of flavor
paramagnetic states at filling factors 𝜈 = ±1,±2,±3. Red (blue) represents electron (hole) doping. The black dashed line in each spectrum is
the single-particle band structure.

The density response functions of opposite valleys with the same electrostatic doping level are related by the spinless time-reversal
symmetry

[ �̃�−]gg′ (q, 𝜔) = [ �̃�+]−g′−g (−q, 𝜔), (46)

following reciprocity relations

�̃�−𝐴𝐵 (𝜔) = �̃�
+
𝐵𝑇 𝐴𝑇 (𝜔), (47)

where ± represent two opposite valleys in TBG. If the TBG system is flavor unpolarized, the total density response function �̃�
summed over four flavors is time-reversal invariant and satisfies

�̃�gg′ (q, 𝜔) = 2[ �̃�+]gg′ (q, 𝜔) + 2[ �̃�−]gg′ (q, 𝜔)
= 2[ �̃�+]gg′ (q, 𝜔) + 2[ �̃�+]−g′−g (−q, 𝜔)
= �̃�−g′−g (−q, 𝜔).

(48)

At finite temperatures, the density response function is

[ �̃� 𝑓 ]gg′ (q, 𝑖𝜔) = 1
𝐴

∑︁
𝑛,𝑚,k

Θ
𝑓

𝑛k − Θ
𝑓

𝑚k+q

𝑖𝜔 + 𝜀 𝑓

𝑛k − 𝜀 𝑓

𝑚k+q

[ ∑︁
𝛼,g1

𝑧
𝑛 𝑓
𝛼,g1 (k)𝑧

𝑚 𝑓
𝛼,g1+g (k + q)

]∗ ∑︁
𝛽,g2

𝑧
𝑛 𝑓

𝛽,g2
(k)𝑧𝑚 𝑓

𝛽,g2+g′ (k + q). (49)

Matrix �̃� 𝑓 (q, 𝑖𝜔) is Hermitian along the imaginary frequency axis, i.e.,

�̃� 𝑓 (q, 𝑖𝜔) = [ �̃� 𝑓 ]† (q,−𝑖𝜔),
[ �̃� 𝑓 ]gg′ (q, 𝑖𝜔) =

[
[ �̃� 𝑓 ]g′g (q,−𝑖𝜔)

]∗
.

(50)

�̃� 𝑓 (q, 𝑖𝜔) also satisfies

[ �̃� 𝑓 ]gg′ (q, 𝑖𝜔) = [ �̃� 𝑓 ]−g′−g (−q,−𝑖𝜔) =
[
[ �̃� 𝑓 ]−g−g′ (−q, 𝑖𝜔)

]∗
. (51)

Opposite valleys with the same electrostatic doping level are related by the time-reversal symmetry

[ �̃�−]gg′ (q, 𝑖𝜔) = [ �̃�+]−g′−g (−q, 𝑖𝜔) =
[
[ �̃�+]g′g (q, 𝑖𝜔)

]∗
=

[
[ �̃�−]g′g (q,−𝑖𝜔)

]∗
. (52)

For valley unpolarized state, the total proper density response function in Eq. (3) satisfies

�̃�gg′ (q, 𝑖𝜔) = 2[ �̃�+]gg′ (q, 𝑖𝜔) + 2[ �̃�−]gg′ (q, 𝑖𝜔) = 2[ �̃�+]gg′ (q, 𝑖𝜔) + 2
[
[ �̃�+]g′g (q, 𝑖𝜔)

]∗
, (53)

and therefore the density response function of flavor unpolarized state is Hermitian, i.e.,

�̃�(q, 𝑖𝜔) = �̃�† (q, 𝑖𝜔). (54)

We see that symmetries of �̃�(q, 𝑖𝜔) are different from those of �̃�(q, 𝜔) at zero temperature.
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VI. THE COUPLING-CONSTANT INTEGRATION AS AN EVALUATION OF THE GROUND STATE ENERGY

The ground-state energy of an electron system can be easily connected to the density-density linear-response function—for
example at the level of the popular RPA — by the integration over the coupling constant theorem (see, for example, Sect. I.8.3
of Ref. [76]). However, the ground-state electron density of a moiré crystal is inhomogeneous on the moiré superlattice length
scale. The application of the integration over the coupling constant theorem to an inhomogeneous many-body system is not
straightforward and presents some subtleties. On the contrary, the Hohenberg-Kohn and Kohn-Sham theorems (see, for example,
Chapter 7 of Ref. [76]) of density functional theory are the natural theoretical framework to deal with inhomogeneous many-body
electron systems. This is why we formulate the problem of the calculation of the ground-state energy of twisted bilayer graphene
within the framework of Adiabatic Connection Fluctuation and Dissipation Theorem (ACFDT) [86] and then recover the RPA
by taking a suitable limit. This theory applies the integration over the coupling constant theorem between the Kohn-Sham (KS)
ground state and the real ground state of the electronic Hamiltonian as detailed in the following.

A. The Adiabatic Connection Fluctuation and Dissipation Theorem

The electronic Hamiltonian can be written as

Ĥ = 𝑇e + Ĥe−e + �̂�ext , (55)

where 𝑇e is the kinetic operator, Ĥe−e is the electron-electron interaction, i.e.

�̂�e−e =
1

2𝐴

′∑︁
q,G

𝑉 (q + G)
[
�̂�(q + G)�̂�(−q − G) − �̂�

]
, (56)

and �̂�ext is the crystal potential, i.e.

�̂�ext =

∫
𝑑2r𝑉ext (r)�̂�(r) . (57)

In Eq. (56), 𝑉 (q + G) is the Fourier transform of the electron-electron interaction potential, evaluated at the wave vector q + G,
where q is in the first BZ and G is an arbitrary reciprocal lattice vector. Similarly, �̂�(q + G) is the Fourier transform of the
ground-state density operator �̂�(r).

Let |Φ⟩ be the ground state of the full Hamiltonian and 𝑛(r) the associated ground-state density, i.e.

𝑛(r) = ⟨Φ|�̂�(r) |Φ⟩ . (58)

We now introduce a key auxiliary system, which is described by the so-called Kohn-Sham Hamiltonian ĤKS:

ĤKS = 𝑇e + �̂�ext + �̂�H + �̂�xc ≡ 𝑇e + �̂�KS . (59)

This Hamiltonian is a (self-consistent) one-particle Hamiltonian whose ground state |𝜓KS⟩ is a Slater determinant of Kohn-Sham
orbitals. The fundamental property of this Hamiltonian is that it yields the exact same density of the full Hamiltonian (55).

We now define a family Ĥ𝜆 of Hamiltonians depending on a real dimensionless parameter 𝜆 ∈ [0, 1]:

Ĥ𝜆 = 𝑇e + 𝜆Ĥe−e + �̂�𝜆 . (60)

Let |𝜓𝜆⟩ be the normalized ground state of Ĥ𝜆, i.e. ⟨𝜓𝜆 |𝜓𝜆⟩ = 1 ∀𝜆. In Eq. (60), 𝑇e and Ĥe−e have the exact same meaning
as above. The key new quantity is �̂�𝜆, which is a local potential that interpolates between the Kohn-Sham potential in the limit
𝜆 = 0, i.e. �̂�𝜆=0 = �̂�KS, and the exact, physical crystal potential in the limit 𝜆 = 1, i.e. �̂�𝜆=1 = �̂�ext. Crucially, �̂�𝜆 varies with 𝜆 in
such a way that the correct electronic density is reproduced at every value of 𝜆, i.e.

𝑛𝜆 (r) ≡ ⟨𝜓𝜆 |�̂�(r) |𝜓𝜆⟩ = 𝑛(r) ∀𝜆 . (61)

The uniqueness (up to a constant) of �̂�𝜆 can be proved by applying the Hohenberg-Kohn theorem to the electronic Hamiltonian
with reduced coupling constant. In the following, we will fix the arbitrary constant by setting the average value of �̂�𝜆 to zero.

The ground state energy at coupling constant 𝜆 is

𝐸 (𝜆) = ⟨𝜓𝜆 |Ĥ𝜆 |𝜓𝜆⟩ . (62)
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By applying the Hellman-Feynman theorem we obtain

𝑑𝐸 (𝜆)
𝑑𝜆

= ⟨𝜓𝜆 |Ĥe−e |𝜓𝜆⟩ +
∫

𝑑2r𝑛(r)𝜕𝜆𝑉𝜆 (r) . (63)

Integrating the previous differential equation between 𝜆 = 0 and 𝜆 = 1 we find:

𝐸 (1) − 𝐸 (0) =
∫ 1

0
𝑑𝜆⟨𝜓𝜆 |Ĥe−e |𝜓𝜆⟩ +

∫
𝑑2r𝑛(r) [𝑉ext (r) −𝑉KS (r)] . (64)

In writing the previous two equations we made use of the crucial fact that 𝑛𝜆 (r) = 𝑛(r) for every 𝜆 in the integration interval.
We now recall that, in DFT, the exact ground-state energy 𝐸 of the system, which in the notation of Eq. (64) coincides with

𝐸 (1), is given by [76]

𝐸 = 𝐸 (1) = 𝑇s +
∫

𝑑2r𝑛(r)𝑉ext (r) + 𝐸H + 𝐸xc , (65)

where 𝑇s is the non-interacting kinetic energy functional, i.e. the kinetic energy of a non-interacting system whose ground-state
density is 𝑛(r), 𝐸H is the Hartree energy, i.e.

𝐸H =
1
2

∫
𝑑2r

∫
𝑑2r′𝑉 ( |r − r′ |)𝑛(r)𝑛(r′) , (66)

and 𝐸xc is the exchange-correlation energy functional.
On the other hand, the quantity 𝐸 (0) is the average of the Kohn-Sham Hamiltonian over the Kohn-Sham ground-state

𝐸 (0) =
∑︁

𝛼∈occ.
𝜖KS
𝛼 = 𝑇s +

∫
𝑑2r𝑛(r)𝑉KS (r) , (67)

where 𝜖KS
𝛼 are the eigenvalues of the Kohn-Sham equations and the sum runs over the occupied states.

Taking the difference between Eq. (65) and Eq. (67) and comparing the result with Eq. (64) we find the following important
result:

𝐸H + 𝐸xc =

∫ 1

0
𝑑𝜆⟨𝜓𝜆 |Ĥe−e |𝜓𝜆⟩ . (68)

We can conveniently express the matrix element ⟨𝜓𝜆 |Ĥe−e |𝜓𝜆⟩ of the interaction Hamiltonian in terms of the density-density
response function by using the fluctuation-dissipation theorem [76]. At zero temperature and assuming a non-degenerate ground
state, we obtain

⟨𝜓𝜆 |�̂�q+G�̂�−q−G |𝜓𝜆⟩ = − ℏ

𝜋

∫ ∞

0
Im

[
𝜒�̂�q+G �̂�−q−G (𝜔, 𝜆)

]
𝑑𝜔 + ⟨Φ𝜆 |�̂�q+G |Φ𝜆⟩⟨Φ𝜆 |�̂�−q−G |Φ𝜆⟩

= −ℏ𝐴

𝜋

∫ ∞

0
Im

[
𝜒GG
𝑛𝑛 (q, 𝜔, 𝜆)

]
𝑑𝜔 + 𝑛q+G𝑛−q−G .

(69)

Making use of (69) and (56) we get

⟨𝜓𝜆 |Ĥe−e |𝜓𝜆⟩ =
𝑁

2

∑︁
G

∫
BZ

𝑑2q
(2𝜋)2𝑉q+G

{
𝑛q+G𝑛−q−G

𝑁
− ℏ

𝑛𝜋

∫ ∞

0
𝑑𝜔Im[𝜒GG

𝑛𝑛 (q, 𝜔, 𝜆)] − 1
}
. (70)

The first term is independent of 𝜆 and coincides with the Hartree energy,

𝐸H =
1

2𝐴

∑︁
G≠0

𝑉G𝑛G𝑛−G . (71)

We are therefore left with

𝐸xc =

∫ 1

0
𝑑𝜆
𝑁

2

∑︁
G

∫
𝑑2q
(2𝜋)2𝑉q+G

{
− ℏ

𝑛𝜋

∫ ∞

0
𝑑𝜔Im[𝜒GG

𝑛𝑛 (q, 𝜔, 𝜆)] − 1
}
. (72)
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It can be further shown that the exchange energy can be written as

𝐸x =
𝑁

2

∑︁
G

∫
𝑑2q
(2𝜋)2𝑉q+G

{
− ℏ

𝑛𝜋

∫ ∞

0
𝑑𝜔Im[𝜒GG

KS (q, 𝜔)] − 1
}
, (73)

where 𝜒GG
KS (q, 𝜔) is the Kohn-Sham response function. Note that this is the exchange energy calculated on the KS orbitals, which

is different from the Hartree-Fock exchange.
The difference between 𝐸xc and 𝐸x is the correlation energy:

𝐸c =
𝑁

2

∫ 1

0
𝑑𝜆

∑︁
G

∫
BZ

𝑑2q
(2𝜋)2𝑉q+G

{
− ℏ

𝑛𝜋

∫ ∞

0
𝑑𝜔Im[𝜒GG

𝑛𝑛 (q, 𝜔, 𝜆) − 𝜒GG
KS (q, 𝜔)]

}
. (74)

In a crystal, the linear response relation—see Eq. (7.182) in Ref. [76]—relating the full density response at coupling constant
𝜆 to the Kohn-Sham density response reads as following:

𝛿𝑛q+G (𝜔) =
∑︁
G′
𝜒GG′

KS (q, 𝜔)
{
𝑉ext

q+G′ (𝜔) +
∑︁
G′′

[𝜆𝑉q+G′𝛿G′G′′ + 𝑓 G′G′′

xc,L (q, 𝜔, 𝜆)]𝛿𝑛q+G′′ (𝜔)
}
, (75)

where 𝑓 G′G′′

xc,L (q, 𝜔, 𝜆) is the wave vector and frequency-dependent exchange-correlation kernel [76] evaluate at coupling constant
𝜆. Treating functions in Eq. (75) as matrices with respect to reciprocal lattice vectors indices, we can finally rewrite Eq. (75) as

𝛿𝑛 = 𝜒KS ·
{
𝑉ext + [𝜆𝑉 + 𝑓xc,L (𝜆)] · 𝛿𝑛

}
. (76)

Using the same notation, the definition of the full response function at coupling constant 𝜆 reads as following:

𝛿𝑛 = 𝜒(𝜆) · 𝑉ext . (77)

Substituting this definition into Eq. (76) yields

𝜒(𝜆) = 𝜒KS ·
{
1 + [𝜆𝑉 + 𝑓xc,L (𝜆)] · 𝜒(𝜆)

}
. (78)

Carrying out some simple algebraic manipulation we finally find

𝜒(𝜆) = 𝜒KS · {1 − [𝜆𝑉 + 𝑓xc,L (𝜆)] · 𝜒KS}−1 , (79)

which can be further rearranged into

𝜒(𝜆) − 𝜒KS = 𝜒KS · [𝜆𝑉 + 𝑓xc,L (𝜆)] · 𝜒KS · {1 − [𝜆𝑉 + 𝑓xc,L (𝜆)] · 𝜒KS}−1 . (80)

Substituting into the formula for the correlation energy we get the exact expression

𝐸c = − ℏ𝑁

2𝜋𝑛

∫
BZ

𝑑2q
(2𝜋)2

∫ ∞

0
𝑑𝜔

∫ 1

0
𝑑𝜆Im

{[
𝑉 · 𝜒KS · [𝜆𝑉 + 𝑓xc,L (𝜆)] · 𝜒KS · [1 − (𝜆𝑉 + 𝑓xc,L (𝜆)) · 𝜒KS]−1] (q, 𝜔)} . (81)

The total energy is finally given by

𝐸 =
∑︁

𝛼∈occ.
𝜖KS
𝛼 −

∫
𝑑2r𝑛(r)𝑉xc (r) − 𝐸H + 𝐸x + 𝐸c . (82)

B. Taking the RPA limit

The RPA is obtained by setting to zero �̂�xc in the KS equations and 𝑓xc,L in (81). In this limit, the KS equations become the
Hartree equations, the KS orbitals become the Hartree orbitals, and the KS response function becomes the Hartree response
function.

The coupling-constant integral can then be done analytically, yielding

𝐸c,RPA = − ℏ𝑁

2𝜋𝑛

∫
𝑑2q
(2𝜋)2

∫ ∞

0
𝑑𝜔

∫ 1

0
𝑑𝜆𝜆Im

{
Tr

[
[V · 𝜒H]2 · [1 − 𝜆V · 𝜒H]−1] (q, 𝜔)}

= − ℏ𝑁

2𝜋𝑛

∫
𝑑2q
(2𝜋)2

∫ ∞

0
𝑑𝜔

∫ 1

0
𝑑𝜆𝜆Im

{
Tr

[
(
√

V · 𝜒H ·
√

V)2 · (1 − 𝜆
√

V · 𝜒H ·
√

V)−1] (q, 𝜔)}
=
𝑁

2𝑛

∫
𝑑2q
(2𝜋)2

∫ ∞

0

ℏ𝑑𝜔

𝜋
Im

{
Tr[

√
𝑉 · 𝜒H ·

√
𝑉 + ln(1 −

√
𝑉 · 𝜒H ·

√
𝑉)] (q, 𝜔)

}
.

(83)
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Setting �̂�xc = 0 in (82) we obtain the final expression for the RPA (or time-dependent Hartree) ground-state energy of an
inhomogeneous system,

𝐸 =

occ.∑︁
𝛼

𝜖H
𝛼 − 𝐸H + 𝐸x + 𝐸c,RPA . (84)

Note that the Hartree and exchange energies are now calculated on the Hartree orbitals. The first two terms in the previous
equation coincide with the Hartree expression of the ground-state energy, avoiding double counting of the Coulomb interaction
energy.

VII. THE EXCHANGE-CORRELATION ENERGY OF TBG

Following the ACFDT in SM VI, the exchange-correlation energy of TBG is,

𝐸𝑥𝑐 =
𝑛

2

′∑︁
q,g
𝑉 (q + g)

[
− 1
𝜋𝑛

∫ 1

0
𝑑𝜆

∫ ∞

0
Im𝜒gg (q, 𝜔;𝜆)𝑑𝜔 − 1

]
=
𝑛

2

′∑︁
q,g
𝑉 (q + g)

[
− 1
𝜋𝑛

∫ 1

0
𝑑𝜆

∫ ∞

0
Re𝜒gg (q, 𝑖𝜔;𝜆)𝑑𝜔 − 1

]
=
𝑛

2

′∑︁
q,g
𝑉 (q + g)

[
− 1
𝜋𝑛

∫ 1

0
𝑑𝜆

∫ ∞

0
𝜒gg (q, 𝑖𝜔;𝜆)𝑑𝜔 − 1

]
.

(85)

In the last two expressions above, the integral along the real axis is rotated to the imaginary axis using the contour deformation,
which is justified below.

The response function can be expressed in the entire complex plane using the spectral representation,

𝜒(𝑧) = − 1
𝜋

∫ ∞

−∞

Im𝜒(𝜔)
𝑧 − 𝜔 𝑑𝜔. (86)

In TBG, the density response function satisfies (as in Eq. (44))

�̃�gg′ (q, 𝜔) =
[
�̃�−g−g′ (−q,−𝜔)

]∗
, (87)

therefore

�̃�gg′ (q, 𝑧) = − 1
𝜋

∫ ∞

0

[
Im�̃�gg′ (q,−𝜔)

𝑧 + 𝜔 + Im�̃�gg′ (q, 𝜔)
𝑧 − 𝜔

]
𝑑𝜔

= − 1
𝜋

∫ ∞

0

[
−Im�̃�−g−g′ (−q, 𝜔)

𝑧 + 𝜔 + Im�̃�gg′ (q, 𝜔)
𝑧 − 𝜔

]
𝑑𝜔,

�̃�−g−g′ (−q, 𝑧) = − 1
𝜋

∫ ∞

0

[
Im�̃�−g−g′ (−q,−𝜔)

𝑧 + 𝜔 + Im�̃�−g−g′ (−q, 𝜔)
𝑧 − 𝜔

]
𝑑𝜔

= − 1
𝜋

∫ ∞

0

[
−Im�̃�gg′ (q, 𝜔)

𝑧 + 𝜔 + Im�̃�−g−g′ (−q, 𝜔)
𝑧 − 𝜔

]
𝑑𝜔.

(88)

Combine �̃�gg′ (q, 𝑧) and �̃�−g−g′ (−q, 𝑧),

�̃�gg′ (q, 𝑧) + �̃�−g−g′ (−q, 𝑧) = − 1
𝜋

∫ ∞

0

(
Im�̃�gg′ (q, 𝜔) + Im�̃�−g−g′ (−q, 𝜔)

) ( 1
𝑧 − 𝜔 − 1

𝑧 + 𝜔

)
𝑑𝜔

= − 1
𝜋

∫ ∞

0

(
Im�̃�gg′ (q, 𝜔) + Im�̃�−g−g′ (−q, 𝜔)

) 2𝜔(𝑧2
1 − 𝑧

2
2 − 𝜔

2) − 𝑖4𝑧1𝑧2𝜔

(𝑧2
1 + 𝑧

2
2 − 𝜔2)2 + 4𝑧2

2𝜔
2

𝑑𝜔,

(89)
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where 𝑧 = 𝑧1 + 𝑖𝑧2. Along the imaginary axis, the imaginary part of Eq. (89) vanishes. Therefore the integral along the real axis
can be rotated to the imaginary axis:∫ ∞

0

(
�̃�gg′ (q, 𝑖𝜔) + �̃�−g−g′ (−q, 𝑖𝜔)

)
𝑑𝜔 =

∫ ∞

0
Re

(
�̃�gg′ (q, 𝑖𝜔) + �̃�−g−g′ (−q, 𝑖𝜔)

)
𝑑𝜔

=

∫ ∞

0
Im

(
�̃�gg′ (q, 𝜔) + �̃�−g−g′ (−q, 𝜔)

)
𝑑𝜔

(90)

Return to the xc energy, since only the diagonal in g elements of matrix 𝝌(q, 𝑖𝜔;𝜆) is relevant in Eq. (85), and the Coulomb
matrix V(q) is diagonal in g, the exchange-correlation energy can also be written in the matrix product form,

𝐸𝑥𝑐 =
𝑛

2

′∑︁
q

[
− 1
𝜋𝑛

∫ 1

0
𝑑𝜆

∫ ∞

0
𝑑𝜔Tr

(
V(q)𝝌(q, 𝑖𝜔;𝜆)

)
− Tr

(
V(q)

) ]
. (91)

The coupling-constant-dependent density response function in Eq. (85) and Eq. (91) is approximated, within the RPA, with

𝜒(𝜆) = �̃�
𝐻
(1 − 𝜆𝑉 �̃�

𝐻
)−1

= �̃�
𝐻
+ 𝜆�̃�

𝐻
𝑉 �̃�

𝐻
(1 − 𝜆𝑉 �̃�

𝐻
)−1,

(92)

where �̃�
𝐻

is the proper density response function of the self-consistent Hartree approximation. The expression of �̃�
𝐻

of a specific
flavor is shown in Eq. (49).

The exchange energy 𝐸𝑥 is the first order contribution in Eq. (85) and Eq. (91), i.e. arising from the first term in Eq. (92)

𝐸𝑥 =
𝑛

2

′∑︁
q,g
𝑉 (q + g)

[
− 1
𝜋𝑛

∫ ∞

0
�̃�gg

𝐻
(q, 𝑖𝜔)𝑑𝜔 − 1

]
=
𝑛

2

′∑︁
q

[
− 1
𝜋𝑛

Tr
(
V(q) �̃�

𝐻
(q)

)
− Tr

(
V(q)

) ]
.

(93)

Using the Lindhard formula, the diagonal elements of �̃�
𝐻

is

�̃�gg
𝐻
(q, 𝑖𝜔) = 1

𝐴

∑︁
𝑛,𝑚,k

(
𝜀𝑛k − 𝜀𝑚k+q

𝜔2 + (𝜀𝑛k − 𝜀𝑚k+q)2 − 𝑖 𝜔

𝜔2 + (𝜀𝑛k − 𝜀𝑚k+q)2

)
( 𝑓𝑛k − 𝑓𝑚k+q)

��� ∑︁
𝛼,g1

𝑧𝑛𝛼,g1 (k)𝑧
𝑚
𝛼,g1+g (k + q)

���2 (94)

and its real and imaginary parts are respectively

Re�̃�gg
𝐻
(q, 𝑖𝜔) = 1

𝐴

∑︁
𝑛,𝑚,k

(𝜀𝑛k − 𝜀𝑚k+q) ( 𝑓𝑛k − 𝑓𝑚k+q)
𝜔2 + (𝜀𝑛k − 𝜀𝑚k+q)2

��� ∑︁
𝛼,g1

𝑧𝑛𝛼,g1 (k)𝑧
𝑚
𝛼,g1+g (k + q)

���2,
Im�̃�gg

𝐻
(q, 𝑖𝜔) = − 1

𝐴

∑︁
𝑛,𝑚,k

𝜔( 𝑓𝑛k − 𝑓𝑚k+q)
𝜔2 + (𝜀𝑛k − 𝜀𝑚k+q)2

��� ∑︁
𝛼,g1

𝑧𝑛𝛼,g1 (k)𝑧
𝑚
𝛼,g1+g (k + q)

���2. (95)

𝜀𝑛k, 𝑧𝑛 (k) are eigen-energies and eigenvectors of the self-consistent Hartree approximation. Using the integration equality∫ ∞

0
𝑑𝜔

1
𝜔2 + 𝑎2 =

1
𝑎

arctan
(𝜔
𝑎

)���∞
0
=

𝜋

2|𝑎 | , (96)

the frequency integration of the real part of �̃�gg
𝐻 (q, 𝑖𝜔) can be done analytically:∫ ∞

0
Re�̃�gg

𝐻
(q, 𝑖𝜔)𝑑𝜔 =

𝜋

2𝐴

∑︁
𝑛,𝑚,k

(𝜀𝑛k − 𝜀𝑚k+q) ( 𝑓𝑛k − 𝑓𝑚k+q)
|𝜀𝑛k − 𝜀𝑚k+q |

⟨𝑛k|𝑒−𝑖 (q+g) ·r |𝑚k + q⟩⟨𝑚k + q|𝑒𝑖 (q+g) ·r |𝑛k⟩. (97)

Rewrite the Fermi-Dirac occupation difference

𝑓𝑛k − 𝑓𝑚k+q = 𝑓𝑛k (1 − 𝑓𝑚k+q) − (1 − 𝑓𝑛k) 𝑓𝑚k+q (98)

and it is clear that

𝜀𝑛k − 𝜀𝑚k+q

|𝜀𝑛k − 𝜀𝑚k+q |
=

{
−1, if 𝑓𝑛k = 1 and 𝑓𝑚k+q = 0,
1, if 𝑓𝑛k = 0 and 𝑓𝑚k+q = 1.

(99)
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Then Eq. (97) becomes∫ ∞

0
Re�̃�gg

𝐻
(q, 𝑖𝜔)𝑑𝜔 = − 𝜋

2𝐴

∑︁
𝑛,𝑚,k

[ 𝑓𝑛k (1 − 𝑓𝑚k+q) + (1 − 𝑓𝑛k) 𝑓𝑚k+q]⟨𝑛k|𝑒−𝑖 (q+g) ·r |𝑚k + q⟩⟨𝑚k + q|𝑒𝑖 (q+g) ·r |𝑛k⟩

= − 𝜋

2𝐴

∑︁
𝑛,𝑚,k

( 𝑓𝑛k + 𝑓𝑚k+q − 2 𝑓𝑛k 𝑓𝑚k+q)⟨𝑛k|𝑒−𝑖 (q+g) ·r |𝑚k + q⟩⟨𝑚k + q|𝑒𝑖 (q+g) ·r |𝑛k⟩.
(100)

The first two terms are simply total occupation number∑︁
𝑛,𝑚,k

𝑓𝑛k⟨𝑛k|𝑒−𝑖 (q+g) ·r |𝑚k + q⟩⟨𝑚k + q|𝑒𝑖 (q+g) ·r |𝑛k⟩ =
∑︁
𝑛,k

𝑓𝑛k = 𝑁,∑︁
𝑛,𝑚,k

𝑓𝑚k+q⟨𝑛k|𝑒−𝑖 (q+g) ·r |𝑚k + q⟩⟨𝑚k + q|𝑒𝑖 (q+g) ·r |𝑛k⟩ =
∑︁
𝑚,k

𝑓𝑚k+q = 𝑁.
(101)

Equation (100) becomes∫ ∞

0
Re�̃�gg

𝐻
(q, 𝑖𝜔)𝑑𝜔 = − 𝜋𝑛 + 𝜋

𝐴

∑︁
𝑛,𝑚,k

𝑓𝑛k 𝑓𝑚k+q⟨𝑛k|𝑒−𝑖 (q+g) ·r |𝑚k + q⟩⟨𝑚k + q|𝑒𝑖 (q+g) ·r |𝑛k⟩. (102)

Substitute into the exchange energy Eq. (93), the −𝜋𝑛 term above cancels exactly with the self-interacting term, and the exchange
energy is simply

𝐸𝑥 = − 1
2𝐴

′∑︁
q,g
𝑉 (q + g)

∑︁
𝑛,𝑚,k

𝑓𝑛k 𝑓𝑚k+q

��� ∑︁
𝛼,g1

𝑧𝑛𝛼,g1 (k)𝑧
𝑚
𝛼,g1+g (k + q)

���2
= − 1

2𝐴

′∑︁
q,g
𝑉 (q + g)

∑︁
𝑛,𝑚,k

𝑓𝑛k 𝑓𝑚k+q
∑︁

𝛼,𝛽,g1 ,g2

�̄�𝑛𝛼,g1;𝛽,g2
(k)𝜌𝑚𝛼,g1+g;𝛽,g2+g (k + q).

(103)

This exchange energy looks like the HF exchange but it is not since it is calculated over the SCH wavefunctions instead of the
self-consistent HF wavefunctions.

On the other hand, the correlation energy is given by higher order contributions in RPA. Use

Tr(V𝝌) = Tr(
√

V𝝌
√

V), (104)

the correlation energy is

𝐸𝑐 = − 1
2𝜋

′∑︁
q

∫ 1

0
𝑑𝜆

∫ ∞

0
𝑑𝜔Tr

[
𝜆(
√

V �̃�
𝐻

√
V)2 (1 − 𝜆

√
V �̃�

𝐻

√
V)−1]

=
1

2𝜋

′∑︁
q

∫ ∞

0
𝑑𝜔Tr

[√
V �̃�

𝐻

√
V + ln(1 −

√
V �̃�

𝐻

√
V)

]
.

(105)

For any diagonalizable and non-singular (invertible) matrix A, its logarithm is

ln A = v(ln 𝝀)v−1, (106)

where 𝝀 is the diagonal matrix of eigenvalues of A,

𝝀 = v−1Av, (107)

and v is the matrix with eigenvectors in each column. The trace of ln A

Tr ln A = Tr
[
v(ln 𝝀)v−1]

= Tr
[
(ln 𝝀)v−1v

]
= Tr ln 𝝀
= ln det A.

(108)
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The correlation energy

𝐸𝑐 =
1

2𝜋

′∑︁
q

∫ ∞

0
𝑑𝜔Tr

[
V(q) �̃�

𝐻
(q, 𝑖𝜔) + ln

(
1 −

√︁
V(q) �̃�

𝐻
(q, 𝑖𝜔)

√︁
V(q)

) ]
=

1
2𝜋

′∑︁
q

∫ ∞

0
𝑑𝜔

[
Tr

(
V(q) �̃�

𝐻
(q, 𝑖𝜔)

)
+

∑︁
𝑖

ln𝜆𝑖 (q, 𝑖𝜔)
]
,

(109)

where 𝜆𝑖 (q, 𝑖𝜔) is the 𝑖-th eigenvalue of (1 −
√

V �̃�
𝐻

√
V).

VIII. EXCHANGE ENERGY REGULARIZATION

The exchange energy in Eq. (103) must be regularized to deal with the negative energy sea of the Dirac model. In the main
text we denote 𝐸𝑥 as the regularized exchange energy

𝐸𝑥 = − 1
2𝐴

′∑︁
q,g
𝑉 (q + g)

∑︁
k,g1 ,g2
𝛼,𝛽

[
�̄�𝛼,g1;𝛽,g2 (k)𝜌𝛼,g1+g;𝛽,g2+g (k + q) − �̄�0

𝛼,g1;𝛽,g2
(k)𝜌0

𝛼,g1+g;𝛽,g2+g (k + q)
]

= − 1
2𝐴

′∑︁
q,g
𝑉 (q + g)

∑︁
k,g1 ,g2
𝛼,𝛽

[
𝛿�̄�(k) + 2�̄�0 (k)

]
𝛼,g1;𝛽,g2

𝛿𝜌𝛼,g1+g;𝛽,g2+g (k + q).
(110)

𝜌0 is the density matrix of the charge neutral decoupled bilayer and therefore it’s diagonal in g’s:

𝜌0
𝛼,g1;𝛽,g2

(k) = 𝛿g1g2

∑︁
𝑛∈𝑣

𝑧0
𝑛,𝛼,g1 (k)𝑧

0
𝑛,𝛽,g2

(k). (111)

Summing over two valence bands from top and bottom layer Dirac cones, the 4 × 4 density matrix with an explicit g is

𝜌0
g;g (k) ≡ 𝜌0 (k + g) = 1

2

©«
1 −𝑒−𝑖 (𝜃k+g−K1 −𝜃/2) 0 0

−𝑒𝑖 (𝜃k+g−K1 −𝜃/2) 1 0 0
0 0 1 −𝑒−𝑖 (𝜃k+g−K2+𝜃/2)

0 0 −𝑒𝑖 (𝜃k+g−K2+𝜃/2) 1

ª®®®¬ . (112)

Therefore, the second part of the second line of Eq. (110) is equivalent to

𝐸
(2)
𝑥 = − 1

𝐴

∑︁
k′∈MBZ

k∈𝑘𝑐∼1/𝑎

𝑉 (k′ − k + g)
∑︁

g1 ,𝛼,𝛽

�̄�0
𝛼𝛽 (k + g1)𝛿𝜌𝛼,g1+g;𝛽,g1+g (k′) (113)

Because the diagonal terms of 𝜌0 contribute a constant energy shift which is proportional to the occupation number at k′, only
off-diagonal terms of 𝜌0 matter and it’s

𝐸
(2)
𝑥 =

2𝜋𝑒2

𝜖

1
8𝜋

∑︁
k′∈MBZ,g

[
𝑒
𝑖 𝜉 (𝜃k′+g−K1 −𝜃/2) [𝛿𝜌g;g]12 (k′) |k′ + g − K1 | ln

𝑘𝑐

|k′ + g − K1 |

+𝑒𝑖 𝜉 (𝜃k′+g−K2+𝜃/2)
𝛿[𝜌g;g]34 (k′) |k′ + g − K2 | ln

𝑘𝑐

|k′ + g − K2 |
+ ℎ.𝑐

] (114)

Therefore the regularized exchange energy is

𝐸𝑥 = − 1
2𝐴

′∑︁
q,g
𝑉 (q + g)

∑︁
k,g1 ,g2
𝛼,𝛽

𝛿�̄�𝛼,g1;𝛽,g2 (k)𝛿𝜌𝛼,g1+g;𝛽,g2+g (k + q) + 𝐸 (2)
𝑥 . (115)
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FIG. 7. (a) Density of state in unit of meV−1·nm−2 and 𝑉q+g �̃�
gg
𝐻
(q, 𝑖𝜔 = 0) as a function of 𝜈, with g = 0 and q = (−

√
3/2,−1/2)𝑔M/

√
3,

where 𝑔M is the length of moiré primitive reciprocal lattice vector. Different colors in 𝑉q+g �̃�
gg
𝐻
(q, 𝑖𝜔 = 0) plot label distinct particle-hole

excitations as indicated by the legend. (a) shows that excitations between flat bands (ff) dominate when the flat bands are not empty or fully
occupied. (b) The correlation energy 𝐸𝑐 as a function of 𝜈. 𝐸ff

𝑐 , 𝐸 rf
𝑐 and 𝐸 rr

𝑐 are contributions to the correlation energy from excitations between
flat bands, between remote bands and flat bands and between remote bands respectively. 𝐸 rr

𝑐 and 𝐸 rf
𝑐 are independent of flavor polarizations.

In both figures, solid lines represent flavor paramagnetic states and dashed lines represent flavor fully polarized states, for example at 𝜈 = 2,
𝜈 𝑓 = (1, 1, 0, 0).

IX. SCREENING EFFECTS FROM REMOTE BANDS

In Fig. 7(a) we show the density of state (DOS) and 𝑉q+g �̃�
gg
𝐻 (q, 𝑖𝜔 = 0) as a function of 𝜈, for the specific g and q. For both

flavor paramagnetic state (solid lines) and flavor polarized state (dashed lines), electron-hole excitations between flat bands (ff)
dominate over excitations between remote and flat bands (rf) and between remote bands (rr), as long as flat bands are not entirely
empty or fully occupied. In Fig. 7(b), contributions to the correlation energy (𝐸𝑐) from electron-hole excitations between flat
bands (𝐸ff

𝑐 ), between remote and flat bands (𝐸 rf
𝑐 ) and between remote bands (𝐸 rr

𝑐 ) are separately shown. 𝐸ff
𝑐 dominates and is

responsible for the tendency of 𝐸𝑐 with respect to 𝜈. By comparing correlation energies of flavor paramagnetic state (solid lines)
with flavor polarized state (dashed lines), 𝐸 rr

𝑐 and 𝐸 rf
𝑐 are almost independent of flavor polarizations.

Figure 8 shows 𝑉q+g �̃�
gg
𝐻 (q, 𝑖𝜔) at 𝜈 = −1 as a function of frequency, for the specific g and q. It illustrates that the xc energy

are dominated by diagonal elements of V �̃�
𝐻

with the smallest |g| and by excitations between flat bands (ff).
Figure 9 shows the sum of eigenvalues of ln(1−V �̃�), i.e. the second term of Eq. (5), as a function of 𝑞 and unitless frequency

�̃�. Again the correlation effect is dominated by ff excitations.

X. ENERGIES OF COMPETING BROKEN FLAVOR-SYMMETRY STATES

Figure 10 schematically summarizes our findings in Table I by plotting the total energy (Fig. 10(a)) and xc energy (Fig. 10(b))
relative to the flavor paramagnetic state for various flavor polarizations (𝑦-axis) as a function of filling factor 𝜈 (𝑥-axis).
𝐸𝑆
𝑡𝑜𝑡 − 𝐸𝑡𝑜𝑡 > 0 indicates the ground state favors flavor polarized states. 𝐸𝑆

𝑥𝑐 − 𝐸𝑥𝑐 > 0 indicates the xc effect, when the
single-quasiparticle energy is ignored, favors flavor polarized states. Figure 10(b) clearly shows that the xc effect predicts broken
flavor symmetry for |𝜈 | ≥ 1 on both electron- and hole-doped sides and is stronger on the electron-doped side. After including
the single-quasiparticle energy which in general prefers unpolarized state, however, the ground state is predicted to be flavor
paramagnetic on hole-doped side. This is a result of the fact that on the hole-doped side the Hartree energy is twice stronger and
the xc effect is weaker than that on the electron-doped side.

We further explore the effects of 𝐶2𝑇 symmetry breaking on energies, as summarized in Table II. We find that flavor
ferromagnetic states are favored at all filling factors including those near CN, consistent with experiments that hBN alignment
favors broken symmetry states.



24

flavor paramagnetic flavor polarized
(a) (b)

FIG. 8. 𝑉 (q + g) �̃�gg
𝐻
(q, 𝑖𝜔) at 𝜈 = −1 as a function of the unitless frequency �̃�, with g = 0 and q = (−

√
3/2,−1/2)𝑔M/

√
3. �̃� = 𝜔/(𝜔 + 𝜔0),

where 𝜔0 = 30 meV is chosen to be around the size of flat-band bandwidth. Electron-hole excitations between flat bands (ff) play a dominant
role in the correlation effect.
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ln(1 − 𝜆 𝑗 ) with respect to 𝑞 and unitless frequency �̃�, where 𝜆 𝑗 is the 𝑗-th eigenvalue of V �̃�
𝐻

.
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FIG. 10. (a) Total energy 𝐸𝑡𝑜𝑡 and (b) xc energy (𝐸𝑥𝑐) relative to those of the flavor paramagnetic state (𝐸𝑆
𝑡𝑜𝑡 , 𝐸

𝑆
𝑥𝑐), for various flavor-polarized

states (𝑦-axis) as a function of 𝜈 (𝑥-axis). The 𝑦-axis is labeled by ( |𝜈 | − 𝑛) ∗ ( 𝑓1, ...), where the integer 𝑛 indicates the number of flavors
that are fully occupied or empty and fractions inside the right bracket, multiplied by ( |𝜈 | − 𝑛), denote filling factors of the remaining partially
occupied flavors. For example, the data point at 𝜈 = −1 and ( |𝜈 | − 0) ∗ (1/2, 1/4, 1/4, 0) represents the filling factors of four flavors are
−(1/2, 1/4, 1/4, 0) respectively. 𝐸𝑆

𝑡𝑜𝑡 − 𝐸𝑡𝑜𝑡 > 0 indicates the ground state favors flavor polarized states and 𝐸𝑆
𝑥𝑐 − 𝐸𝑥𝑐 > 0 indicates the xc

energy favors flavor polarized states.

XI. MAGNETIC ANISOTROPY IN SU(4) FERROMAGNETS

MATBG has 𝑆𝑈 (4) ferromagnetism because of its four degenerate spin-valley flavors. In the continuum model we employ the
𝑆𝑈 (4) symmetry is reduced to 𝑆𝑈 (2) × 𝑆𝑈 (2) ×𝑈 (1) by the difference between two valley projected band Hamiltonians, which
contribute explicitly to the model’s 𝑆𝑈 (4) magnetic anisotropy. Valley-exchange and spin-orbit interactions, which we neglect,
also contribute to magnetic anisotropy. In our RPA approach, we neglect anisotropy by focusing only on flavor-dependent filling
factors, the eigenvalues of the spin-valley density matrix. Indeed our explicit calculations assume that the ferromagnet’s density
matrix remains diagonal in the spin-valley representation because total valley occupation number remains a good quantum
number, simplifying the use of a coupling-constant integral representation of the energy. There is in fact theoretical[22, 78–81]
and experimental [82–85] work that intervalley coherence, which breaks valley number symmetry, is present in many MATBG
ferromagnets. Our calculations make no effort to distinguish between ferromagnets that differ only in the orientation of the spin-
valley magnetization and not in its magnitude as characterized by the differences between spin-valley density-matrix eigenvalues.
There is evidence in recent experiments [85], in the form of the presence of sample-specific domain walls and vortices in various
partial order parameters, that as in most conventional ferromagnets the energy scale associated with anisotropy is smaller than
the energy scale associated with ordering.
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𝜈 (𝜈1, 𝜈2, 𝜈3, 𝜈4) 𝐸0 𝐸𝑥 𝐸𝑐 𝐸𝑥𝑐 𝐸𝑡𝑜𝑡 𝜈 (𝜈1, 𝜈2, 𝜈3, 𝜈4) 𝐸0 𝐸𝑥 𝐸𝑐 𝐸𝑥𝑐 𝐸𝑡𝑜𝑡

-0.5

(-1/8, -1/8, -1/8, -1/8) -5.477 6.097 -4.520 1.577 -3.900

0.5

(1/8, 1/8, 1/8, 1/8) 6.852 1.570 -0.930 0.640 7.492
(-1/4, -1/8, -1/8, 0) -5.458 5.534 -3.992 1.542 -3.916 (1/4, 1/8, 1/8, 0) 6.864 1.163 -0.443 0.720 7.584

(-1/4, -1/4, 0, 0) -5.437 5.417 -3.834 1.583 -3.854 (1/4, 1/4, 0, 0) 6.876 0.756 0.033 0.789 7.665
(-3/8, -1/8, 0, 0) -5.426 4.650 -3.039 1.611 -3.815 (3/8, 1/8, 0, 0) 6.882 0.006 0.702 0.708 7.590

(-1/2, 0, 0, 0) -5.386 3.586 -1.913 1.673 -3.713 (1/2, 0, 0, 0) 6.905 -1.863 2.579 0.716 7.621

-1.0

(-1/4, -1/4, -1/4, -1/4) -10.236 11.187 -7.073 4.114 -6.122

1.0

(1/4, 1/4, 1/4, 1/4) 14.774 8.384 -5.293 3.091 17.865
(-1/2, -1/4, -1/4, 0) -10.138 9.902 -5.659 4.243 -5.895 (1/2, 1/4, 1/4, 0) 14.806 6.313 -2.983 3.330 18.136

(-1/2, -1/2, 0, 0) -10.044 8.465 -4.162 4.303 -5.741 (1/2, 1/2, 0, 0) 14.833 4.721 -1.500 3.221 18.054
(-3/4, -1/4, 0, 0) -10.006 6.076 -1.946 4.130 -5.876 (3/4, 1/4, 0, 0) 14.848 1.755 1.349 3.104 17.952

(-1, 0, 0, 0) -9.816 -0.957 5.008 4.051 -5.765 (1, 0, 0, 0) 14.907 -5.881 8.586 2.705 17.612

-1.5

(-3/8, -3/8, -3/8, -3/8) -13.764 11.482 -6.009 5.473 -8.291

1.5

(3/8, 3/8, 3/8, 3/8) 23.162 11.808 -5.054 6.754 29.916
(-3/4, -3/8, -3/8, 0) -13.559 7.287 -1.825 5.462 -8.097 (3/4, 3/8, 3/8, 0) 23.239 7.646 -1.159 6.487 29.726

(-3/4, -3/4, 0, 0) -13.335 3.008 2.418 5.426 -7.909 (3/4, 3/4, 0, 0) 23.328 3.450 2.815 6.265 29.593
(-1, -1/6, -1/6, -1/6) -13.450 1.424 3.749 5.173 -8.277 (1, 1/6, 1/6, 1/6) 23.261 2.345 3.882 6.227 29.488

(-1, -1/4, -1/4, 0) -13.410 1.267 4.071 5.338 -8.072 (1, 1/4, 1/4, 0) 23.297 1.984 4.065 6.049 29.346
(-1, -1/2, 0, 0) -13.266 0.215 5.212 5.427 -7.839 (1, 1/2, 0, 0) 23.355 0.570 5.556 6.126 29.481

-2.0

(-1/2, -1/2, -1/2, -1/2) -15.756 9.684 -3.635 6.049 -9.707

2.0

(1/2, 1/2, 1/2, 1/2) 32.588 11.054 -2.341 8.713 41.301
(-1, -1/3, -1/3, -1/3) -15.530 1.340 4.537 5.877 -9.653 (1, 1/3, 1/3, 1/3) 32.681 4.395 3.984 8.379 41.060

(-1, -1/2, -1/2, 0) -15.314 0.227 5.721 5.948 -9.366 (1, 1/2, 1/2, 0) 32.793 1.151 6.991 8.142 40.935
(-1, -1, 0, 0) -14.862 -9.434 15.127 5.693 -9.169 (1, 1, 0, 0) 32.985 -8.577 16.158 7.581 40.566

-2.5

(-5/8, -5/8, -5/8, -5/8) -16.095 2.991 3.595 6.586 -9.509

2.5

(5/8, 5/8, 5/8, 5/8) 43.627 7.017 2.494 9.511 53.138
(-1, -1/2, -1/2, -1/2) -15.919 0.494 5.962 6.456 -9.463 (1, 1/2, 1/2, 1/2) 43.685 3.354 6.068 9.422 53.107
(-1, -3/4, -3/8, -3/8) -15.844 -2.101 8.436 6.335 -9.509 (1, 3/4, 3/8, 3/8) 43.734 0.136 9.266 9.402 53.136
(-1, -3/4, -2/4, -1/4) -15.812 -2.242 8.691 6.449 -9.363 (1, 3/4, 2/4, 1/4) 43.746 -0.106 9.424 9.318 53.064
(-1, -3/4, -3/4, 0,) -15.483 -6.518 12.820 6.302 -9.181 (1, 3/4, 3/4, 0) 43.925 -4.951 13.961 9.010 52.935
(-1, -1, -1/4, -1/4) -15.582 -7.584 13.887 6.303 -9.279 (1, 1, 1/4, 1/4) 43.845 -6.466 15.462 8.996 52.841

(-1, -1, -1/2, 0) -15.361 -9.125 15.295 6.170 -9.191 (1, 1, 1/2, 0) 43.973 -7.790 16.593 8.803 52.776

-3.0

(-3/4, -3/4, -3/4, -3/4) -14.731 -2.788 9.788 7.000 -7.731

3.0

(3/4, 3/4, 3/4, 3/4) 56.420 0.058 10.219 10.277 66.697
(-1, -2/3, -2/3, -2/3) -14.627 -5.009 11.905 6.896 -7.731 (1, 2/3, 2/3, 2/3) 56.443 -1.905 12.109 10.204 66.647
(-1, -1, -1/2, -1/2) -14.425 -7.827 14.517 6.690 -7.735 (1, 1, 1/2, 1/2) 56.523 -6.657 16.577 9.920 66.443
(-1, -1, -3/4, -1/4) -14.301 -10.579 17.277 6.698 -7.603 (1, 1, 3/4, 1/4) 56.585 -9.340 19.149 9.809 66.394

(-1, -1, -1, 0) -13.748 -17.295 23.588 6.293 -7.455 (1, 1, 1, 0) 56.897 -17.628 26.698 9.070 65.967

-3.5

(-7/8, -7/8, -7/8, -7/8) -11.595 -11.455 18.756 7.301 -4.294

3.5

(7/8, 7/8, 7/8, 7/8) 71.002 -10.902 21.286 10.384 81.386
(-1, -5/6, -5/6, -5/6) -11.566 -11.142 18.420 7.278 -4.288 (1, 5/6, 5/6, 5/6) 71.014 -10.676 21.261 10.585 81.599
(-1, -1, -3/4, -3/4) -11.501 -12.790 19.905 7.115 -4.386 (1, 1, 3/4, 3/4) 71.028 -12.365 22.870 10.505 81.533
(-1, -1, -1, -1/2) -11.322 -15.305 22.244 6.939 -4.383 (1, 1, 1, 1/2) 71.103 -15.514 25.758 10.244 81.347

TABLE I. The exchange 𝐸𝑥 , the correlation 𝐸𝑐 and the total 𝐸𝑡𝑜𝑡 energies of competing flavor-symmetry broken states, calculated using
𝜖BN = 5.1. The lowest 𝐸𝑡𝑜𝑡 and 𝐸𝑥𝑐 are marked bold at each 𝜈. On the electron-doped side, the ground state prefers flavor paramagnetism for
|𝜈 | < 1.0 and flavor polarization for |𝜈 | ≳ 1.0. On the hole-doped side, however, the ground state favors flavor paramagnetism for |𝜈 | ≲ 2.0 and
flavor polarization for |𝜈 | ≳ 2.0. Energies are in the unit of meV per moiré unit cell. The kinetic energy 𝐸𝑘 , defined as 𝐸𝑘 = 𝐸𝑏𝑎𝑛𝑑 − 2𝐸𝐻

where 𝐸𝑏𝑎𝑛𝑑 and 𝐸𝐻 are the band energy and the Hartree energy of the SCH quasi-particle bands respectively, is regularized by the kinetic
energy of flavor paramagnetic state at each filling 𝜈.
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FIG. 11. Energies versus q of the paramagnetic state at 𝜈 = −1. (a-c) The exchange energy including excitations between all SCH bands (𝐸 tot
𝑥 ),

between flat bands and between flat and remote bands (𝐸ff+rf
𝑥 ), between flat bands only (𝐸ff

𝑥 ). (d-f) The correlation energy. (g-i) The xc energy.
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FIG. 12. Energies versus q of the polarized state at 𝜈 = −1.
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FIG. 13. Density distributions in real-space for 𝜈 = 0, shown for various polarizations 𝑝 = 0.2, 0.4, 0.5, 0.6, 0.8, 1.0. These correspond to
Fig. 3(a) in the main text, where polarization 𝑝 is defined. Displayed densities account for two flat band contributions and are depicted after
subtraction of the 𝑝 = 0 baseline. Compared to finite filling cases as shown in Fig. 14, densities for 𝜈 = 0 are at least one order of magnitude
smaller and therefore approximately uniform for all 𝑝. Density is in unit of 𝑛𝑒𝐴M, where 𝐴M is the area of moiré unit cell. The grey rhombus
outlines the moiré unit cell.

𝜈 (𝜈1, 𝜈2, 𝜈3, 𝜈4) 𝐸0 𝐸𝑥 𝐸𝑐 𝐸𝑥𝑐 𝐸𝑡𝑜𝑡 𝜈 (𝜈1, 𝜈2, 𝜈3, 𝜈4) 𝐸0 𝐸𝑥 𝐸𝑐 𝐸𝑥𝑐 𝐸𝑡𝑜𝑡

-1.0

(-1/4, -1/4, -1/4, -1/4) -4.119 25.398 -21.363 4.034 -0.084

1.0

(1/4, 1/4, 1/4, 1/4) 19.664 30.622 -26.822 3.800 23.464
(-1/2, -1/4, -1/4, 0) -3.980 23.401 -19.643 3.758 -0.221 (1/2, 1/4, 1/4, 0) 19.785 25.797 -21.969 3.828 23.613

(-1/2, -1/2, 0, 0) -3.809 21.189 -17.977 3.212 -0.597 (1/2, 1/2, 0, 0) 19.749 20.717 -17.055 3.662 23.411
(-3/4, -1/4, 0, 0) -3.768 17.368 -14.212 3.156 -0.612 (3/4, 1/4, 0, 0) 19.697 16.836 -13.436 3.400 23.096

(-1, 0, 0, 0) -3.500 6.145 -4.249 1.897 -1.604 (1, 0, 0, 0) 19.796 4.637 -2.015 2.622 22.418

-2.0

(-1/2, -1/2, -1/2, -1/2) -3.919 41.452 -34.390 7.062 3.143

2.0

(1/2, 1/2, 1/2, 1/2) 43.469 41.064 -33.315 7.749 51.218
(-1, -1/3, -1/3, -1/3) -3.787 30.464 -23.639 6.826 3.039 (1, 1/3, 1/3, 1/3) 43.534 28.905 -21.296 7.609 51.144

(-1, -1/2, -1/2, 0) -3.106 27.850 -21.761 6.089 2.983 (1, 1/2, 1/2, 0) 43.903 26.511 -19.296 7.215 51.118
(-1, -1, 0, 0) -2.244 14.628 -10.070 4.558 2.314 (1, 1, 0, 0) 44.375 12.460 -6.424 6.036 50.411

-3.0

(-3/4, -3/4, -3/4, -3/4) 2.155 47.234 -38.426 8.808 10.963

3.0

(3/4, 3/4, 3/4, 3/4) 72.566 45.210 -33.703 11.507 84.073
(-1, -2/3, -2/3, -2/3) 2.118 43.554 -34.843 8.711 10.829 (1, 2/3, 2/3, 2/3) 72.541 41.623 -30.052 11.570 84.111
(-1, -1, -1/2, -1/2) 2.134 36.756 -27.537 9.219 11.353 (1, 1, 1/2, 1/2) 72.583 35.136 -23.817 11.320 83.903
(-1, -1, -3/4, -1/4) 2.270 34.094 -25.249 8.846 11.116 (1, 1, 3/4, 1/4) 72.710 32.033 -20.865 11.168 83.878

(-1, -1, -1, 0) 3.562 26.476 -18.317 8.159 11.721 (1, 1, 1, 0) 73.749 22.621 -12.401 10.219 83.968

TABLE II. Same as in Table I but with broken 𝐶2𝑇 by using a massive Dirac Hamiltonian in the BM model. The mass terms in top and bottom
layers are both 10 meV.
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FIG. 14. Density distributions in real-space for the paramagnetic state, as a comparison to Fig. 13, displayed at different fillings 𝜈 = ±1,±2,±3.
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FIG. 15. The energy difference, defined as Δ𝐸 = 𝐸𝑃 − 𝐸𝑆 , between flavor fully polarized state (P) and flavor paramagnetic state (S) at 𝜈 = −1
as a function of Coulomb interaction strength 𝜖−1. Δ𝐸𝑡𝑜𝑡 and Δ𝐸𝑥𝑐 are energy difference of RPA total and xc energies respectively.
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We present a theoretical study of the intrinsic plasmonic properties of twisted bilayer graphene
(TBG) as a function of the twist angle θ (and other microscopic parameters such as temperature and
filling factor). Our calculations, which rely on the random phase approximation, take into account
four crucially important effects, which are treated on equal footing: i) the layer-pseudospin degree
of freedom, ii) spatial non-locality of the density-density response function, iii) crystalline local field
effects, and iv) Hartree self-consistency. We show that the plasmonic spectrum of TBG displays a

smooth transition from a strongly-coupled regime (at twist angles θ ≲ 2
◦
), where the low-energy

spectrum is dominated by a weakly dispersive intra-band plasmon, to a weakly-coupled regime (for

twist angles θ ≳ 2
◦
) where an acoustic plasmon clearly emerges. This crossover offers the possibility

of realizing tunable mid-infrared sub-wavelength cavities, whose vacuum fluctuations may be used
to manipulate the ground state of strongly correlated electron systems.

I. INTRODUCTION

Parallel two-dimensional electron systems (P2DESs)
have been at the center of a great deal of attention since
they were theoretically proposed in 1975 as ideal setups
for the study of superfluidity of spatially separated elec-
trons and holes [1]. They have been experimentally fab-
ricated by using two main experimental platforms: i)
one based on GaAs/AlGaAs heterostructures realized by
molecular beam epitaxy [2–5] and ii) one on atomically-
thin 2D materials, such as graphene and transition-metal
dichalcogenides (TMDs), produced by mechanical exfoli-
ation [6]. These systems harbor a wide set of spectacu-
lar electrical phenomena, including Coulomb drag [7–12],
exciton superfluidity in strong [13–17] and zero [18] mag-
netic fields, and broken symmetry states [19–24] driven
by strong electron-electron interactions.

More recently, the many-body physics of P2DEs has
been greatly enriched thanks to the discovery [25, 26]
of correlated insulators and superconductors in twisted
bilayer graphene (TBG). TBG [27–34] is a P2DES com-
prising two graphene sheets on top of each other, sepa-
rated by a vertical distance d on the order on ≈ 0.3 nm,
and rotated by a twist angle θ. In this system, inter-
layer tunneling changes significantly as a function of θ,
leading to a dramatic spectral reconstruction at a small,
magic angle on the order of ≈ 1.1◦ [35]. At this angle, the
(moiré superlattice) Brillouin zone is covered by a pair of
very weakly dispersing (so-called) “flat bands” centered
on the charge neutrality point [34, 35]. The reduction
of kinetic energy due to band flattening strengthens the
role of electron-electron interactions and is believed to be
responsible for the exciting many-body physics that has
been experimentally unveiled (for recent reviews see, for

example, Refs. [36, 37]).

P2DESs are also intriguing setups from the point of
view of their plasmonic properties, which have been stud-
ied theoretically since the Eighties [38, 39]. Indeed, a sin-
gle 2DES displays a plasmonmode [40], which, in the long
wavelength q → 0 limit, can be interpreted as a center-
of-mass (COM) oscillation dispersing as ωCOM(q) ∝ √

q,
as a function of the in-plane wave vector q. This mode
is extremely well understood and its small-q behavior is
highly constrained by 2D electrodynamics [40], posing
practically no bounds on approximate theories for the
2D interacting many-particle problem. On the contrary,
two P2DESs harbor an additional collective mode, which
behaves very differently from the COM mode, depending
on the amplitude of the inter-layer tunneling between
the two layers where electrons roam. Let us consider
a P2DES realized via a GaAs/AlGaAs double quantum
well [2–5]. If the barrier between the two quantum wells is
sufficiently strong, the inter-layer tunneling amplitude—
which in these systems is well described by a constant
quantity typically dubbed ∆SAS, physically representing
the splitting between the symmetric and anti-symmetric
states in the two adjacent wells—is negligible. In this
weak inter-layer tunneling (i.e. ∆SAS → 0) limit, the ad-
ditional collective mode is acoustic [38, 39], i.e. ω(q) ∝ q
for q → 0. Viceversa, in the limit of strong inter-layer
tunneling, the additional collective mode is gapped [42],
ω(q) ∝ ∆SAS for q → 0. The many-body theory of this
mode, either for ∆SAS = 0 [39] or ∆SAS ̸= 0 [43], is much
more subtle than that needed to describe the COM plas-
mon in a single 2DES. Gapless, acoustic plasmons ex-
ist also in graphene double layers and topological insula-
tor thin films [41], provided that the two P2DESs there
hosted are well isolated so that inter-layer tunneling can
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FIG. 1. (Color online) The TBG energy loss function L(q, ω)
as a function of q and ω. The dependence on q is displayed
along the high-symmetry path Γ-K-M of the moiré BZ—see
Fig. 2(b). Results in this plot refer to filling factor ν = +1
and temperature T = 5 K. Panel (a) Results for θ = 1.05◦

(chemical potential µ = 22 meV). (b) Results for θ = 5◦

(chemical potential µ = 256 meV). In panel (b), an acoustic
plasmon mode is clearly visible at low energies, just above
the upper edge of the particle-hole continuum, i.e. ω = v⋆θq,
v⋆θ being the reduced Fermi velocity—see Eq. (28) below and
also Section I of Ref. [63]. High-energy interband plasmons
have been discussed at length in Refs. [45, 47, 75].

be neglected.
This Article focuses on a simple question. How is TBG

“placed” in this general context? This question is moti-
vated by the qualitative difference between the two inter-
layer tunneling Hamiltonians in the systems mentioned
above, i.e. TBG and GaAs double quantum wells. While
in the latter a constant tunneling ∆SAS works very well,
in the former inter-layer tunneling is highly modulated in
space on the moiré superlattice length scale. Moreover,
TBG too consists of two layers and in principle should
support two collective modes at low energies. However,
at small twist angles near the magic angle, only one low-
energy COM plasmon mode ωCOM(q) ∝ √

q is seen in
state-of-the-art theoretical calculations of the plasmonic
modes of TBG [44–47]. Where is the acoustic plasmon
mode?

The technical point is that in order to find an intrinsic
acoustic plasmon in TBG [48], one needs to deal with
the layer-pseudospin degree of freedom. This needs to
be included into the theoretical treatment of the plas-
monic response of TBG, while at the same time tak-

ing into account three other important physical effects,
namely spatial non-locality of the density-density re-
sponse function beyond the Drude limit [39, 41, 49],
Hartree self-consistency [47, 50] and crystalline local field
effects [51, 52].
Accurate theoretical predictions for the plasmonic

modes of TBG are important for a variety of funda-
mental and applied reasons. On the one hand, plas-
mons in TBG have been suggested as potential candi-
dates for the microscopic explanation of superconductiv-
ity [53]. On the other hand, plasmon polaritons in TBG
(and many other twisted 2D materials either with itiner-
ant carriers or long-lived phonon modes) enrich the po-
lariton panorama [54], providing us with a system with
ultra-slow acoustic plasmons—see Sect. V. Finally, since
acoustic plasmons carry an electromagnetic field that is
very well confined between the two layers [55–58], they
may have important applications in the field of quantum
nanophotonics [59] and cavity QED of strongly correlated
electron systems [60–62].
This Article is organized as following. In Sect. II we

introduce linear response theory for a P2DES consisting
of two layers, formulating it for a system with in-plane
Bloch translational invariance. In Sect. III we summarize
the theoretical approach we have used in this work, which
we dub “crystalline” random phase approximation, intro-
ducing local field effects and the experimental observable
we focus on, i.e. the energy loss function. Section IV
is devoted to a brief summary of the TBG continuum
model Hamiltonian we rely on. Finally, in Sect. V we
present our main numerical results. Section VI contains
a brief summary and our main conclusions. Sections I-V
of the Supplemental Material [63] contain a wealth of ad-
ditional numerical results. In particular, Sect. IV deals
with the role of an applied perpendicular electric field
while Sect. V discusses the impact of heterostrain.

II. LINEAR RESPONSE THEORY FOR
TWO-LAYER P2DESS

In this Section we summarize linear response theory
(LRT) [40] for a P2DES consisting of two layers. The for-
malism outlined here will be employed below in Sect. III
to evaluate the plasmonic spectrum of TBG.
The ordinary density-density response function for a

single 2DES [40] can be easily extended to a P2DES con-
sisting of two layers by using a 2× 2 matrix formalism:(
δn(1)(q, ω)
δn(2)(q, ω)

)
=

∫
d2q′

(2π)2

(
χ
(1,1)
n̂qn̂−q′ (ω) χ

(1,2)
n̂qn̂−q′ (ω)

χ
(2,1)
n̂qn̂−q′ (ω) χ

(2,2)
n̂qn̂−q′ (ω)

)

×
(
V

(1)
ext (q

′, ω)

V
(2)
ext (q

′, ω)

)
. (1)

Here, δn(1)(q, ω) and δn(2)(q, ω) are the Fourier compo-
nents of the densities in the two layers, which are linked
to the Fourier components of the two external scalar
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(a)

5

the right side has ∼ 1/Lz as variation scale, the former
being greater than the latter. Fixing q‖ = q̄‖ such that
2/Lz / q̄‖ < 1/`matter, and noting that in this limit

we can use the substitution ẑ ·
(
χorb(q̄‖) · ẑ

)
→ χOMS,

we have solutions to the disequation (2.22) in the two
regimes q‖Lz/2� 1 and q‖Lz/2� 1, if:

q‖ >
1

2πχOMS
, for

q‖Lz

2
� 1 , (2.24a)

q‖ >
1√

πLzχOMS
, for

q‖Lz

2
� 1 . (2.24b)

These are lower bounds for the modulus of the momen-
tum q‖. The values of these limits must be compared
to the values the momentum q‖ takes into the Brillouin
zone of the crystal.
Concluding, we want to stress that the photon condensa-
tion criterions obtained are in perfect accord with what
was found in previous literature [5, 36] but a semiclas-
sical approach has been followed, based on the Condon
argument for equilibrium magnetic-instability [40]. Fur-
thermore the conditions can be expressed as functions of
the total current response via the relations (A.6), (2.18)
as in (2.23). This kind of expressions is useful because
the total current response assumes in the crystal the form
of equation (A.11) (see also Appendix F).

III. THEORY OF THE ORBITAL MAGNETIC
SUSCEPTIBILITY IN TBG

We devote this section to the definition of the model
for TBG, Sec. III A, with the addition of Hartree correc-
tions, Sec. III B, and the discussion of the form of the
orbital magnetic response. Through equation (2.18) we
relate the orbital magnetic response of TBG to the total
current response and we procede obtaining an expres-
sion that takes into account the equilibrium character
of the photon condensation phase transition, related to
the isothermal form of the response Sec. III C 1, and the
imposed validity of gauge invariance, Sec. III C 2. The
OMS can be then obtained in the long wavelength limit
(q‖ → 0).

A. TBG model

The continuum description of electrons in TBG
adopted in this work is the same as the one used in [41],
and first derived in Refs. [37] and [42].
Layer, sublattice, spin, and valley are the four discrete
degrees of freedom characterizing single-electron states
in TBG. We can take into account valley and spin de-
grees of freedom by a fourfold degeneracy factor g. The
single-particle Hamiltonian of TBG is written in the

G1 G2

Γ

M

KK(1)

K(2)

ky

kx

FIG. 1: Moiré first Brillouin zone (or mini Brillouin
zone) of TBG. The red (black) dashed lines are the
edges of the Brillouin zone of layer 1 (2) with K1 (K2)
the relative K point. The path K − Γ−M −K is
highlighted.

layer/sublattice basis {|1A〉, |1B〉, |2A〉, |2B〉} as:

Ĥ0 =

(
Ĥ(1) Û

Û† Ĥ(2)

)
(3.25)

The state |`τ〉 refers to layer ` = 1, 2 and sublattice index

τ = A,B, Ĥ(`) is the intra-layer Hamiltonian for layer `,
and the operator Û describes inter-layer tunneling. For
small twist angles, the moiré length scale ∼ a/θ is much
larger than the lattice parameter of monolayer gaphene
a. This allows us to replace H(`) by its k · p expansion,
i.e. by the following massless Dirac fermion Hamiltonian
whose origin is the valley K(`) of layer `:

Ĥ(`) = vD [R`(θ/2)(p̂∓ ~K`)] · (±σx,−σy) , (3.26)

where (±σx,−σy) is a vector of ordinary 2× 2 Pauli ma-
trices, p̂ is the momentum operator, vD = 3|t|a/(2~) ∼
0.87 × 106m/s is the Fermi velocity of monolayer
graphene, |t| = 2.7 eV is the nearest-neighbor hopping
energy adopted in tight-binding models of graphene, and
K` is the position of graphene’s valley K(`) measured
from the MBZ center Γ (Figure 1):

K1,2 =
8π

3a
sin

(
θ

2

)(
−
√

3

2
± 1

2

)
. (3.27)

The rotation matrix R`(θ/2) appearing in (3.26) is given
by:

R`=1,2 (θ/2) = cos(∓θ/2)I2×2 − i sin(∓θ/2)σy

=

(
cos θ/2 ± sin θ/2
∓ sin θ/2 cos θ/2

)
. (3.28)

(b)

FIG. 2. (Color online) (a) Sketch of the setup studied in this
work. TBG (spatial separation between the two graphene
layers denoted by d) is embedded in a dieletric environment
described by three isotropic and homogeneous dielectrics with
dielectric constants, ε1 (top), ε2 (middle), and ε3 (bottom).
(b) The first moiré BZ of TBG. The red (black) dashed lines

are the edges of the BZ of the graphene layer “1” (“2”), K(1)

(K(2)) being the corresponding K point. The path K-Γ-M -K
is highlighted.

potentials V
(1)
ext (q

′, ω) and V
(2)
ext (q

′, ω) by a 2 × 2 linear-
response matrix. Its matrix elements are the quantities

χ
(i,j)
n̂qn̂−q′ (ω), where i, j = 1, 2 are layer indices. For the

sake of simplicity, we start by neglecting intra- and inter-
layer electron-electron interactions. In this case, the off-

diagonal elements χ
(1,2)
n̂qn̂−q′ (ω) and χ

(2,1)
n̂qn̂−q′ (ω) are non-

zero only because of inter-layer tunneling, which couples
layer 1 with layer 2 and viceversa. Electron-electron in-
teractions will be included below in Sect. III.

Good care needs to be exercised to correctly iden-

tify the layer-resolved density operators n̂
(i)
q that lead

to Eq. (1). The standard number density operator is de-

fined by [40] n̂(r) =
∑N

k=1 δ(r− r̂k), where the sum runs

over the k = 1 . . . N electrons. In a multi-layer structure,
this operator is generalized to n̂(i)(r) = Π̂(i)†n̂(r)Π̂(i).
In the previous equation, i = 1, 2 denotes the layer index
and Π̂(i) is the projector operator onto the i-th layer.
In the case of two layers the total density operator is
n̂(r) = Π̂(1)†n̂(r)Π̂(1) + Π̂(2)†n̂(r)Π̂(2). An explicit con-
struction of the projector operators is given below in
Sec. IV.

We now proceed to derive an expression for the quan-

tity χ
(i,j)
n̂qn̂−q′ (ω), which applies to the case in which the

P2DES is a crystal, i.e. a Bloch translationally-invariant
system. In this case, the single-particle eigenstates are of
the Bloch type, i.e. they are labeled by a crystal momen-
tum k belonging to the first Brillouin Zone (BZ) and a
band index λ. A Bloch state |k, λ⟩, with eigenvalue ϵk,λ,
is explicitly given by:

⟨r|k, λ⟩ = 1√
S

∑
G

uG(k, λ)ei(k+G)·r , (2)

where S is the P2DES’s area and G denotes the re-
ciprocal lattice vectors of the crystal. Then, the ele-

ments χ
(i,j)
n̂qn̂−q′ (ω) of the non-interacting density-density

response matrix can be expanded in a Bloch basis and the
wave vectors q and q′ appearing in Eq. (1) can differ at
most by a reciprocal lattice vector (due to the periodicity
of the lattice [40, 47]):

χ
(i,j)
n̂q+Gn̂−q−G′ (ω) =

= gs

∫
BZ

d2k

(2π)2

∑
λ,λ′

fk,λ − fk+q−Q,λ′

ϵk,λ − ϵk+q−Q,λ′ + ℏω + iη

× ⟨k, λ|n̂(i)q+G|k + q −Q, λ′⟩
× ⟨k + q −Q, λ′|n̂(j)−q−G′ |k, λ⟩ . (3)

Here, gs = 2 is a spin degeneracy factor, fk,λ is the
usual Fermi-Dirac distribution at chemical potential µ
and temperature T ,

fk,λ =
1

exp[(ϵk,λ − µ)/(kBT )] + 1
, (4)

and η → 0+ is a positive infinitesimal. A folding vector
Q belonging to the reciprocal lattice has been introduced
in Eq. (3) to ensure that k + q remains in the first BZ.

III. “CRYSTALLINE” RANDOM PHASE
APPROXIMATION

Plasmons are self-sustained density oscillations that
emerge due to electron-electron interactions [40]. These
need to be treated at some level of approximation.
Here, we employ the time-dependent Hartree approxi-
mation [40], also known as random phase approximation
(RPA), and focus our attention on the electron energy
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loss function L(q, ω). This quantity represents the prob-
ability of exciting the electronic system through the ap-
plication of a scalar perturbation with wave vector q and
energy ℏω. L(q, ω) contains valuable information about
self-sustained charge oscillations, which appear as sharp
peaks, as well as incoherent electron-hole pairs, which
induce a broadening of the peaks or, more in general,
produce a broadly distributed spectral weight in the q-
ω plane. The energy loss function can be in principle
measured via electron energy loss spectroscopy [64] and
scattering-type near-field optical spectroscopy (see, for
example, Refs. [54–57] and references therein).

As stated in Sect. I, the loss function will be calcu-
lated by including local field effects (LFEs) [51, 52, 65–
67], naturally arising out of the underlying crystalline
nature of the system under study. This is very naturally
accomplished by retaining the dependence of the quan-

tity χ
(i,j)
n̂q+Gn̂−q−G′ (ω) in Eq. (3) on the reciprocal lattice

vectors G, G′.
Finally, many-body effects, in general, and plasmons,

in particular, are sensitive to the dielectric environment
surrounding the P2DES under investigation. In this Ar-
ticle, we assume that TBG is embedded between two
homogeneous and isotropic dielectric media described by
the dielectric constants ε1 (top) and ε3 (bottom)—see
Fig. 2(a). The space between the layers is filled by a
third homogeneous and isotropic dielectric characterized
by a dielectric constant ε2. In a typical experimental
setup, the space between the layers is just a vacuum gap
(ϵ2 = 1) and TBG is encapsulated between two slabs
of hexagonal Boron Nitride (hBN), which is a homoge-
neous and anisotropic dielectric (therefore beyond the
isotropic model introduced above). Such hBN slabs host
hyperbolic phonon polariton modes [54], which strongly
couple to plasmons [68]. We have therefore deliberately
decided to neglect such plasmon-phonon polariton cou-
pling in order to access, once again, the intrinsic plasmon
modes of TBG. Including hBN polaritons into the theory
is straightforward and can be accomplished by following
for example the theory of Ref. [68].

The loss function can be calculated from the following
expression:

L(q, ω) = − Im
{
TrL

[
ε(q, ω)−1

]
G=0,G′=0

}
, (5)

where ε(q, ω) is the dynamical dielectric function, which,
in the present case, is a matrix with respect to layer in-
dices and reciprocal lattice vectors. The trace TrL in
Eq. (5) is intended to be over the layer-pseudospin de-
grees of freedom. We emphasize that, in order to evalu-
ate the loss function via Eq. (5), the matrix ε(q, ω) needs
to be inverted before a) the trace over the layer degrees
of freedom is taken and b) the G = 0,G′ = 0 element is
selected.

Returning on the importance of LFEs, we remind the
reader that the G = 0, G′ = 0 element of the inverse of
the dynamical dielectric matrix ε(q, ω) produces the so-
called “macroscopic” dielectric function [65, 66] εM(q, ω),

which is defined through the following equation:

ε−1
M (q, ω) ≡

[
ε−1(q, ω)

]
G=0,G′=0

. (6)

Inverting ε(q, ω) first, and then selecting the G = 0,
G′ = 0 element, brings to the macroscopic dielectric
function contributions from non-zero reciprocal lattice
vectors, i.e. G ̸= 0, G′ ̸= 0. In solids, such LFEs are not
negligible. As a result, the macroscopic field, which is
the average of the microscopic field over a region larger
than the lattice constant (but smaller than the wave-
length) is not equivalent to the effective or local field
that polarizes the charge in the crystal [65, 66]. This
phenomenon is expected to be more relevant in systems
with significant charge inhomogeneities, like moiré mate-
rials and TMDs [67, 69, 70]. In particular, modifications
to the plasmon dispersion relation induced by LFEs tend
to be important near BZ edges [67]. Importantly, the
authors of Ref. [67] have recently shown that the inclu-
sion of LFEs on the plasmon dispersion relation is cru-
cial to probe correlated states in twisted hetero-bilayers
of TMDs. More precisely, they argue that a loss function
different from the one introduced in Eq. (5) and calcu-
lated by tracing over the reciprocal lattice vectors gives
profound information about the many-body properties
of the moiré material under investigation. While this is
certainly true, standard plasmonic probes [54–57] usually
access the response of the system to long-wavelength per-
turbations. Experimentally, therefore, the loss function
defined in Eq. (5) seems the more appropriate one to in-
terpret plasmonic experiments, as briefly pointed out by
the authors of Ref. [67] too.

We now comment on the role of the layer degrees of
freedom. At a first superficial glance, one may be puz-
zled by the definition of the loss function we gave above in
Eq. (5) and, in particular, by its ability to display peaks
at the collective modes of the layered structure. Indeed,
in a layered structure, plasmon modes are calculated by
looking at the zeroes of the determinant of the layer-
resolved dielectric tensor [38, 39]. How can we reconcile
these two seemingly different approaches to the collec-
tive modes of layered materials? The answer is that the
trace of the inverse dielectric tensor with respect to the
layer degrees of freedom is proportional to the recipro-
cal of the determinant over the same degrees of freedom,
i.e. TrL

[
ε(q, ω)−1

]
G=0,G′=0

∝ 1/detL [ε(q, ω)]G=0,G′=0.

We therefore see that there is no contradiction between
the usual approach [38, 39] and our loss-function based
approach.

A. Approximate dynamical dielectric matrix

While the definition in Eq. (5) is totally general, we
now need to introduce a necessarily approximate model
for the dynamical dielectric matrix ε(q, ω), which in-
cludes electron-electron interactions.
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In the RPA [40], we have

[ε(q, ω)]
(i,j)
G,G′ = δ(i,j)δG,G′

− e2
∑
ℓ

L
(i,ℓ)
G (q)χ

(ℓ,j)
n̂q+Gn̂−q−G′ (ω) , (7)

where L
(i,j)
G (q) = L(i,j)(q + G) is the Coulomb propa-

gator relating the charge density fluctuations δn
(j)
q+G(ω)

to the self-induced electrical potential, i.e. W
(i)
G (q, ω) =

e2L
(i,j)
G (q)δn

(j)
q+G(ω).

The quantities L(i,j)(q) are given by [41]:

L(1,1)(q) =
4π

qD(q)
[(ε2 + ε3)e

qd + (ε2 − ε3)e
−qd] , (8)

and

L(1,2)(q) = L(2,1)(q) =
8π

qD(q)
ε2 , (9)

where

D(q) = (ε1+ε2)(ε2+ε3)e
qd+(ε1−ε2)(ε2−ε3)e−qd . (10)

The expression for the L(2,2)(q) component is obtained
from Eq. (8) by interchanging ε3 with ε1. In the presence
of hBN dielectrics, the Coulomb propagator acquires a

frequency dependence [68], L
(i,j)
G (q, ω), due to the strong

dependence of the hBN dielectric permittivity tensor on
frequency in the mid-infrared spectral range.

It is now time to pause for a moment and discuss about
the statements we have made about the non-local nature
of the calculations reported in this Article. In the so
called “local approximation” for calculating the plasmon
dispersion relation in a single 2DES, the density-density
response function in equation (7) is approximated with
its value in the so-called “dynamical limit” [40], i.e. in
the limit q → 0 and ω ≫ v∗Fq, where v

∗
Fq represents the

upper edge of the electron-hole continuum. This approx-
imation is extremely well suited to calculate the lead-
ing order term of the dispersion relation ωCOM(q) of the
COM mode in the long-wavelength q → 0 limit. How-
ever, it is very well known [39, 41] that such local ap-
proximation fails in predicting the correct acoustic plas-
mon dispersion, even in the long wavelength q → 0 limit.
This is why, in this Article, we have decided to retain

the full dependence of χ
(i,j)
n̂q+Gn̂−q−G′ (ω) in Eq. (3) on the

wave vector q, without making the local approximation
(i.e. without taking the dynamical limit).

IV. TBG MODEL HAMILTONIAN AND
HARTREE SELF-CONSISTENT THEORY

Before illustrating our numerical results, we would
like to briefly summarize the single-particle band model
we have used to describe TBG and the self-consistent
Hartree procedure we have carried out to deal with the
important ground-state charge density inhomogeneities
displayed by TBG.

A. TBG bare-band model

The continuum model of TBG adopted in this work
is the same as the one used in Ref. [47], which was first
derived in Refs. [35] and [71].
Layer, sublattice, spin, and valley are the four discrete

degrees of freedom characterizing single-electron states in
TBG. We can take into account valley and spin degrees
of freedom by a degeneracy factor g = 4 = gvgs, where
the spin-degeneracy factor gs = 2 has been introduced
earlier. The single-particle Hamiltonian of TBG is writ-
ten in the layer/sublattice basis {|1A⟩, |1B⟩, |2A⟩, |2B⟩}
as:

Ĥ0 =

(
Ĥ(1) Û

Û† Ĥ(2)

)
. (11)

The state |ℓτ⟩ refers to layer ℓ = 1, 2 and sublattice in-

dex τ = A,B, Ĥ(ℓ) is the intra-layer Hamiltonian for
layer ℓ, and the operator Û describes inter-layer tunnel-
ing. For small twist angles, the moiré length scale ∼ a/θ
is much larger than the lattice parameter a of single-
layer graphene. This allows us to replace Ĥ(ℓ) by its k ·p
massless Dirac fermion limit. This low-energy expansion
is done around one of the single layer valleys, K(ℓ)/K ′(ℓ):

Ĥ(ℓ) = vD [Rℓ(θ/2)(p̂∓ ℏKℓ)] · (±σx,−σy) . (12)

Here, (±σx,−σy) is a vector of 2×2 Pauli matrices (the ±
sign referring to the K and K ′ valleys, respectively), p̂ is

the momentum operator, vD =
√
3|t|a/(2ℏ) ∼ 1×106m/s

is the Fermi velocity of single-layer graphene, |t| =
2.78 eV being the usual single-particle nearest-neighbor
hopping. The vector Kℓ appearing in Eq. (12) is the
position of single layer graphene’s valley K(ℓ) measured
from the moiré BZ center Γ (Fig. 2 (b)):

K1,2 =
8π

3a
sin

(
θ

2

)(
−
√
3

2
,±1

2

)
. (13)

The rotation matrix Rℓ(θ/2) appearing in (12) is given
by:

Rℓ=1,2 (θ/2) = cos(∓θ/2)I2×2 − i sin(∓θ/2)σy

=

(
cos θ/2 ± sin θ/2
∓ sin θ/2 cos θ/2

)
. (14)

The convention adopted is such that θℓ=1 = −θ/2 and
θℓ=2 = θ/2. The longitudinal displacement between the
two layers is taken as zero in order to obtain the AB-
Bernal stacking configuration for θ = 0.
The Û operator describes inter-layer hopping and is

given by:

Û =

(
u0 u1
u1 u0

)
+ e−i 2π

3 +iG1·r̂
(

u0 u1e
i 2π

3

u1e
−i 2π

3 u0

)
+

+ ei
2π
3 +iG2·r̂

(
u0 u1e

−i 2π
3

u1e
i 2π

3 u0

)
, (15)
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where

G1,2 =
8π√
3a

sin

(
θ

2

)(
±1

2
,

√
3

2

)
, (16)

and u0 (u1) are the intra-sublattice (inter-sublattice)
hopping parameters. In general u0 ̸= u1. The differ-
ence between these two parameters can, in fact, take
into account the lattice corrugation of TBG samples [71–
74]. The intra- and inter-sublattice hopping energies
might also be affected in value by possible stresses in-
duced on the TBG sheet during the production phase.
Recently [75] it has been shown experimentally that the
difference between the intra- and inter-sublattice hopping
parameters is in the range of u1−u0 ∼ 30-60 meV. In this
work, we take u1 = 97.5 meV and u0 = 79.7 meV. With
this choice, we have u1−u0 ≈ 20 meV and the dimension-
less parameter u0/u1 ∼ 0.8 takes correctly into account
relaxation effects [71]. Within the continuum model de-
scribed by the single-particle Hamiltonian in Eq. (11), we
can construct the projector operators onto the i-th layer
Π̂(i) by making explicit their action on the basis |ℓτ⟩:

Π̂(i)|ℓτ⟩ = |iτ⟩ . (17)

In particular their matrix form is given explicitly by:

Π̂(1) =

(
Î2×2 0
0 0

)
, (18)

Π̂(2) =

(
0 0

0 Î2×2

)
, (19)

where Î2×2 is the identity operator acting on the sublat-
tice index.

The chemical potential µ in Eq. (4) can be calculated
by enforcing, as usual, particle-number conservation:

n = δn+ n0 = g
∑
λ

∫
d2k

(2π)2
f regk,λ(µ) . (20)

Here, n0 is the total electron density at the charge neu-
trality point (CNP) and δn is the electron density mea-
sured from the CNP. We stress that a regularized Fermi-
Dirac distribution function f regk,λ appears in Eq. (20). In-
deed, since we are dealing with a continuum model, the
number of bands is formally infinite below and above the
CNP. In order to regularize the Dirac sea below the CNP,
one needs to introduce the regularized Fermi-Dirac dis-
tribution function defined as following:

f regk,λ(µ) ≡ f reg(ϵk,λ − µ) =

= f(ϵk,λ − µ)−Θ(ϵCNP − ϵk,λ) , (21)

where Θ(x) is the Heaviside step-function and ϵCNP is
the energy of the CNP.

With these conventions, the filling factor ν is defined
by:

ν ≡ Ωu.c.δn , (22)

where Ωu.c. =
√
3
2

[
a

2 sin (θ/2)

]2
is the area of the moiré

unit cell. With this definition of the filling factor, one
has |ν| < 4 when the chemical potential is within the flat
bands, at low temperatures.

B. Hartree self-consistency

Inhomogeneities in the ground-state charge density dis-
tribution of TBG create an inhomogeneous electrical po-
tential that depends on the filling factor. To capture this
effect, we need to add the so-called Hartree contribution
V̂H to the bare TBG Hamiltonian Ĥ0 [40, 47, 50]:

Ĥ = Ĥ0 + V̂H[nG] , (23)

where

V̂H[nG] = I4×4

∑
G̸=0

2πe2

ε̄|G|nGe
iG·r̂ . (24)

Here, ε̄ ≡ (ε1+ε3)/2 , nG is the Fourier component of the
ground-state electron density corresponding to the recip-
rocal lattice vector G, and the identity matrix I4×4 is
expressed in the same basis of states of the Hamiltonian,
namely {|1A⟩, |1B⟩, |2A⟩, |2B⟩}.
The problem posed by Eqs. (23)-(24) needs to be solved

self-consistently, i.e., one needs to solve the Hartree equa-
tion (

Ĥ0 + V̂H[nG]
)
|k, λ⟩ = ϵk,λ|k, λ⟩ , (25)

together with the closure:

nG = g
∑
λ

∫
d2k

(2π)2
f regk,λ⟨k, λ|e−iG·r̂|k, λ⟩ . (26)

Note that, due to the real-space representation (2) of the
Bloch eigenstates, we have:

⟨k, λ|e−iG·r̂|k, λ⟩ =

=
1

S

∑
K,K′

u†K(k, λ)uK′(k, λ)

∫
d2re−i(G+K+k−K′−k)·r

=
∑
K,K′

u†K(k, λ)uK′(k, λ)δG+K,K′

=
∑
K

u†K(k, λ)uK+G(k, λ) . (27)

Once the self-consistent problem has been solved, the
Hartree eigenstates |k, λ⟩ and eigenvalues ϵk,λ can be
used in order to calculate the so-called Hartree density-
density response [40] matrix. This is simply obtained
by using Eq. (3), with the understanding that the two
quantities |k, λ⟩ and ϵk,λ in there need to be interpreted
as self-consistently calculated Hartree quantities rather
than single-particle, bare quantities.
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FIG. 3. (Color online) The energy loss function L(q, ω) of
TBG is plotted as a function of the twist angle θ and frequency
ω. Results in this plot have been obtained by keeping fixed the
wave number q and filling factor ν, i.e. q = qθ ≡ 2|K1,2|/31
(see main text) and ν = +1. Bright bands correspond to plas-
mons peaks. The white dashed line indicates the upper edge
of the particle-hole continuum, i.e. ω = v⋆(θ)qθ, v

⋆(θ) being
the reduced Fermi velocity, above which collective modes are
well defined. The low-energy acoustic plasmon mode, which
“tracks” the upper edge of the particle-hole continuum, dis-

appears for θ ≲ 2
◦
.

V. NUMERICAL RESULTS

In this Section we present our main numerical results
obtained with the theory outlined above. For the sake of
definiteness, we set ε1 = ε3 = 4.9, ε2 = 1, and T = 5 K.

The dielectric tensor and hence the loss function are
obtained by using the calculated Hartree self-consistent
bands and corresponding Bloch states. These calcula-
tions take into account the role of static screening in re-
shaping the electronic bands and redistributing in space
the carrier density. The Hartree self-consistency effect on
plasmons is more important at small twist angles, since
in this regime the system displays larger charge inhomo-
geneities [47]. This is true also for the LFEs.

Fig. 1 shows the TBG loss function for filling factor
ν = +1 and two values of the twist angle θ, i.e. θ = 1.05

◦

in panel (a) and θ = 5
◦
in panel (b). This filling factor

corresponds to a carrier density n = 0.64×1012 cm−2 for
θ = 1.05

◦
and n = 1.5× 1013 cm−2 for θ = 5

◦
. Chemical

potential values have been given in the caption of Fig. 1.
Close to the magic angle, Fig. 1(a), flat bands centered
at the CNP and separated by an energy gap from the
higher-energy bands, lead to intrinsically undamped slow
plasmons [46]. We clearly see this in Fig. 1(a), where
a narrow, almost dispersion-less plasmon is present at
energies on the order of ∼ 20 meV. In general, we find
that, at small twist angles, TBG hosts a standard intra-
band COM plasmon with a ωCOM(q) ∝ √

q dispersion
in the long-wavelength limit. No sign of other collective
modes is seen at small values of θ, neither gapless [39,
41] nor gapped [42, 43]—further results are reported in
Section II of Ref. [63].

This is not the case for larger values of the twist angle,
as seen for example in Fig. 1(b) for θ = 5

◦
. For this value

of the twist angle, an acoustic plasmon is clearly visible.
This mode lies just above the upper edge of the particle-
hole continuum (Section I of Ref. [63]), which is identified
by the line ℏωθ(q) = ℏv⋆θq, v⋆θ being the reduced Fermi
velocity of the TBG Dirac cones [32]:

v⋆θ = vD
1− 3α2(θ)

1 + 6α2(θ)
, (28)

α(θ) = u1

[
8π√
3a
ℏvD sin

(
θ
2

)]−1

being a dimensionless pa-

rameter that depends on the twist angle (the parame-
ters vD and u1 have been introduced in Sect. IVA). For

θ = 5
◦
, the Fermi velocity (28) is v∗θ ≈ 7.99 × 105 m/s,

while the acoustic plasmon velocity in Fig. 1(b) is cs ≈
8.43×105 m/s. For the sake of comparison, we note that
the acoustic plasmon velocity in two (tunnel-decoupled
but Coulomb-coupled) graphene layers at a distance d =
0.3 nm is cs ≈ 1.2 × 106 m/s (and at the same density
n = 1.5 × 1013 cm−2) [41]. A reduced single-particle
Fermi velocity in TBG leads to slower acoustic plasmons
with respect to other graphene-related systems [41]. A
plot illustrating the dependence of cs on θ is reported in
Section I of Ref. [63].
(Further numerical results are reported in Section II

of Ref. [63]—where the plasmon dispersion relation ob-
tained with the inclusion of the layer-pseudospin degree
of freedom and LFEs is compared with that obtained by
neglecting the latter—and Section III of Ref. [63]— where
the dependence on the filling factor ν is discussed, for var-
ious twist angles. In Section II of Ref. [63], we note that
the introduction of LFEs leads to a blue shift in the en-
ergy of the plasmon modes around the edge of the moiré
BZ, as already found out in other systems [67, 69, 70].
This effect is even more pronounced at small twist angles.
In Section III of Ref. [63], we observe, for a fixed value
of θ, a weak dependence on ν. The impact of an applied
perpendicular electric field and heterostrain on the plas-
monic spectrum of TBG are discussed in Sects. IV and V
of Ref. [63], respectively.)
Fig. 3 shows the loss function L(q, ω) as a function

of the twist angle θ and frequency ω. Results in this
figure have been obtained by setting q = qθ ≡ ξ|K1,2|,
where |K1| = |K2| is the modulus of the θ-depending
vector linking Γ to K in the moiré BZ—see Eq. (13)—
and ξ = 2/31 < 1. The brightest feature in this figure
corresponds to the usual COM plasmon while the lower-
energy feature corresponds to the acoustic plasmon. At
twist angles θ ≲ 2

◦
, the acoustic plasmon branch dis-

appears. We conclude that, at small twist angles, low
energies, and long wavelengths, TBG behaves effectively
as a single 2DES with an ordinary COM plasmon. A
weakly-damped out-of-phase acoustic plasmon appears
only for twist angles larger than θ ≈ 2

◦
. As discussed

in Sect I, this mode is typical of weakly-coupled double
layers, where two spatially-separated 2DESs interact only
through the long-range Coulomb interaction [39, 41]. The
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FIG. 4. (Color online) Layer polarization Pk,λ of the Hartree self-consistent eigenstates , superimposed on TBG energy bands

calculated with Hartree self-consistency at filling factor ν = +1. Panel (a) θ = 1.05
◦
. Panel (b) θ = 5

◦
. At lower angles the

Hamiltonian eigenstates are less layer polarized, resulting in more hybridization and the suppression of the bi-layer acoustic
plasmon mode. Bands are calculated at the K′ valley.

gapless nature of the extra mode emerging for θ ≳ 2
◦
is

reasonable since the moiré potential that couples the two
layers does not open a gap at the K/K ′ points (Dirac
cones are protected by symmetry).

Despite the apparent similarity with spatially-
separated 2DESs, acoustic plasmons in TBG offer a qual-
itative difference: in the latter system, they emerge only
for sufficiently large values of θ. In the former sys-
tems, instead, acoustic plasmons exist for all values of
the macroscopic parameters, provided that the single-
particle Fermi velocities in the two 2DESs are identi-
cal [39, 41].

Regarding damping of the TBG acoustic plasmon, let
us recall that the upper edge of the particle-hole contin-
uum in TBG is given by:

ℏωθ(qθ) ≡ ℏv∗θqθ = ξ
8π√
3a

ℏvD
sin2(θ/2)− 3α̃2

sin2(θ/2) + 6α̃2
sin(θ/2) ,

(29)
where α̃ = α(θ)/ sin(θ/2) and α(θ) has been introduced
above in Eq. (28). If the plasmon dispersion lies above
this threshold value, it is a well-defined (i.e. long lived)
mode (at least within the RPA). Since the wave vector
q is fixed at the value qθ ≡ ξ|K1,2|, the expression on
the right hand side of Eq. (29) depends only on θ and
is plotted in Fig. 3 (white dashed line) for small values

of θ (up to θ = 6
◦
). We clearly see that, for sufficiently

large values of θ (i.e. θ ≳ 4
◦
) the acoustic plasmon is a

well-defined long-lived collective mode.
In order to better understand the disappearance of the

acoustic mode for θ ≲ 2
◦
, we have calculated the layer po-

larization Pk,λ of the TBG Hartree self-consistent eigen-
states |k, λ⟩. This quantity is defined as [76]:

Pk,λ ≡ ⟨k, λ|Π̂(1)|k, λ⟩ − ⟨k, λ|Π̂(2)|k, λ⟩ , (30)

where Π̂(i) is the projector operator onto the i-th layer
introduced in Sec. IV, Eq. (17). Fig. 4 shows the layer
polarization (color bar) at the K valley and for two val-

ues of the twist angle, i.e. θ = 1.05
◦
—panel (a)—and

θ = 5
◦
—panel (b). For the latter value of the twist an-

gle, the polarization is |Pk,λ| ≈ 1 for almost every value
of the wave vector k and throughout all the bands. At
θ = 1.05

◦
, instead, we observe a very low layer polariza-

tion stemming from a strong inter-layer hybridization. It
is this transition from high to low values of the layer po-
larization that, in our opinion, leads to the disappearance
of the acoustic plasmon mode at twist angles θ ≲ 2

◦
.

VI. SUMMARY AND CONCLUSIONS

In this Article we have presented a theoretical study
of the plasmonic response of twisted bilayer graphene as
a function of the twist angle θ. Our theory treats on
equal footing four important effects, namely the layer
degree of freedom, non-local effects in the density-density
response function beyond the dynamical long-wavelength
limit, Hartree self-consistency, and crystalline local field
effects.
We have found that at small values of the twist angle

(θ ≲ 2
◦
) and in the low-energy long-wavelength limit,

the 2D electron system in twisted bilayer graphene re-
sponds to a perturbation carrying wave vector q and en-
ergy ℏω as a single entity, displaying a center-of-mass
mode ωCOM(q) ∝ √

q. This is in agreement with all ear-
lier studies [44–47]. As the twist angle increases, however,
inter-layer tunneling decreases and the layer-pseudospin
becomes a quasi-good quantum number. For θ ≳ 2

◦
, the

layer-pseudospin degree of freedom needs to be taken into
account and the plasmonic spectrum of the system dis-
plays a qualitatively different behavior. In this case, in-
deed, a weakly-damped acoustic plasmon mode appears,
akin to the acoustic plasmon of other parallel 2D electron
systems of historical importance [38, 39].
In the future it will be interesting to feed our results

to an Eliashberg theory [77] of plasmon-mediated super-
conductivity in twisted bilayer graphene and to study
the spatial distribution of chirality associated to this
mode [78, 79].
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In this Supplemental Material we present more numerical results for the energy loss function of TBG. We discuss
further results concerning: i) acoustic plasmons and the particle-hole continuum; ii) the impact of LFEs on the

plasmonic spectrum; iii) the robustness of the plasmonic spectrum with respect to changes in the filling factor; iv)
effects of a static, perpendicular electric field; v) heterostrain effects on plasmons.

SECTION I: ACOUSTIC PLASMONS AND THE TBG PARTICLE-HOLE CONTINUUM

In this Section we show that the acoustic plasmon appearing in Fig. 1(b) of the main text lies above the TBG
particle-hole continuum (and it is therefore undamped). As discussed in the main text, the upper edge of such
continuum is identified by ℏωθ = ℏv∗θq. In Figs. S1(a) and (b) we report the plasmon spectrum of TBG for θ = 5◦

and θ = 6◦, respectively. In each panel, the white dashed line represents the ℏωθ = ℏv∗θq line. We clearly see that, for
both twist angles, the acoustic plasmon mode lies above the particle-hole continuum, although falls very close to it.
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FIG. S1. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of q (along the Γ −K high symmetry
path) and ω for two values of the twist angle θ: θ = 5◦ in panel (a) and θ = 6◦ in panel (b). Results in this plot refer to
filling factor ν = +1 and temperature T = 5 K. The upper edge of the particle-hole continuum (which of course depends on θ),
i.e. ω = v⋆θq, v

⋆
θ being the reduced Fermi velocity (see Eq. (28) in the main text), is represented by a thin white dashed line.

A plot summarizing the dependence of cs on θ is reported in Fig. S2.

SECTION II: IMPACT OF LFES ON THE PLASMONIC SPECTRUM

In this Section we discuss the role of LFEs on the plasmonic spectrum. Results presented in Figs. S3 and S4 have
been obtained by setting ε1 = ε3 = 4.9, ε2 = 1, and T = 5 K. In order to isolate the impact of LFEs, we have
deliberately neglected Hartree corrections in producing the data reported in Figs. S3 and S4.

Fig. S3 compares the energy loss function (for θ = 1.35
◦
and various values of ν) in the local (i.e. G = G′ = 0)

approximation (panels in the right column) with that calculated by including LFEs (panels in the left columns). The
impact of LFEs is most significant around the edges of the moiré BZ. This is especially true at low doping.
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FIG. S2. (Color online) The sound velocity cs (red stars) of the acoustic plasmon is plotted as a function of the twist angle
θ. Results in this plot have been obtained by setting ν = +1 and T = 5 K. The shaded region identifies the particle-hole
continuum, whose upper edge coincides with v⋆θ (see Eq. (28) in the main text). The horizontal solid line represents the
acoustic plasmon velocity in two spatially-separated graphene layers [S41] at a distance d = 0.3 nm and total electron density
of n = 1.5× 1013 cm−2.

A similar comparison is reported in Fig. S4 where the filling factor is fixed at ν = +1 while the twist angle is varied.
Increasing the angle leads to a reduction of the importance of LFEs corrections. As emphasized in the main text, for
θ = 6

◦
we can clearly see the acoustic plasmon mode.

SECTION III: ROBUSTNESS OF THE PLAMONIC SPECTRUM WITH RESPECT TO CHANGES IN
THE FILLING FACTOR

In this Section we study the robustness of the acoustic plasmon with respect to changes in the filling factor (exploring,
in particular, higher values of ν, as compared to the main text).

We evaluated the energy loss function L(q, ω) with LFEs and Hartree corrections (while taking into account the

layer-pseudospin degree of freedom) for θ = 1.05
◦
and θ = 5

◦
, at filling factor ν = +2. Results are shown in Figure S5.

Similarly to Fig. 1 (which refers to ν = +1), we clearly see an intrinsic acoustic plasmon mode for θ = 5
◦
. Note that

the peak in the energy loss function associated to the acoustic plasmon is weaker for ν = +2 than ν = +1.
Figure S6 shows the energy loss function for different values of ν and fixed values of the wave vector q taken along

the Γ-K direction in the moiré BZ. Results in Fig. S6 have been obtained by neglecting the Hartree contribution. In
Figure S7 we show similar results—for two values of θ, i.e. θ = 1.05

◦
and θ = 5

◦
—but this time with the inclusion

of the Hartree contribution. Note the very high level of particle-hole symmetry in the plasmonic spectrum and a
significant suppression of the acoustic plasmon for |ν| > 2.

SECTION IV: EFFECTS OF A STATIC, PERPENDICULAR ELECTRIC FIELD

In this Section, we discuss the effect of a static, perpendicular electric field Ez = E0z on the plasmonic spectrum
of TBG. Within the continuum model introduced in Sect. IVA of the main text, such an electric field is taken into
account by adding to the Hamiltonian (11) the following contribution:

Ĥel = Uel

(
Π̂(1) − Π̂(2)

)
. (S1)

Here, Π̂(i) is the projector on the i-th layer defined in Eq. (17) of the main text and

Uel =
1

2
eE0d , (S2)

where e is the elementary charge and d ≈ 0.3 nm the spatial separation between the two graphene layers.
We have evaluated the impact of Eq. (S1) on the energy loss function L(q, ω), by including LFEs and Hartree

corrections. A summary of our main findings is reported in Fig. S8, where we show results obtained for θ = 1.05
◦
—

panels (a) and (b)—and θ = 5
◦
—panels (c) and (d). For each of the two twist angles, we considered two values of
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FIG. S3. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of q and ω for θ = 1.35
◦
and various filling

factors ν. Results shown in the panels on the left (right) column have been obtained by including (neglecting) LFEs. Panels
(a)-(b): ν = 0. Panels (c)-(d): ν = +1. Panels (e)-(f): ν = +2. On the horizontal axis we report q along the high-symmetry
path Γ-K-M of the moiré BZ—see Fig. 2(b) in the main text.

the electric field, namely E0 = 0.5 V/nm and E0 = 1 V/nm which correspond to a potential energy of Uel ≈ 84 meV
and Uel = 168 meV, respectively. Clearly, the impact of the perpendicular electric field is more pronounced at small
angles, as it suppresses the COM plasmon already for E0 = 0.5 V/nm: see Fig. S8(a). At higher angles, instead, the
plasmonic spectrum is only slightly modified, Fig. S8(c)-(d), the main effect of a large applied electric field being the
suppression of the acoustic plasmon.

These results can be qualitatively explained as following. The applied perpendicular electric field polarizes TBG,
leading to charge accumulation onto one of two layers and a consequent depletion of charge in the other layer. It is
precisely this imbalance that is at the origin of the suppression of the COM mode at small twist angles, where the
two layers are strongly tunnel-coupled, and of the acoustic plasmon at large twist angles, where the two layers are
weakly tunnel-coupled.

SECTION V: HETEROSTRAIN EFFECTS ON PLASMONS

In this Section, we explore the effects of heterostrain on the plasmonic spectrum of TBG. We first briefly review
how strain modifies the reciprocal lattice of the bilayer system. We then introduce the continuum model [S1] that
describes heterostrained TBG.
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FIG. S4. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of q and ω for ν = +1 and various values
of the twist angle θ. Results in the left column (i.e. panels (a), (c), and (e)) have been obtained by including LFEs. Results

in the right column (i.e. panels (b), (d), and (f)) have been obtained by neglecting LFEs. Panels (a)-(b): θ = 1.05
◦
. Panels

(c)-(d): θ = 2
◦
. Panels (e)-(f): θ = 6

◦
. On the horizontal axis we report q along the high-symmetry path Γ-K-M of the moiré

BZ—see Fig. 2(b) in the main text.
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FIG. S5. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of q and ω for ν = +2. Results in this

figure have been obtained by taking into account both LFEs and Hartree corrections. Panel (a) θ = 1.05
◦
. Panel (b) θ = 5

◦
.

On the horizontal axis we report q along the high-symmetry path Γ-K-M of the moiré BZ—see Fig. 2(b) in the main text.



5

−4 −3 −2 −1 0 1 2 3 4

Filling factor ν

0

20

40

60

80

100

h̄
ω

[m
eV

]

q = 0.08 nm−1

0.0

0.2

0.4

0.6

0.8

1.0

L
os

s
fu

n
ct

io
n

(a)

−4 −3 −2 −1 0 1 2 3 4

Filling factor ν

0

20

40

60

80

100

120

140

h̄
ω

[m
eV

]

q = 0.1 nm−1

0.0

0.2

0.4

0.6

0.8

1.0

L
os

s
fu

n
ct

io
n

(b)

−4 −3 −2 −1 0 1 2 3 4

Filling factor ν

0

50

100

150

200

250

300

350

h̄
ω

[m
eV

]

q = 0.15 nm−1

0.0

0.2

0.4

0.6

0.8

1.0

L
os

s
fu

n
ct

io
n

(c)

−4 −3 −2 −1 0 1 2 3 4

Filling factor ν

0

200

400

600

800

1000

h̄
ω

[m
eV

]

q = 0.25 nm−1

0.0

0.2

0.4

0.6

0.8

1.0

L
os

s
fu

n
ct

io
n

(d)

FIG. S6. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of ω and filling factor ν. Each panel
corresponds to a value of θ and q (the latter taken along the Γ-K direction of the moiré BZ). Results in this figure have been

obtained by neglecting Hartree corrections. Panel (a) θ = 1.05
◦
. Panel (b) θ = 1.35

◦
. Panel (c) θ = 2

◦
. Panel (d) θ = 5

◦
.
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FIG. S7. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of ω and filling factor ν. Each panel
corresponds to a value of θ and q (the latter taken along the Γ-K direction of the moiré BZ). Results in this figure have been

obtained by including Hartree corrections. Panel (a) θ = 1.05
◦
. Panel (b) θ = 5

◦
.

Heterostrain refers to relative strains between layers, and can be present in experimental TBG samples either
because of unwanted interactions with the substrate or because intentionally applied and controlled by piezoelectrics.
The properties of heterostrained TBG can be captured, in the small deformation and small rotation limit, by the
following deformation matrices:

E(ℓ) =

(
ϵ
(ℓ)
xx ϵ

(ℓ)
xy − (−)ℓθ/2

ϵ
(ℓ)
yx + (−)ℓθ/2 ϵ

(ℓ)
yy

)
. (S3)

The strained geometry leads to a deformed moiré reciprocal lattice. This can be constructed according to the following
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FIG. S8. (Color online) Dependence of the plasmonic spectrum on a static, perpendicular electric field. The TBG energy loss
function L(q, ω) is plotted as a function of q and ω for two values of Uel: see Eq. (S2). On the horizontal axis we report q along
the high-symmetry path Γ-K of the moiré BZ: see Fig. 2(b) in the main text. The left (right) column refers to E0 = 0.5 V/nm

(E0 = 1 V/nm). Panels (a)-(b): θ = 1.05
◦
. At this small twist angle, the applied electric field suppresses the COM mode.

Panels (c)-(d): θ = 5
◦
. At this larger value of the twist angle, instead, the main effect of the electric field is to suppress the

acoustic mode.

equation,

G̃i = ETgi , (S4)

where g1 = 4π√
3a
(
√
3
2 ,− 1

2 ) and g2 = 4π√
3a
(0, 1) are the unstrained and untwisted reciprocal lattice vectors and E ≡

E(2)−E(1) is the relative deformation matrix. The quantity G̃i defines the strained moiré reciprocal lattice counterpart
of the unstrained reciprocal lattice obtained by the vectors defined in the main text in Eq. (16).

In what follows, we further assume E(2) = −E(1) = 1
2E , as in Ref. [S1] and limit our investigation to uniaxial

heterostrain. This type of heterostrain involves the application of stress predominantly along one direction of the
bilayer system while leaving the perpendicular direction unstressed. With all these restrictions, the strain part of the
relative deformation matrix E can be expressed with only three parameters: strain magnitude ϵ, strain direction ϕ,
and Poisson ration νp, which takes the value νp ≈ 0.16 in graphene. We find

E = R−1(ϕ)

(
−ϵ 0
0 νpϵ

)
R(ϕ) +

(
0 −θ
θ 0

)
, (S5)

where the rotation matrix R(ϕ) is given by

R(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
. (S6)

We now move on to describe the continuum model Hamiltonian for the uniaxial heterostrained TBG. The structure
of the Hamiltonian operator is the same as we described in Sect. IV of the main text, with some modifications. Within
the two-center approximation, the effect of strain on the intra-layer Hamiltonian can be described by an effective vector
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FIG. S9. (Color online) The energy bands of TBG and their corresponding density of states calculated by taking into account
uniaxial heterostrain. On the horizontal axis we report the momentum k along the high-symmetry path K-Γ-M -K of the

strained moiré BZ. In order to obtain these results we fixed ε = 0.6% and ϕ = 30
◦
. In panel (a) the twist angle is θ = 1.05

◦
,

while in panel (b) θ = 5
◦
. In both panels the dashed-dot line shows the chemical potential µ for filling factor ν = +1 and

temperature T = 5 K.

potential (gauge field) [S1, S2]:

Ĥ(ℓ)
ξ = vD

[(
I+ ET

)
(p̂− ℏK̃ξ,ℓ + ξAℓ)

]
· (ξσx,−σy) . (S7)

Here ξ = ± is the valley index, K̃ξ,ℓ is the K point of the strained mBZ, and Aℓ is the effective vector potential
defined as:

A2 = −A1 =

√
3

4a
βϵ(1 + νp) (cos(2ϕ), sin(2ϕ)) , (S8)

with β ≈ 3.14 in graphene. Concerning inter-layer tunneling, it should be expressed in terms of the strained reciprocal
lattice basis vectors introduced in Eq. (S4). With respect to the main text expression, cf. Eq. (15), we have a slightly
different formula that takes into account the different reciprocal lattice basis:

Û =

(
u0 u1
u1 u0

)
+ eiξG̃1·r̂

(
u0 u1e

−i 2π
3

u1e
i 2π

3 u0

)
+ eiξ(G̃1+G̃2)·r̂

(
u0 u1e

i 2π
3

u1e
−i 2π

3 u0

)
. (S9)

Moiré minibands as modified by uniaxial heterostrain are displayed in Fig. S9. Results in this figure refer to ϵ = 0.6%
and strain direction ϕ = 30

◦
. The impact of uniaxial heterostrain on the energy loss function is illustrated in Figs. S10

and S11. In Fig. S10 the energy loss function is displayed for ϵ = 0.6% and ϕ = 30
◦
. Instead, in Fig. S11, we show

results for the energy loss function at fixed momentum q = ξ|K1,2|, where |K1| = |K2| is the modulus of the vector
linking Γ to K in the moiré BZ (which depends on the strain magnitude ϵ). In Fig. S11 we used ξ = 4/25, and

varied ϵ at fixed ϕ = 0
◦
. In order to obtain these plots, Hartree contributions have been neglected, while we have

retained LFEs. These results suggest that, at small twist angles, heterostrain largely suppresses the COM plasmon,
which becomes extremely feeble and flat, while it pushes inter-band excitations toward lower energies: see Figs. S10(a)
and S11(a). At larger angles, instead, the effect of strain is less severe, suggesting resilience of the acoustic plasmon
for ϵ ≲ 2.5%, as show in Figs. S10(b) and S11(b).

[S1] Z. Bi, N. F. Q. Yuan, and L. Fu, Designing flat bands by strain, Phys. Rev. B 100, 035448 (2019).
[S2] N. N. T. Nam and M. Koshino, Lattice relaxation and energy band modulation in twisted bilayer graphene, Phys. Rev.

B 96, 075311 (2017).

https://doi.org/10.1103/PhysRevB.100.035448
https://doi.org/10.1103/PhysRevB.96.075311
https://doi.org/10.1103/PhysRevB.96.075311
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FIG. S10. (Color online) The impact of uniaxial heterostrain on the TBG energy loss function L(q, ω), which is plotted, as
usual, as a function of q (along the high-symmetry path Γ-K of the strained mBZ) and ω. Results in this figure have been

obtained by choosing ϵ = 0.6% and ϕ = 30
◦
. Panel (a): θ = 1.05

◦
. We clearly see that heterostrain largely suppresses the

COM plasmon while pushing the inter-band transitions toward lower energies. Panel (b): θ = 5
◦
. In this case heterostrain

does not affect the plasmonic spectrum as a direct comparison with e.g. Fig. S1 shows. In both panels the filling factor is fixed
at ν = +1 and temperature is T = 5 K.
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FIG. S11. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of ℏω and strain magnitude ϵ. Results

in this figure have been obtained by setting q = ξ|K1,2| (see Sect. V), ϕ = 0
◦
, ν = +1, and T = 5 K. Panel (a): θ = 1.05

◦
.

We clearly see that for ϵ ≳ 0.4% the COM mode is suppressed and merges with inter-band plasmons. Panel (b): θ = 5
◦
. We

clearly see that the acoustic plasmon, which in this figure is the feeble feature at ℏω ≈ 100 meV, is visible for ϵ ≲ 2.5%− 3.0%.
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Charge-neutral conducting systems represent a class of materials with unusual properties governed
by electron-hole (e-h) interactions. Depending on the quasiparticles statistics, band structure, and
device geometry these semimetallic phases of matter can feature unconventional responses to external
fields that often defy simple interpretations in terms of single-particle physics. Here we show that
small-angle twisted bilayer graphene (SA-TBG) offers a highly-tunable system in which to explore
interactions-limited electron conduction. By employing a dual-gated device architecture we tune our
devices from a non-degenerate charge-neutral Dirac fluid to a compensated two-component e-h Fermi
liquid where spatially separated electrons and holes experience strong mutual friction. This friction
is revealed through the T 2 resistivity that accurately follows the e-h drag theory we develop. Our
results provide a textbook illustration of a smooth transition between different interaction-limited
transport regimes and clarify the conduction mechanisms in charge-neutral SA-TBG.

Low-dimensional electron-hole (e-h) systems have re-
cently emerged as an important platform in which to
explore many-body quantum phenomena. In such sys-
tems, strong Coulomb interaction among electrons and
holes can give rise to a plethora of exotic quantum
phases whose inventory encompasses superfluids1,2, cor-
related density wave states3,4, excitonic insulators5,6, and
Wigner crystals4,7, to name a few. Particularly inter-
esting interacting e-h mixtures are hosted by graphene
and its bilayer. Graphene-based devices enabled the dis-
covery of novel non-trivial effects governed by e-h in-
teractions: from the Wiedemann-Franz law violation8

and the anomalous Coulomb drag9–14 to the quantum
critical conductivity15–17 and giant thermal diffusivity18.
Central in these effects is the dominance of momentum-
conserving e-h collisions over other momentum-relaxing
scattering processes brought upon by graphene’s weak
electron-phonon coupling and low disorder19. As a re-
sult, the behavior of graphene’s e-h plasma at elevated
temperatures T , often referred to as Dirac fluid, resem-
bles that of interacting relativistic fluids governed by the
laws of (relativistic) hydrodynamics8,19–22. Since hydro-
dynamics offers a natural framework by which to probe
the long-wavelength behavior of strongly-interacting flu-
ids, experiments on model platforms, such as graphene,
can give insights for observations in more exotic quantum
phases of matter23,24, substantiating the interest in the
field.

So far, the hydrodynamic behavior of interacting e-h
plasmas in mono- and bilayer graphene (MLG and BLG
respectively) was explored deep in the non-degenerate
limit (EF � kBT , where EF is the Fermi energy, kB is the
Boltzmann constant) and relied on thermal8,25,26, light-18

or current-driven27 excitation of e-h pairs. The ambipo-
lar hydrodynamics in the degenerate regime (EF � kBT )
as well as its genesis from the Boltzmann phase have at

present remained inaccessible. This inaccessibility stems
from the fact that the conduction and valence band ex-
trema in MLG and BLG coincide in momentum space
and thus the e-h system can only be realized through
the smearing of the charge neutrality point (NP); adding
more carriers into the system converts the neutral Dirac
fluid into a unipolar Fermi liquid (FL)19. In this work,
we introduce biased SA-TBG as a convenient system in
which to explore a smooth crossover between the Dirac
fluid regime and the regime of degenerate e-h FL. In the
latter case, we demonstrate that frequent momentum-
conserving (yet velocity-relaxing) e-h collisions are the
limiting factor for the SA-TBG conductivity.

We start by exploring the single-particle band struc-
ture of SA-TBG which is folded within a reduced Bril-
louin zone (BZ)30 due to superlattice periodicity (Fig. 1a-
b). At small energies, it resembles that of MLG but is
characterized by a decreased Fermi velocity vF. Like the
BZ of MLG, the reduced BZ of SA-TBG is hexagonal and
comprises two minivalleys located at the km and k′m high
symmetry points. These coincide with the K points of
the two decoupled graphene sheets30. A prominent fea-
ture of the SA-TBG is that, away from the magic angle
(θ & 1.3◦), one can selectively populate its minivalleys
with charge carriers of opposite types using a perpendic-
ular displacement field, D, (Fig. 1b)3,31–35. Electrostatic
calculations32 for D = 1 V/nm, reveal that such a strong
D, readily achievable in experiments, can result in the
formation of relatively large electron and hole Fermi sur-
faces in the km and k′m minivalleys, respectively. Quan-
titatively, in each minivalley, the Fermi temperature, TF,
exceeds room T , as in normal FLs (Fig. 1c dashed line).
On the contrary, charge-neutral SA-TBG at D = 0 is
half-filled up to the Dirac point where the Fermi surfaces
shrink to two points and where the Dirac fluid emerges
at elevated T 8,19. This tunability enables the exploration
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FIG. 1. Biased SA-TBG. a-b, Calculated single-particle
band structure for 1.65◦ SA-TBG28,29. At low-energies, two
Dirac cones are formed in the vicinity of the km and k′m points
(a); when D 6= 0, the cones are shifted with respect to each
other (b). The horizontal dashed lines represent the Fermi
level in the neutral SA-TBG. c, Phase diagram for the charge-
neutral e-h mixture in SA-TBG mapped onto a T −D plane.
Dashed lines: the dependence of TF in each minivalley on
D for n = 0. d, Schematic of the dual-gated encapsulated
SA-TBG device.

of e-h plasma at the crossover between the Dirac fluid
and FL regimes in standard transport experiments as we
schematically illustrate on the D − T diagram in Fig 1c.

To probe such a crossover, we fabricated a dual-gated
multi-terminal Hall bar made out of θ ≈ 1.65◦ SA-TBG
encapsulated between two relatively thin (< 100 nm
thick) slabs of hexagonal boron nitride (hBN). At this
angle, the SA-TBG is characterized by enhanced inter-
action strength and a reduced vF , but is far enough from
the magic angle (1.1◦) that it allows for appreciable in-
terlayer polarization3,33. The device was produced by
a combination of tear-and-stack36–38 and hot release39

methods, and had a width of 2 µm (Inset of Fig. 2b) (Sup-
plementary Section 1). The dual-gated configuration
(Fig. 1d) allowed us to control the interlayer displacement
D/ε0 = (CbgVbg − CtgVtg)/2, and the total externally-
induced carrier density, n = (CbgVbg + CtgVtg)/e, where
Ctg,bg are the top and bottom gate capacitance per unit
area, ε0 is the dielectric permittivity of vacuum, and e is
the electron charge.

Figure 2a shows an example of the longitudinal resis-
tivity, ρxx, dependence on Vbg and Vtg in a form of 2D
map, measured in our SA-TBG and reveals its character-
istic behavior. Namely, the map consists of three diago-
nal lines: central - that denotes the global neutrality, and
two side diagonals, labeled as BI, that reflect the full fill-
ing of the first miniband where the single-particle band
insulator emerges37,38,40. The BI lines allow for an accu-
rate determination of the twist angle37,38,40. Below, we
will only focus on the region in the vicinity of the global
neutrality and away from the van Hove singularity.

Figure 2b shows the ρxx(n) dependence of our SA-

TBG device measured at D = 0 and T = 4.2 K (the
curve is measured along the blue trace in the map from
Fig. 2a). At D = 0, ρxx(n) exhibits a sharp peak and
reaches 2.7 kΩ at n = 0, a standard behavior for SA-
TBG devices. The peak width is only δn ' ×1010 cm−2

that indicates low charge inhomogeneity provided by the
graphite gate41. Upon doping, ρxx(n) rapidly decreases
and already at 1012 cm−2 drops to 30 Ω which translates
to the 1.7 µm mean free path, obtained from the stan-
dard Drude model. At liquid helium T , we also observed
negative transfer resistance measured in the bend geom-
etry (Supplementary Information 2), an indicative of the
micrometre-scale ballistic transport42,43. These obser-
vations highlight an exceptional quality of our encapsu-
lated SA-TBG device critical for further exploration of
interaction-dominated transport at elevated T as we now
proceed to discuss.

With the application of D, the transport properties of
neutral SA-TBG change drastically (Fig. 2b, red curve).
ρxx at the NP drops by more than an order of magnitude
and becomes comparable to that of doped SA-TBG (cf.
ρxx at 1012 cm−2). This qualitative behavior remains
unchanged upon increasing T (Fig. 2c). Namely, at T =
20 K the NP resistivities measured at zero and finite D
differ by more than an order of magnitude. The drop of
ρxx with increasing D signals parallel conduction of two
minivalleys when each of them is doped away from their
NPs.

We further studied the temperature dependence of our
sample’s resistivity. Figures 3a-b shows ρxx(n) dependen-
cies for varying T for the case of zero (a) and finite (b) D
respectively. Away from the NP (n = 0), ρxx grows with
increasing T for both D values, indicating characteris-
tic behavior of doped graphene sheets. On the contrary,
at the NP, ρxx exhibits a very different behavior for the
two cases. Namely, at D = 0, ρxx drops rapidly when
T is raised from 4.2 to 40 K (inset of Fig. 3a), whereas
at D = 0.7 V/nm, ρxx shows a clear metallic trend: the
resistivity increases with increasing T (inset of Fig. 3b).

It is now instructive to normalize all measured ρxx(T )
dependencies to their lowest T value in order to compare
the functional forms of the T−dependencies in different
cases. At T = 40 K, the zero-D resistivity of the SA-
TBG device is less than a half of its 4.2 K value; further
increase of T leads to a very slow ascending trend of
ρxx(T ). At the same T and D = 0.7 V/nm, ρxx expe-
riences more than two times increase and keeps growing
with increasing T following approximately an a + bT 2

dependence, where a and b are constants (dashed black
line in the inset of Fig. 3b). To compare, we have also
measured the resistivity of a BLG device of comparable
quality as a function of n and T (Fig. 3c). At the NP,
ρxx is practically unaffected by the T variation (Fig. 3c)
over the entire range of T in our experiments.

The above observations clearly point to the difference
in the conductivity mechanisms of these three bilayer
systems at their NPs. The weak insulating behavior
of charge-neutral SA-TBG at zero D resembles that of
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FIG. 2. Effect of displacement on the transport properties of the SA-TBG. a, ρxx as a function of Vbg and Vtg

measured in the 1.65◦ SA-TBG device. Blue and red lines correspond to the (Vtg, Vbg) points where D = 0 and D = 0.7 V/nm
respectively. b, ρxx(n) traces for D = 0 and D = 0.7 V/nm measured at T = 4.2 K. Inset: Optical photograph of an
encapsulated SA-TBG device. c, Same as (b) but for T = 20 K. Inset: zoomed-in region of the NP vicinity for D = 0.7 V/nm.

MLG: the resistivity drops as a result of the thermal
activation of electrons and holes8. A further increase
of T leads to the enhanced scattering between electron
and hole non-degenerate sub-systems hosted by SA-TBG
leading to an increase of the resistivity. In contrast,
the flat T−dependence of the BLG has been recently
attributed to the perfect balance between the amount
of thermally activated e-h pairs facilitating conductiv-
ity, and the e-h scattering that impedes the electrical
current22,26,44. The peculiar T 2 growth of the resistivity
in compensated SA-TBG at finite D has not been ob-
served previously. Below we show that this effect stems
from the e-h friction45,46 in this degenerate ambipolar
system.

To demonstrate this, we solve the steady-state Boltz-
mann equation for e-h hole mixture in SA-TBG; the de-
tails are given in Supplementary Information. In the
limit of temperatures much smaller than TF, the resis-
tivity due to e-h scattering reads

ρD '
8πα2

eeg(q̄TF)

3ne2v2F~
(kBT )2 . (1)

where n is the particle density in each minivalley,
g(q̄TF) = 3(q̄TF − 1) + (4 − 3q̄2TF)arccoth(1 + q̄TF) and
q̄TF = Nfαee is the Thomas-Fermi screening wavevec-
tor in units of the Fermi wavevector. Here, αee =
e2/(2πε0(εr + 1)~vF) is the effective fine-structure con-
stant of Dirac fermions, εr is a dielectric constant ac-
counting for screening due to far bands and external di-
electrics, Nf is the number of flavors, and ~ is the re-
duced Planck constant. Hereafter we set εr = 3.9, as
for graphene deposited on hBN. The total resistivity is
then ρ = ρ0 +ρD, where ρ0 is the zero-temperature resis-
tivity due to momentum-non-conserving scattering pro-
cesses. We also note that, as the minivalleys are pre-
dominantly formed from the energy bands of different

graphene sheets, electrons and holes reside in the up-
per or lower graphene layers depending on the D direc-
tion3,32,33, and thus ρD can be interpreted as the resis-
tivity due to the interlayer e-h friction.

In Fig. 3d we compare the results of our calcula-
tions with ρxx(T ) found experimentally. To this end, we
plot the experimentally found resistivity excess, ∆ρ =
ρxx(T ) − ρxx(4.2 K), and theoretically obtained ρD(T ).
For the latter, we used an electrostatic model that ac-
counts for screening effects to calculate the Fermi en-
ergy in each minivalley32, as well as the experimentally
determined twist angle. Using that, for θ = 1.65◦,
vF ' 5 × 105 m/s (as determined from the continuum
model of SA-TBG28–30), for D = 0.7 V/m we estimate
the carrier density n = 1.3 × 1015 m−2. Experimental
data follows closely the expected BT 2 dependence with
B ' 0.062 Ω/K2 with some tendency to sub-quadratic
dependence at higher T (inset of Fig. 3b). This devia-
tion from the T 2 scaling can be attributed to the ther-
mal smearing of the distribution function that leads to
the exit of the SA-TBG e-h system from the degenerate
state. Indeed, at n = 1.3 × 1011 cm−2, the Fermi tem-
perature of the 1.65◦ SA-TBG is of the order of 220 K.

Next, we analyze ρD(T ) dependencies expected for
other θ. We find that, at fixed carrier density, the re-
sistivity due to e-h scattering depends on θ only through
its dependence on the electron Fermi velocity vF. The
latter controls the values of both the Fermi energy εF
and effective fine-structure constant αee. The relation-
ship between the Fermi velocity and twist angle can be
obtained from a continuum model of SA-TBG30. In the
inset of Fig. 3 we plot the ratio B(vF)/B(vgF) for a car-
rier density n = 4 × 1014 m−2 as a function of θ. Here,
vgF is the Fermi velocity of MLG, while B(vF) is defined
from ρD = B(vF)T 2. At θ > 3◦ the e-h drag would re-
sult in a 10 times smaller prefactor of the T 2− resistivity
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FIG. 3. Temperature dependence of the SA-TBG resistivity a, ρxx(n) for different T for the case of D = 0. Inset:
ρxx(T ) at the NP and D = 0. b, Same as (a) but for D = 0.7 V/nm. Inset: ρxx(T ) at the compensation point (n = 0) and
D = 0.7 V/nm. Dashed line: guide for the eye that represents the a+bT 2 dependence. c, ρxx(n) for BLG atD = 0. d, Resistivity
as a function of T for the charge-neutral SA-TBG at D = 0 (blue) and D = 0.7 V/nm (red) and for BLG at D = 0 (grey).
The data is normalized to the lowest-T value of ρxx(n): 4.2 K for SA-TBG and 10 K for BLG. e, ∆ρ = ρxx(T ) − ρxx(4.2 K)
as a function of T measured at D = 0.7 V/nm and n = 0 (symbols). Note, ∆ρ(T ) exhibits somewhat faster T−dependence
at T < 15 K. This apparent behavior is spurious and is related to the subtraction operation of the ρ0 = ρxx(4.2 K) from
the experimental dataset rather than ρxx at T → 0. Solid line: theoretical dependence, eq. (1). Upper left inset: schematic
illustration of the interlayer e-h friction in SA-TBG at finite D. Lower right inset: Prefactor B as a function of twist angle, θ.

with respect to that observed in the present experiment
on SA-TBG. Indeed, at large θ, the layers are fully de-
coupled and vF ≈ vgF. On the contrary, close to the
magic angle, the layers are hybridized so that control of
individual minivallyes via electrostatic means cannot be
realized.

It would be instructive to put our observations in the
context of electron transport in semimetals. Depend-
ing on quasiparticle statistics, band structure details, de-
vice geometry and interaction strength, seemingly alike
semimetallic e-h systems can display very different phys-
ical properties and regimes of transport. For example,
in charge-neutral MLG, frequent collisions between ther-
mally activated electrons and holes impede electrical cur-
rents while leaving thermal ones untouched, causing a
staggering breakdown of the Wiedeman-Franz law. In
this system the Lorentz ratio, i.e. the ratio between
the thermal conductivity and its electrical counterpart,
is found to be greatly enhanced8. On the contrary, in de-
generate compensated semimetals such as WP2 or Sb the

Lorentz ratio has been found to be suppressed47. Despite
their semimetallic nature, which would imply violations
of the Wiedeman-Franz law akin to those observed in
graphene48, the behavior of these materials closely re-
sembles that of conventional unipolar systems49, where
carriers of a single type transport both charge and heat.
All these seemingly contradictory observations have stim-
ulated a debate over the effect of quasiparticle statistics,
band structure and many-body interactions on the ther-
mal and electrical properties of these charge-neutral ma-
terial platforms48,50,51. A definitive resolution of these
long lasting puzzles is made especially difficult by the
fact that completely different behaviors are observed in
different systems and regimes, and therefore a thorough
comparison between them becomes challenging. The be-
havior of SA-TBG observed in this work thus makes it
a highly-tunable platform for the exploration of different
semimetallic regimes on an equal footing, allowing for a
gradual transition between them.

To conclude, we have shown that SA-TBG offers a
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highly-tunable semimetalic system in which to explore
physics at the crossover between the charge-neutral Dirac
fluid and compensated e-h FL. In the latter case we found
strong Coulomb friction between spatially separated elec-
tron and hole subsystems that resulted in the T 2− growth
of the resistivity. Finally, we have developed a theory
for e-h scattering in SA-TBG and found that its predic-
tions are close to the experimental observations. It would
be further interesting to explore transport and thermal
properties of e-h FLs in other polarizable layered sys-
tems with heavier charge carriers such as twisted double
bilayer graphene3 or twisted transition metal dichalco-
genides6 as well as to explore collective modes in such
e-h mixtures52–54.
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13 M. Schütt, P. M. Ostrovsky, M. Titov, I. V. Gornyi, B. N.
Narozhny, and A. D. Mirlin, Phys. Rev. Lett. 110, 026601
(2013).

14 J. C. W. Song and L. S. Levitov, Phys. Rev. Lett. 111,
126601 (2013).

15 L. Fritz, J. Schmalian, M. Müller, and S. Sachdev, Phys.
Rev. B 78, 085416 (2008).

16 M. Müller, J. Schmalian, and L. Fritz, Phys. Rev. Lett.
103, 025301 (2009).

17 P. Gallagher, C.-S. Yang, T. Lyu, F. Tian, R. Kou,
H. Zhang, K. Watanabe, T. Taniguchi, and F. Wang, Sci-
ence 364, 158 (2019).

http://dx.doi.org/10.1038/nature03081
http://dx.doi.org/10.1038/nature03081
http://dx.doi.org/10.1103/PhysRevLett.110.146803
http://dx.doi.org/10.1103/PhysRevLett.110.146803
http://dx.doi.org/ 10.1126/science.abc3534
http://dx.doi.org/ 10.1126/science.abc3534
http://dx.doi.org/10.1038/s41598-017-11910-w
http://dx.doi.org/10.1038/s41598-017-11910-w
http://arxiv.org/abs/2010.05390
http://arxiv.org/abs/2010.05390
http://arxiv.org/abs/2108.07131
http://inis.iaea.org/search/search.aspx?orig_q=RN:10442801
http://inis.iaea.org/search/search.aspx?orig_q=RN:10442801
http://dx.doi.org/ 10.1038/nphys2441
http://dx.doi.org/ 10.1103/PhysRevLett.117.046802
http://dx.doi.org/ 10.1103/PhysRevLett.117.046802
http://dx.doi.org/10.1021/nl401475u
http://dx.doi.org/10.1021/nl401475u
http://dx.doi.org/10.1103/PhysRevLett.111.166601
http://dx.doi.org/ 10.1103/PhysRevLett.110.026601
http://dx.doi.org/ 10.1103/PhysRevLett.110.026601
http://dx.doi.org/10.1103/PhysRevLett.111.126601
http://dx.doi.org/10.1103/PhysRevLett.111.126601
http://dx.doi.org/10.1103/PhysRevB.78.085416
http://dx.doi.org/10.1103/PhysRevB.78.085416
http://dx.doi.org/10.1103/PhysRevLett.103.025301
http://dx.doi.org/10.1103/PhysRevLett.103.025301


6

18 A. Block, A. Principi, N. C. H. Hesp, A. W. Cummings,
M. Liebel, K. Watanabe, T. Taniguchi, S. Roche, F. H. L.
Koppens, N. F. van Hulst, and K.-J. Tielrooij, “Observa-
tion of giant and tuneable thermal diffusivity of dirac fluid
at room temperature,” (2020), arXiv:2008.04189 [cond-
mat.mes-hall].

19 A. Lucas and K. C. Fong, Journal of Physics: Condensed
Matter 30, 053001 (2018).

20 D. Svintsov, V. Vyurkov, S. Yurchenko, T. Otsuji, and
V. Ryzhii, Journal of Applied Physics 111, 083715 (2012).

21 B. N. Narozhny, I. V. Gornyi, M. Titov, M. Schütt, and
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SUPPLEMENTARY INFORMATION

S1. Device fabrication.

Our device consisted of hBN-encapsulated twisted bilayer graphene, which we fabricated using a combination of cut-
and-stack37,55 and hot release39 methods. Monolayer graphene, few-layer graphite, and 30-80 nm-thick hBN crystals
were mechanically exfoliated on a Si/SiO2 substrate, and sizable, uniform flakes were selected using optical microscopy.
Then, using a homemade transfer system with µm-accuracy and a polycarbonate (PC) membrane stretched over a
small (8 mm×8 mm×4 mm) polydimethylsiloxane (PDMS) polymer block on a glass slide, we assembled hBN and
graphite stacks on a Si/SiO2 wafer. We first picked up hBN crystal at 50-70 ◦C. Then, the graphite was picked up
at room temperature, and then the entire stack was “ironed” and then released on a clean Si/SiO2 wafer at high
temperatures (160 − 170 ◦C). After removing the polymer membrane, we annealed the hBN and graphite stack at
350 ◦C for 3 hours in argon/hydrogen atmosphere. We then assembled the hBN and twisted bilayer graphene stack
using a “cut-and-stack” method described previously37,38. After picking up the top hBN and twisted graphene, we
“ironed” the entire stack at room temperature. The three-layer stack was then released onto the previously fabricated
and cleaned bottom hBN and graphite gate at roughly 160 C. After this point, we avoided heating the stack to reduce
the possibility of twist angle relaxation. The final stack was inspected using dark-field microscopy and atomic force
microscopy (AFM), and bubble- and blister-free areas were selected to use for Hall bars.

To fabricate the devices, we covered the heterostructures by a protective polymethyl-methacrylate (PMMA) resist
and used electron beam lithography (EBL) to define contact regions. We then performed a mild O2 plasma cleaning
before using reactive ion etching (RIE) with a plasma generated from CHF3 and O2 gases to selectively etch away the
hBN in the parts of the heterostructure unprotected by the lithographic mask56. 3 nm chromium and 50-70 nm gold
was then evaporated into the contact regions via thermal evaporation at high vacuum. We repeat the same EBL and
thermal evaporation procedures to define a metallic top gate (3 nm chromium and 30-40 nm gold). Finally, we repeat
the same EBL and RIE procedures to define the final Hall bar geometry, using, in this case, a plasma generated by
Ar, O2 and CHF3 gases.
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S2. Signatures of ballistic transport in SA-TBG.

One of the standard ways to probe the presence of ballistic transport in mesoscopic devices is to measure the
transfer resistance in the bend geometry illustrated in Fig. S142,57. In this geometry, an electrical current, I1−2,
is passed between contacts 1 and 2 and the voltage drop, I3−4, is measured between contacts 3 and 4. In the case
of diffusive transport, this configuration yields a positive signal, R3−4,1−2 = V3−4/I1−2 because charge carriers flow
along electric field lines. The bend geometry is then topologically identical to the conventional 4-point configuration
used for resistivity measurements. On the contrary, if the charge carriers experience ballistic motion on a scale of the
device width then nothing prevents them from reaching the opposite device boundary producing negative R3−4,1−2.
The negative sign of the transfer resistance measured in the bend geometry is usually considered as a benchmark of
ballistic transport regime.

FIG. S1. Micrometer-scale ballistic transport in encapsulated SA-TBG. R3−4,1−2 as a function of magnetic field
measured in the geometry, shown in the inset, for given n, T and D.

We have performed such measurements in our sample and found that at liquid helium T , R3−5,1−2 is negative over
the wide range of n. Furthermore, the application of a magnetic field, causes the sign change of the measured signal,
as the charge carriers are deflected from the straight trajectories. These observations highlight a high quality of our
encapsulated sample, that is crucial for studies of interaction-dominated transport described in the main text.
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S3. Theoretical calculations of the interaction-dominated resistivity in SA-TBG.

To derive the resistivity due to electron-electron interactions, we start from the Boltzmann equation for the space-
and time-dependent fermion occupation function fk,λ(r, t),

∂tfk,λ(r, t) + vk,λ ·∇rfk,λ(r, t)− eE ·∇kfk,λ(r, t) = Iee[fk,λ] , (S2)

where vk,λ = ∇kεk,λ is the velocity of a particle of Bloch wavevector k characterized by (band, spin, valley and layer)
quantum numbers λ, −e is the electron charge, and E is the (uniform and time-independent) external electric field.
Finally, Iee[fk,λ] is the collision integral of electron-electron interactions:

Iee[fk,λ] =
1

A3

∑
k2,λ2

∑
k3,λ3
k4,λ4

Wee(k1, λ1;k2, λ2;k3, λ3;k4, λ4)δ(k1 + k2 − k3 − k4)δ(εk1,λ1 + εk2,λ2 − εk3,λ3 − εk4,λ4)

×
[
fk1,λ1

fk2,λ2
(1− fk3,λ3

)(1− fk4,λ4
)− (1− fk1,λ1

)(1− fk2,λ2
)fk3,λ3

fk4,λ4

]
. (S3)

Within the Fermi-golden rule,

Wee(k1, λ1;k2, λ2;k3, λ3;k4, λ4) =
2π

~
|Vee(k1 − k3, εk1,λ1

− εk3,λ3
)|2D(k1, λ1;k3, λ3)D(k2, λ2;k4, λ4) ,

(S4)

where V (q, ω) = vq/ε(q, ω), vq = 2πe2/q is the bare Coulomb interaction and ε(q, ω) = 1−vqχnn(q, ω) is the dielectric

function. In Eq. (S4), we have defined the overlap between initial and final states as D(k, λ;k′, λ′) =
∣∣〈k, λ|k′, λ′〉∣∣2,

where |k, λ〉 is an eigenstate of the bare Hamiltonian. For future purposes we define nF(x) = [exp(x) + 1]−1 and
nB(x) = [exp(x)− 1]−1 as the Fermi and Bose distribution, respectively.

We solve Eq. (S2) in the steady state and to linear order in the electric field by employing the following Ansatz:

fk,λ = f (0)(εk,λ)− eτE · vk,λ

kBT
f (0)(εk,λ)

[
1− f (0)(εk,λ)

]
, (S5)

where f (0)(εk,λ) is the equilibrium Fermi-Dirac distribution function at the temperature T . Plugging the Ansatz (S5)
into Eq. (S2) and linearizing with respect E to we get(
−∂f

(0)(εk,λ)

∂εk,λ

)
vk,λ ·E = − 2πτ

~A3kBT

∑
k2,λ2

∑
k3,λ3
k4,λ4

|Vee(k1 − k3, εk1,λ1
− εk3,λ3

)|2D(k1, λ1;k3, λ3)D(k2, λ2;k4, λ4)

× δ(k1 + k2 − k3 − k4)δ(εk1,λ1
+ εk2,λ2

− εk3,λ3
− εk4,λ4

)

× f (0)(εk1,λ1)f (0)(εk2,λ2)
[
1− f (0)(εk3,λ3)

][
1− f (0)(εk4,λ4)

]
× (vk1,λ1

+ vk2,λ2
− vk3,λ3

− vk4,λ4
) ·E . (S6)

To determine the transport time τ , we multiply Eq. (S6) by vk,λ and sum over all k and λ. We obtain τ = DI−1,
where the Drude weight is

D =
1

2A
∑
k,λ

(
−∂f

(0)(εk,λ)

∂εk,λ

)
|vk,λ|2 , (S7)

while

I = − π

16~kBTA3

∑
q

∫ ∞
−∞

dω
|Vee(q, ω)|2

sinh2

(
ω

2kBT

)∑
k,k′

∑
λ,λ′

∑
η,η′

D(k, λ;k − q, λ′)D(k′, η;k′ + q, η′)

×
[
f (0)(εk,λ)− f (0)(εk,λ − ω)

][
f (0)(εk′,η)− f (0)(εk′,η + ω)

]
× |vk,λ + vk′,η − vk−q,λ′ − vk′+q,η′ |2δ(εk,λ − εk−q,λ′ − ω)δ(εk′,η − εk′+q,η′ + ω) . (S8)

The resistivity is therefore

ρ =
I

e2D2
. (S9)
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We now specialize this result to the case of twisted bilayer graphene. The two layers are kept at different potentials.
Therefore, the two Dirac crossings at the points K and K ′ of the mini-Brillouin zone are shifted in energy in opposite
directions. As such, one of the valleys is hole-doped, while the other is electron doped. When the temperature T is
much smaller than the Fermi energy εF (which we assume to be equal in modulus for the two valleys), we find

D =
Nfv

2
F

2
ν(εF) , (S10)

where ν(ε) = ε/(2π~2v2F) is the density of states of a single Dirac cone, and Nf = 8 is the total number of (spin,

valley and layer) fermion flavors. As Eq. (S8), in the low-temperature limit the function 1/ sinh2[ω/(2kBT )] strongly
suppresses contributions at large ω. Expanding the integrand in the limit of ω → 0 to the leading order, we get

I ' π

16~kBT

∫
d2q

(2π)2

∫ ∞
−∞

dω
ω2|Vee(q, 0)|2

sinh2

(
ω

2kBT

) ∫ d2k

(2π)2

∫
d2k′

(2π)2

∑
λ,λ′

∑
η,η′

D(k, λ;k − q, λ′)D(k′, η;k′ + q, η′)

× δ(εk,λ − εk−q,λ′)δ(εk′,η − εk′+q,η′)

(
−∂f

(0)(εk,λ)

∂εk,λ

)(
−∂f

(0)(εk′,η)

∂εk′,η

)
|vk,λ + vk′,η − vk−q,λ′ − vk′+q,η′ |2 .

(S11)

We now observe that, in the limit of low temperature,(
−∂f

(0)(εk,λ)

∂εk,λ

)
→ δ(εk,λ − εF) . (S12)

Because of the four δ-functions in the integrand of Eq. (S11), all initial and final states are bound to the Fermi surface.
Hence, the matrix element on its last line can be written as

M≡ |vk,λ + vk′,η − vk−q,λ′ − vk′+q,η′ |2 '
v2Fq

2

k2F
|sλ − sη|2 . (S13)

Here, sλ = ± accounts for the direction of velocity with respect to momentum in a given mini-valley of the Brillouin
zone. To obtain this result, we have neglected the possibility of inter-minivalley transitions. Hence, the particles
labelled by λ and λ′ (η and η′) belong to the same mini-valley in the Brillouin zone. This means that they share the
same band, valley, and layer index.

From Eq. (S13), it is clear that if all minivalleys are populated with the same type of carriers, the collision integral
of electron-electron interactions vanishes. Since, in the present case, populations are unequal, i.e. sλ 6= sη for some
choices of λ and η. To be specific, for each of the Nf choices of λ, there are Nf/2 possible choices for η such that
sλ 6= sη. In these cases, M = 4v2Fq

2/k2F. Therefore,

I ' πN2
f

8~kBT
v2F
k2F

∫
d2q

(2π)2

∫ ∞
−∞

dω
ω2|Vee(q, 0)|2q2

sinh2

(
ω

2kBT

) Γ2(q) , (S14)

where

Γ(q) =

∫
d2k

(2π)2
1 + cos(ϕk − ϕk+q)

2
δ(εk − εF)δ(εk+q − εF)

' Θ(2kF − q)ν(εF)
1

π~vFq

√
1− q2

4k2F
. (S15)

After some lengthy algebra we find

I ' 2π2N2
f

3

(
kBT

εF

)2

~v4Fν2(εF)α2
ee

3(NFαee − 1) +
[
4− 3(NFαee)

2
]
arccoth(1 +NFαee)

2
, (S16)

and therefore the scattering rate and resistivity read

1

τ
=
εF
~

2πNf

3

(
kBT

εF

)2

α2
ee

3(NFαee − 1) +
[
4− 3(NFαee)

2
]
arccoth(1 +NFαee)

2
, (S17)
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and

ρel =
h

e2
4π

3

(
kBT

εF

)2

α2
ee

3(NFαee − 1) +
[
4− 3(NFαee)

2
]
arccoth(1 +NFαee)

2
, (S18)

respectively.
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Passeig de Llúıs Companys 23, 08010 Barcelona, Spain

(Dated: January 24, 2024)

Chirality-induced spin selectivity (CISS) is an effect that has recently attracted a great deal of
attention in chiral chemistry and that remains to be understood. In the CISS effect, electrons passing
through chiral molecules acquire a large degree of spin polarization. In this work we study the case
of atomically-thin chiral crystals created by van der Waals assembly. We show that this effect can be
spectacularly large in systems containing just two monolayers, provided they are spin-orbit coupled.
Its origin stems from the combined effects of structural chirality and spin-flipping spin-orbit coupling.
We present detailed calculations for twisted homobilayer transition metal dichalcogenides, showing
that the chirality-induced spin polarization can be giant, e.g. easily exceeding 50% for MoTe2. Our
results clearly indicate that twisted quantum materials can operate as a fully tunable platform for
the study and control of the CISS effect in condensed matter physics and chiral chemistry.

Introduction.—In 1999, a team led by R. Naaman rec-
ognized that films made from chiral organic molecules
scatter polarized electrons asymmetrically [1]. Spin po-
larization induced by chirality is an effect now univer-
sally known as chirality-induced spin selectivity (CISS)
effect [2–6]. Almost ten years later, Rosenberg et al. [7]
demonstrated that a polarized spin can induce an enan-
tiospecific chemical process. It is now widely accepted [2–
6] that the CISS effect has profound implications on
asymmetric chemistry. Chiral molecules and, more in
general, chiral materials [8] and bulk chiral crystals [9]
can act as spin polarizers and filters and therefore influ-
ence processes associated with electron transfer, electron
transport, and bond polarization through chiral struc-
tures.

To the best of our knowledge, though, a microscopic
understanding of the molecular CISS effect is still lacking
(for a recent summary we refer the reader to Ref. [10]). In
particular, the role of spin-orbit coupling [10], geometric
phases [11], electron correlations [12], electron-phonon
coupling [13], dissipation [14], and the interactions be-
tween chiral molecules and/or chiral and magnetic sub-
strates are not understood. This confusion on its micro-
scopic origin limits the use of CISS in applications and
makes it challenging to enhance it.

The point we want to raise in this work is that a thor-
ough microscopic understanding of the CISS effect calls
for a fully tunable platform where the dependence of
the effect on a multitude of control parameters can be
studied, both experimentally and theoretically. As we
will demonstrate below, we believe that moiré superlat-
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Bottom lead

FIG. 1. Sketch of the two-terminal setup we have studied in
this work. A twisted homobilayer TMD, developing along the
x̂-ŷ plane, is contacted by two semi-infinite leads (denoted
by grey-shaded areas). The spatial separation between the
two TMD layers in the vertical ẑ direction is d. The twist
between the two layers is achieved by a counter-clockwise ro-
tation of the top layer with respect to the bottom one by an
angle θ. The resulting moiré lattice is plotted on the right.
Black arrows show the spin-resolved reflection, rσ,σ′ , r′σ,σ′ ,

and transmission, tσ,σ′ , t′σ,σ′ , components of the scattering
matrix S reported in Eq. (1).

tices obtained by twisting atomically-thin crystals with
respect to each other [15–17] represent such a platform.
Despite the great deal of interest that these systems have
attracted since the discovery of superconductivity [18]
and correlated insulating states [19] in twisted bilayer
graphene (TBG) [20–28], very few studies have high-
lighted the fact that these systems are naturally chiral
materials akin to “giant chiral molecules”. The only qual-
itative difference between chiral molecules and twisted
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FIG. 2. (Color online) Numerical results for the energy de-
pendence of the spin polarization Pt = Pt(E), as defined in
Eq. (5), of electrons transmitted from the top to the bot-
tom lead. The calculated spin polarization has opposite sign
for θ (orange curve) and −θ (blue curve). In the non-chiral
(untwisted, θ = 0) case, the spin polarization Pt vanishes
(black dashed line). Results in this plot refer to parameters
for twisted homobilayer MoTe2 [49], θ = 6.01◦, λ0 = 220 meV,
and λBR = 0.

quasi-two-dimensional (2D) materials is that the latter
have (a nearly exact) Bloch translational invariance.

The fact that twisted materials are chiral is not a
mere mathematical statement but has experimental im-
plications e.g. on the interaction between these materi-
als and light. For example, natural optical activity [29],
a hallmark of chiral materials, was experimentally dis-
covered [30] in TBG at large twist angles well before
exotic states of matter were found at the magic an-
gle [18, 19]. TBG exhibits remarkably large circular
dichroism [30, 31], up to a factor 100 stronger than for a
layer of chiral molecules of similar thickness.

In this work, we demonstrate that the interplay be-
tween spin-orbit coupling (SOC) and chirality in twisted
quantum materials gives rise to a giant CISS effect, even
for just two twisted monolayers. More precisely, we con-
sider a family of twisted moiré superlattices which are
known to display strong SOC. These are twisted ho-
mobilayer transition metal dichalcogenides (TMDs) [32]
such as twisted MoTe2, which is currently attracting a
great deal of attention because of the experimental dis-
covery [33–36] of fractional Chern insulating states in
zero magnetic field. These systems offer a wide range of
tunable parameters, such as carrier density (which can
be changed via e.g. the electrical field effect), twist an-
gle (which can be changed at will, thereby inducing dra-
matic changes in the Bloch bands of these crystals), and
more conventional ones, such as temperature and applied
magnetic fields. Our interest here is on the study of the
interplay between chiral orbital motion, spin-orbit cou-
pling, and the spin degree of freedom. Quantifying the
role of electron-electron interactions (e.g. exchange in-
teractions [37]), which are strong in moiré materials, and

quantum geometry [38–40] is well beyond the scope of
the present work and is left for future work.
Setup and scattering matrix approach to the CISS ef-

fect.—In order to numerically extract information about
the CISS effect in twisted homobilayer TMDs, we utilize
the setup depicted in Fig. 1. It consists of a twisted ho-
mobilayer TMD contacted by two leads. One can inject
carriers from the top lead, for example, which, after tun-
neling through the strongly spin-orbit coupled twisted
homobilayer TMD, will be extracted from the bottom
layer. As we will discuss momentarily, the reciprocity
theorem [41] forbids the observation of a spin-polarized
current through a standard linear-response magnetoresis-
tance measurement in a two-terminal setup [42]. Never-
theless, the spin-polarized nature of electron scattering in
our chiral van der Waals heterostructure can be detected
through a spin-resolved scattering matrix approach [43–
46].
The top and bottom leads in Fig. 1 offer asymptotic

propagating states. We introduce: i) ψout
T,σ (ψout

B,σ) as the
asymptotic wave-function for electrons with spin σ =↑
, ↓, which are scattered out of the twisted homobilayer
TMD into the top (bottom) lead; ii) ψin

T,σ′ (ψin
B,σ′) as the

asymptotic wave-function for electrons with spin σ′ =↑
, ↓, which are injected from the top (bottom) lead into
the twisted homobilayer TMD. The latter can be viewed
as a scatterer, whose transport properties are completely
defined by its spin-resolved scattering matrix Sσ,σ′ [43]:(

ψout
T,σ

ψout
B,σ

)
=
∑

σ′=↑,↓
Sσ,σ′

(
ψin
T,σ′

ψin
B,σ′

)
, (1)

where

Sσ,σ′ ≡
(
rσ,σ′ t′σ,σ′

tσ,σ′ r′σ,σ′

)
. (2)

Here, tσ,σ′ , rσ,σ′ (t′σ,σ′ , r′σ,σ′) are the spin-resolved trans-
mission and reflection amplitudes of electrons coming
from the top (bottom) lead—see Fig. 1. All the quantities
in Eqs. (1)-(2)—and below in Eqs. (3)-(5)—are functions
of a single energy E, since we are assuming only elastic
scattering mechanisms.

Starting from the entries of the scattering matrix, we
introduce the following reflection ρr, ρr′ and transmission
ρt, ρt′ probability matrices:

ρr ≡ rr† , ρr′ ≡ r′(r′)†

ρt ≡ tt† , ρt′ ≡ t′(t′)† .
(3)

Here, r, r′, t, and t′ are matrices in spin space with
matrix elements rσ,σ′ , r′σ,σ′ , tσ,σ′ , t′σ,σ′ , respectively.
We also define the following dimensionless spin con-

ductances [44] for each scattering process:

σr ≡ Tr[ŝzρr] , σr′ ≡ Tr[ŝzρr′ ]
σt ≡ Tr[ŝzρt] , σt′ ≡ Tr[ŝzρt′ ] .

(4)
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FIG. 3. (Color online) Panel (a) Results for the spin po-
larization Pt(E) for different values of the twist angle θ
(θ = 3.48◦, 4.41◦, 6.01◦, and 13.17◦). The black dashed
line refers to the non-chiral θ = 0 case. Panel (b) Re-
sults for the spin polarization Pt(E) for different values of
λ0 (λ0 = 50 meV, 100 meV, and 220 meV). In this panel,
the angle has been fixed at θ = 6.01◦. The black dashed line
refers to the case in which SOC is artificially turned off by
setting λ0 = 0. All the other parameters are the same as in
Fig. 2.

where ŝz is a Pauli matrix. The trace operation in Eq. (4)
is of course intended over the spin degrees of freedom.

Once again, as demonstrated in great detail in
Ref. [42], the reciprocity theorem [41] allows one to con-
clude that any linear-response electrical measurement in
a two-terminal setup, even in the presence of auxiliary

ferromagnets, is insensitive to the “spin conductances”
introduced in Eq. (4). The setup depicted in Fig. 1 there-
fore should not be intended as a real experimental setup
to infer information on the quantities in Eq. (4), but,
rather, as a computational setup with asymptotic prop-
agating states to numerically access the full scattering
matrix.

The four quantities in Eq. (4) are not independent. Be-
cause of charge conservation (i.e. because of the unitarity
of the full scattering matrix), σr = −σt′ and σr′ = −σt.
Therefore, in general, we have two independent spin con-
ductances, e.g. σt and σt′ . From now on, we focus only
on σt for reasons that will become clear momentarily. In
particular, we introduce the energy-dependent chirality-
induced spin polarization Pt(E) by properly normalizing
the corresponding spin conductance:

Pt(E) ≡ σt(E)

Tr[ρt(E)]
∈ [−1, 1] . (5)

This quantity gives information on the strength of the
CISS effect [42, 44] and vanishes when the scatterer is
non-chiral.

Microscopic modelling of the scatterer.—For what con-
cerns the microscopic modelling of the scatterer, i.e. the
twisted homobilayer TMD, we employed a gapped Dirac-
fermion model [32], by introducing a mass term in a tight-
binding Hamiltonian for TBG [47, 48]. The details of
the complete tight-binding Hamiltonian are reported in
Sect. I of the Supplemental Material [49]. Here, given its
crucial importance, we focus only on the tight-binding de-
scription of SOC in twisted homobilayer TMDs. Among
all the possible SOC terms allowed by C3 symmetry [50],
we restrict our analysis to spin-flipping nearest-neighbor
intra-layer hoppings, since nearest-neighbour and next-
nearest-neighbour spin-conserving hopping terms yield a
vanishing contribution to the CISS strength (5). The
fact that the physics of CISS requires, at a general, fun-
damental level, spin-flip processes is in agreement with
the conclusions of Ref. [42].

The SOC Hamiltonian we consider here is then given
by [50]:

Ĥ(ℓ)
SOC =

2i

3
λ
′(ℓ)
0

∑
σ ̸=σ′

∑
⟨m,n⟩

∑
τ,τ ′

[ŝ× dm,τ,n,τ ′ ]σ,σ′ |m, ℓ, τ⟩⟨n, ℓ, τ ′| ⊗ |σ⟩ ⟨σ′| , (6)

where ℓ = 1, 2 is the layer index, λ
′(ℓ)
0 = [λ0 − (−1)ℓλBR]

is the SOC parameter (with units of energy), ŝ =
(ŝx, ŝy, ŝz) is a vector of Pauli matrices, |m, ℓ, τ⟩⊗|σ⟩ de-
notes the state of an electron with spin σ localized on site
m and sublattice τ = A,B of layer ℓ (for further details,

see Ref. [49]). Finally, dm,τ,n,τ ′ is a dimensionless unit
vector lying in the x̂-ŷ plane, which points from lattice
site n to the nearest-neighbor sitem. The symbol ⟨. . . ⟩ in
one of the sums in Eq. (6) refers to the fact that the sum
is restricted to nearest-neighbor pairs. One important
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observation is now in order. The SOC parameter λ0 is
an intrinsic intra-layer term—intrinsic in the sense that
is also present in Bernal-stacked bilayer graphene [51].
The layer-dependent term, controlled by λBR, stems in-
stead from broken inversion symmetry. This latter term,
which, in an ordinary Bernal-stacked bilayer graphene is
due to a perpendicular applied electric field [51], here
models the fact that twisted homobilayer TMDs do not
have an inversion center, even in the absence of extrinsic
external electric fields. Finally, we note that, in the case
λBR = 0, our setup is invariant under the simultaneous
exchange of a) top and bottom leads and b) top and bot-
tom layers of the twisted homobilayer TMD. In this case,
one has σt′ = −σt. For λBR ̸= 0, σt′ ̸= −σt.
While certainly approximate, this lightweight model of

the scatterer treats on equal footing the structural chi-
rality of the system (i.e. which stems from the non-zero
twist angle θ contained in the intra- and inter-layer terms
of the twisted TMD Hamiltonian reported in Ref. [49])
and the coupling between spin and orbital motion due the
SOC term of the Hamiltonian, allowing us to perform a
first exploration of their interplay in a chiral quasi-2D
solid-state system.

Results.—We now present our main numerical results.
We used the Kwant software package [52] to implement
the tight-binding model Hamiltonian introduced above
and calculate the spin-resolved Sσ,σ′ matrix of the two-
terminal 3D transport setup presented in Fig. 1. Top and
bottom leads are modelled as semi-infinite A-A stacked
graphite leads. Each graphite lead is rotated in order
to be aligned with the adjacent layer belonging to the
twisted homobilayer TMD. The leads have Bloch trans-
lational invariance both along the x̂-ŷ plane and the ẑ di-
rection. The twisted homobilayer TMD has Bloch trans-
lational invariance in the x̂-ŷ plane. The spin-resolved
scattering matrix Sσ,σ′ has been computed by carrying
out integrals over the 2D moiré lattice Brillouin zone.

Fig. 2 displays the spin polarization Pt(E), as defined
in Eq. (5), of the electrons transmitted from the top to
the bottom lead. These results refer to twisted homobi-
layer MoTe2 [32] and a twist angle θ = 6.01◦. (Additional
numerical results for twisted MoS2, MoSe2, WS2, WSe2,
and WTe2 are reported in Sect. II of Ref. [49].) For the
SOC parameters, we have used the values λ0 = 220 meV
and λBR = 0, which have been taken from Ref. [32]. We
clearly see that the spin polarization exceeds 20% (see
also Fig. 3(a), where much larger values have been ob-
tained for larger twist angles), which is a giant value,
given the atomic thickness of the scatterer. As expected,
the calculated spin polarization has opposite sign for two
opposite twist angles, θ and −θ. Importantly, the spin
polarization vanishes in the non-chiral θ = 0 case.

The dependence of the chirality-induced spin polariza-
tion Pt(E) on the twist angle θ is displayed in Fig. 3(a)
for three values of θ. Notice that decreasing θ, from
θ = 13.17◦ down to θ = 3.48◦, |Pt(E)| decreases. This
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FIG. 4. (Color online) Same as in Fig. 2, but for a finite value
of λBR, λBR = 50 meV. The black dashed line denotes the
results for the non-chiral θ = 0 case.

is not surprising since in the limit θ → 0 the system be-
comes non-chiral and Pt(E) vanishes for all values of E,
as seen in Fig. 2. For θ = 13.17◦, the spin polarization
nearly reaches the impressive value of 60%. Fig. 3(b)
shows the dependence of Pt(E) on the magnitude of λ0
(while keeping λBR = 0). We note that increasing SOC
leads to an overall increase of |Pt(E)|, pointing out the
crucial role of this term in the twisted homobilayer TMD
Hamiltonian for the emergence of chirality-induced spin
polarization.

Finally, Fig. 4 shows Pt(E) in the case of finite λBR.
The important thing to notice is the result for θ = 0,
i.e. Pt(E) = 0 ∀E. At θ = 0 and λBR ̸= 0, our
twisted quasi-2D material reduces to a Bernal-stacked
homobilayer TMD in the presence of a perpendicular
applied electric field. The Hamiltonian of this system
breaks inversion symmetry but lacks chirality, yielding
no chirality-induced spin polarization.

In summary, we have shown that a chirality-induced
spin polarization emerges in moiré materials with strong
spin-orbit coupling. Surprisingly, we have found that the
spin polarization can be giant even for just two twisted
monolayers. We have presented a theory of the effect
based on the microscopic Hamiltonian of twisted homo-
bilayer transition metal dichalcogenides [32]. Numerical
results have been obtained for twisted MoTe2. In this
particular case, the effect appears to be gigantic, pro-
vided that the twist angle is sufficiently large. As far as
the experimental detection of the effect is concerned, one
needs either to employ devices with more than two ter-
minals [42] or transcend the linear-response regime [46]
(if one insists on using a two-terminal setup).

During the preparation of this manuscript, we learned
about a recent theoretical work reporting chirality-
induced spin polarization in bulk (three-dimensional)
inorganic crystals with homochiral crystal structures,
such as tellurium and transition metal disilicide com-



5

pounds [53].
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[31] Suárez Morell, E., Chico, L. & Brey, L. Twisting dirac
fermions: circular dichroism in bilayer graphene. 2D
Mater. 4, 035015 (2017).

[32] Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDon-
ald, A. H. Topological insulators in twisted transition
metal dichalcogenide homobilayers. Phys. Rev. Lett. 122,
086402 (2019).

[33] Cai, J., Anderson, E., Wang, C., Zhang, C., Liu, X.,
Holtzmann, W., Zhang, Y., Fan, F., Taniguchi, T.,
Watanabe, K., Ran, Y., Cao, T., Fu, L., Xiao, D., Yao,
W. & Xu, X. Signatures of fractional quantum anomalous
Hall states in twisted MoTe2. Nature 622, 63 (2023).

[34] Park, H., Cai, J., Anderson, E., Zhang, Y., Zhu, J.,
Liu, X., Wang, C., Holtzmann, W., Hu, C., Liu, Z.,
Taniguchi, T., Watanabe, K., Chu, J.-H., Cao, T., Fu,
L., Yao, W., Chang, C.-Z., Cobden, D., Xiao, D. & Xu,
X. Observation of fractionally quantized anomalous Hall
effect. Nature 622, 74 (2023).

[35] Zeng, Y., Xia, Z., Kang, K., Zhu, J., Knüppel, P.,
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8ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig de Llúıs Companys 23, 08010 Barcelona, Spain

In this Supplemental Material we present more details on the tight-binding Hamiltonian we have used in our
numerical calculations. We also present further numerical results concerning the chirality-induced spin-polarization

for two of the most common families of TMDs.

SECTION I: MODEL HAMILTONIAN

Here we present more details on the tight-binding model we have used to describe electrons roaming in the twisted
TMD homobilayer moiré superlattice.

We start from the tight binding model for TBG [S1–S3]. The basis of Bloch states is built from the pz atomic
orbitals of Carbon. We introduce the localized atomic orbitals centered at the point dτ,ℓ + tn,ℓ, i.e.

⟨r|n, ℓ, τ⟩ = ϕ(r − dτ,ℓ − tn,ℓ) , (S1)

where ϕ(r) is the wavefunction of a pz orbital centered at the origin, dτ,ℓ is the basis vector of the sublattice τ in
layer ℓ, whereas the symbol tn,ℓ is a shorthand for

tn,ℓ = n1t̃1,ℓ + n2t̃2,ℓ with n1, n2 ∈ N . (S2)

The vectors t̃1/2,ℓ are primitive translation vectors of the graphene lattice in layer ℓ, and the sum over n should be
intended as ∑

n

[· · · ] =
∑

n1,n2∈N

[· · · ] . (S3)

The atomic orbitals are assumed to be orthogonalized according to

⟨n, ℓ, τ |n′, ℓ′, τ ′⟩ = δn,n′δℓ,ℓ′δτ,τ ′ . (S4)

In the two-center approximation, and retaining only the nearest-neighbour contributions, the intra-layer Hamiltonian
of graphene in layer ℓ takes the form

Ĥ
(ℓ)
intra = −t

∑
⟨m,n⟩

∑
τ,τ ′

|m, ℓ, τ⟩⟨n, ℓ, τ ′|(1− δτ,τ ′) , (S5)

where the energy t is given by

−t ≡
∫
dr ϕ∗(r)V (r − dτ,1)ϕ(r − dτ,1) =

∫
dr ϕ∗(r)V (r − dτ,2)ϕ(r − dτ,2) , (S6)

V (r) being the spherically-symmetric potential of a Carbon atom centered at the origin. The sum over ⟨m,n⟩ runs
over neighboring orbitals, i.e. the states |m, ℓ, τ⟩ and |n, ℓ, τ ′⟩ in Eq. (S5) correspond to neighbouring orbitals.
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In this work we have chosen the following primitive translation vectors

t̃1/2,ℓ=1 =

(
∓a
2
,
a
√
3

2

)
, t̃1/2,ℓ=2 = R(θ)

(
∓a
2
,
a
√
3

2

)
, (S7)

where R(θ) is the rotation matrix defined by:

R (θ) = cos(θ)I2×2 − i sin(θ)σy =

(
cos(θ) ± sin(θ)
sin(θ) cos(θ)

)
. (S8)

As in the main text, layer 1 (top) is the reference layer, while layer 2 (bottom) is counter-clockwise rotated by an
angle θ. In addition, the basis vectors are

dτ,ℓ =


a√
3

(
−

√
3
2 ,

1
2

)
, if layer = 1 and sub-lattice = B .

− a√
3
R(θ)

(
−

√
3
2 ,

1
2

)
, if layer = 2 and sub-lattice = A .

0 , otherwise .

(S9)

The choice of these translation and basis vectors is such that in the limit θ → 0 one obtains AB-stacked bilayer
graphene.

We now describe the tunneling of electrons between orbitals in different layers. The inter-layer Hamiltonian can be
written as

Ĥ
(ℓ,ℓ′)
inter =

∑
n,n′

∑
τ,τ ′

hτ,τ ′(dτ,ℓ + tn,ℓ − dτ ′,ℓ′ − tn′,ℓ′)|n, ℓ, τ⟩⟨n′, ℓ′, τ ′|+H.c. . (S10)

An empirical form of the transfer integral between two pz orbitals of Carbon atoms in the Slater-Koster approximation
is given by [S2]:

hτ,τ ′(Rn,n′) = −t exp
(
−|Rn,n′ | − a

λ

) |Rn,n′ · e∥|2
|Rn,n′ |2 + t⊥ exp

(
−|Rn,n′ | − d

λ

) |Rn,n′ · e⊥|2
|Rn,n′ |2 . (S11)

In Eq. (S11) we have introduced the short-hand notation Rn,n′ ≡ dτ,ℓ + tn,ℓ − dτ ′,ℓ′ − tn′,ℓ′ , for which indeed
hτ,τ ′(dτ,ℓ + tn,ℓ − dτ ′,ℓ′ − tn′,ℓ′) = hτ,τ ′(Rn,n′). In Eq. (S11) we have also introduced the decay length λ and the
inter-layer distance d. The hopping parameter t⊥ is given by:

t⊥ =

∫
drϕ∗(r)V (r − dez)ϕ(r − dez) , (S12)

which is the transfer integral between two pz orbitals that are one on top of the other, vertically displayed by a
distance d.
In this work we study vertical transport through twisted homobilayer TMDs, whose Hamiltonian can be obtained by

modifying the above tight-binding model into a twisted bilayer gapped graphene one [S4]. To this end, we reproduce
the monolayer TMD energy gap ∆ and carrier effective mass m∗ by adding a staggered potential EA, EB on the
sub-lattice sites and re-scaling the intra-layer nearest-neighbor hopping t, while retaining the lattice parameter of
graphene a:

Ĥ
(ℓ)
intra =

∑
m

∑
τ

Eτ |m, ℓ, τ⟩⟨m, ℓ, τ | − t̃
∑
⟨m,n⟩

∑
ττ ′

|m, ℓ, τ⟩⟨n, ℓ, τ ′|(1− δττ ′) , (S13)

where

t̃ =
ℏ√
3a

√
2∆

3m∗ . (S14)

The numerical results presented and discussed in the main text are obtained for the following choice of parameters:
a = 0.246 nm, ∆ = 1.1 eV, and m∗ = 0.6 me, me being the bare electron mass in vacuum. The inter-layer hopping
energy and distance appearing in the inter-layer Hamiltonian term (S11) are instead fixed to t⊥ = 0.15 eV and
d = 0.69 nm, while the exponential decay length is kept equal to the one in TBG, i.e. λ = 0.184

√
3a [S2]. These

parameters have been chosen in order to effectively reproduce the energy bands of twisted MoTe2.
In Fig. S1 we compare our results for the energy bands obtained from the above described tight-binding model—

panel (a)—with the results of Ref. [S4], which were obtained from a continuum model Hamiltonian.
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FIG. S1. Band structure of twisted MoTe2 obtained from our tight-binding model—panel (a)—and from the continuum model of
Ref. [S4]—panel (b). Results in this plot refer to a twist angle θ = 3.89◦. The parameters of the continuum model Hamiltonian
are extracted from Ref. [S4]. The dependence of the bands on the wave-vector k is displayed along the high-symmetry path
K-Γ-M -K of the moiré Brillouin zone.

SECTION II: ADDITIONAL NUMERICAL RESULTS

In this Section we present additional numerical results. In the main text, indeed, we focussed on for the case of
twisted MoTe2. For the sake of completeness, in Fig. S2 we show the chirality-induced spin polarization Pt for two
of the most common families of TMDs. In panel (a) we report results for twisted homobilayers composed by MoS2,
MoSe2, and MoTe2 (already presented in the main text). In panel (b) we do the same for WS2, WSe2, and WTe2.
Both panels have been calculated by setting θ = 13.17◦.
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FIG. S2. (Color online) Results for the spin polarization Pt(E) for two different families of twisted TMDs. Results in this
figure refer to a single twist angle, i.e. θ = 13.17◦. Panel (a) Results for MoX2 with X = S,Se, and Te. Panel (b) Results for
WX2 with X = S,Se, and Te. In both panels the solid black line has been added as a guide to the eye. The parameters of the
microscopic Hamiltonians used to produce these numerical results have been reported in Table S1.

The microscopic parameters of the Hamiltonian used to compute the spin polarization Pt(E) in Fig. S2 are collected
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in Table S1. Each Hamiltonian contain the following parameters: the energy gap ∆, the hole-carrier effective mass
m∗ (expressed in units of the bare electron mass in vacuum), the SOC parameter λ0 discussed in the main text, and
the interlayer distance d. The Table reports also the SOC to energy gap ratio λ0/∆ and the maximum of the absolute
value of the chirality-induced spin-polarization:

|Pt|max ≡ max
E∈[−2,2]eV

|Pt(E)| , (S15)

extracted from Fig. S2. As it can be inferred from Fig. S2, within a given TMD family, |Pt|max is achieved in the
material with the maximum value of λ0/∆.

∆ [eV] m∗ [me] λ0 [meV] d [nm] λ0/∆ |Pt|max [%]
MoS2 [S5, S6] 1.62 0.58 255 0.62 0.16 37.3
MoSe2 [S5, S6] 1.4 0.67 263 0.65 0.19 46.2
MoTe2 [S4] 1.1 0.62 220 0.69 0.20 59.5
WS2 [S5, S6] 1.74 0.42 459 0.61 0.26 48.0
WSe2 [S5, S6] 1.43 0.45 446 0.64 0.31 61.1
WTe2 [S5, S6] 0.86 0.41 401 0.69 0.47 72.5

TABLE S1. Numerical parameters employed to obtain the results shown in Fig. S2. Energy gap ∆ (eV), hole-carrier effective
mass m∗ (me) in units of the bare electron mass in vacuum me, the SOC parameter λ0 discussed in the main text, the interlayer
distance d (in nm), the SOC to energy gap ratio λ0/∆, and |Pt|max as defined in Eq. (S15). This last quantity has been extracted
from Fig. S2 and refers to θ = 13.17◦.

In order to illustrate the role of the energy gap ∆ on the quantity Pt(E), in Fig. S3 we plot three different results
for Pt(E) in MoTe2. Different curves in this figure have been obtained by artificially changing the energy gap ∆ while
keeping fixed all the other microscopic parameters of MoTe2. The twist angle is fixed at θ = 6.01◦. It is evident that
|Pt|max increases with decreasing ∆ (thereby increasing the value of the ratio λ0/∆).
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FIG. S3. (Color online) Chirality-induced spin polarization Pt(E) in MoTe2. Different colors refer to different values of ∆:
∆ = 0.8 eV (orange), ∆ = 1.1 eV (magenta), and ∆ = 1.5 eV (blue). All the results have been obtained by setting θ = 6.01◦.

We conclude this Section by showing the dependence of |Pt|max on the twist angle θ in Fig. S4. Results in this plot
refer to twisted MoTe2. For the computed angles, a linear behavior is evident.
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